
Iterated Local Search for the examination timetabling

problem with constructive-based initial solution*

Synim Selimi1, Labeat Arbneshi1, Kadri Sylejmani1☒, and Nysret Musliu2

1 Faculty of Electrical and Computer Engineering, University of Prishtina, Kosova
2 Databases and Artificial Intelligence Group, TU Wien, Austria

synim.selimi@student.uni-pr.edu,

[labeat.arbneshi,kadri.sylejmani]@uni-pr.edu,
musliu@dbai.tuwien.ac.at

Abstract. In this extended abstract we present an approach and solution for the

examination timetabling problem based on the Iterated Local Search

metaheuristic. Initially we introduce a flat data remodeling of the given problem

instances. The proposed constructive approach then uses precalculated heuristic

information to construct a feasible initial solution from the refined instance data.

The neighborhood structure consists of two operators, one to reallocate only

rooms and the other to change room-period tuples for course examination events.

The algorithm also applies a perturbation mechanism, which is tuned to guide the

search for optimal solutions out of the local optima. The presented approach has

been preliminarily tested against some smaller test sets existing in the literature,

where it has shown that it is able to produce optimal results for some of the

instances.

Keywords: Examination Timetabling, Constructive Heuristic, Iterated Local Search.

1 Introduction and problem formulation

The examination timetabling process at universities is an overly complex combinatorial

problem that has been extensively researched, resulting in a substantial body of

literature. Qu et al. [1] present a survey of the algorithmic methodologies and the

respective variants of the problem formulation. Many of the algorithms in literature

solve the variant of the examination timetabling problem that was introduced in the

International Timetabling Competition in 2007 (ITC2007), which is described

thoroughly by McCollum et al. [2]. ITC2007 is mainly inspired by the model of British

universities for examination timetabling, and it introduces 12 test instances (tagged as

ITC2007 dataset) which are quite challenging. To date, none of the instances have been

solved to optimality. In this paper, we tackle a recent reformulation of the problem by

* The work on this paper was supported by the HERAS+ program within the project entitled

“Automated Examination Timetabling in the Faculty of Electrical and Computer Engineering

- University of Prishtina”.

1

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

u0121704
Cross-Out

2

Battistutta et al. [3], which is based on the practicalities of the examination timetabling

process at Italian universities.

The original formulation of a real-world examination timetabling problem carried

out by Battistutta et al. [3] is the variant that we take on in this paper. In the following

section we outline the essential problem entities and constraints, but we refer the reader

to Battistutta et al. [3] for more in-depth details on the problem formulation.

The problem defines the following entities:

Courses, Exams and Events – Each course requires scheduling one or more exams

within an examination term. In addition, each exam can be organized multiple times

and can consist of one or two parts, depending on whether it has a written part, an oral

part or both. Two-part exams must be scheduled sequentially.

Rooms - The respective exam events might require rooms of specified size. Rooms are

classified into three size categories: small, medium, and large. Room combinations are

annotated as room sets and are predefined as fixed sets in the problem instances.

Days, Timeslots, Periods - The number of available periods is the total number of time

slots per day multiplied by the number of days in a term. For example, in a two-week

time span (i.e., examination term) there are 20 available periods given two time slots

per day (e.g., 09:00 and 14:00) during working days.

Curricula – Contains the courses with the same students (e.g., courses of a given study

program). There are two categories of curricula, namely Primary and Secondary. The

first holds the set of courses in the current semester, while the latter has the set of

courses in previous semesters. The level of conflicts between assignments of events

belonging to Primary and Secondary set is outlined below.

The hard constraints are:

Room request - For each exam event (written or oral) there is a specific number and

type of the room/s that must be assigned. Also, if any oral exam requires a room, then

a single room of any type must be assigned.

Room occupation - During each period, a given room cannot be assigned to more than

one exam event.

Hard conflicts - Two events (written or oral) cannot be assigned to the same period, if

they: (1) are primary courses in the same curricula (i.e., same semester), (2) have the

same teacher, or (3) have an explicitly written down constraint forbidding them to be

assigned in the same period.

Precedence – Requires that two events of the same course are strictly scheduled one

after the other when: (1) events are part of two separate exams of the same course and

(2) events are part of the same two-part exam (written and oral).

Unavailability - An exam event or room might be explicitly declared not to be

scheduled in some specific periods.

The soft constraints are:

Soft conflicts - Two events that are assigned to the same period are in soft conflict if

they: (1) belong to the same set of courses either in a primary-secondary or secondary-

secondary relationship and (2) have an explicitly declared undesirable constraint not to

be scheduled at the same time.

2

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

3

Preferences - There is a set of constraints explicitly declaring that specific

combinations of events and periods or rooms and periods are undesired or preferred.

Distances - For some pairs of events there are constraints requiring certain minimum

and/or maximum distances between their respective assigned periods, such as: (1)

distinct parts of the same exam have a minimum and a maximum distance, declared

explicitly for each course, (2) different exams of the same course must be separated for

a minimum number of periods, (3) if two courses are part of the same curriculum, there

should be a minimum separation between the first event of the respective exams, and

(4) there could be explicit constraints requiring certain distances between specific

events.

Note that the weights of the violation for distinct types of soft conflicts are left to

be specified by the end user.

2 Solution approach

2.1 Preprocessing, search space and cost function

In the preprocessing phase we do a complete flat data remodeling of the given instances

to ensure that all relevant data is reduced and contained within its corresponding course

instance. This is accomplished by moving and restructuring information about courses

and constraints from scattered entities into a self-contained course event entity with

information about allowed rooms/periods, number of events, event dependencies, etc.

This step makes the use of constructive heuristics and constraint propagation techniques

much easier as described in Section 2.2 (Initial solution).

A state in the search space is represented by two vectors, where, for each exam

event, the first one stores the rooms and the second one stores the assigned period. An

exam can only be placed in a certain room and period if it satisfies all hard constraints

that are related to periods, rooms, curricula, and teachers.

The cost (fitness) function is the weighted sum of all penalties that occur when a

room-period assignment does not fulfill the associated soft constraints.

Algorithm 1 Construction of the initial solution

1: procedure Solve(instance)

2: solution <- {}

3: cInstance <- InstanceLevelHeuristic(instance) // Algorithm 2

4: for course in cInstance.courses

5: cCourse <- CourseLevelHeuristic(course) // Algorithm 3

6: solution[course] <- AssignRoomPeriod(cCourse)

7: cInstance <- PropagateConstraints(cInstance)

8: return solution

3

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4

2.2 Initial solution

Following the preprocessing phase, our approach ensures that we can consistently

generate an initial solution for all instances in reasonable time by using multiple

instance-level and course-level constructive heuristics. These heuristics guide the

assignment of courses, periods and rooms based on situational information, for e.g., the

number of exams per course, the type of exams (written, oral), the course event

complexity (composite rooms, combination of multiple two-part exams), etc. While the

approach proposed by Battistutta et al. [3] looks through a search space with infeasible

states, our approach always starts with and explores within the feasible region of the

search space.

Algorithm 1 displays the general approach to generating an initial solution. Allowed

room-period tuples per course are defined during preprocessing and then updated from

PropagateConstraints after each allocation. AssignRoomPeriod selects the first

allowed room-period tuple for a given course event. Algorithm 2 illustrates the use of

constructive heuristics to guide the generation of the initial solution.

The heuristic mechanisms described below guide the order of course assignments

and the order of period-room allocations to always satisfy hard constraints promptly

with little to no backtracking.

DistributeExamPeriods(possiblePeriods) – distributes and reorders assignable

periods for course events with a calibrated distance between event exams.

Algorithm 2 Applying heuristic information at the instance level

1: procedure InstanceLevelHeuristic(instance)

2: inst <- Copy(instance)

3: if instance has more courses with multiple exams

4: inst.courses <- GroupAndAssignByExamNumber(inst.courses)

5: else if instance has more courses with multiple parts

6: inst.courses <- GroupAndAssignByParts(inst.courses)

7: else if instance has more flat courses

8: inst.courses <- ReorderComplexCoursesFirst(inst.courses)

9: return inst

Algorithm 3 Applying heuristic information at the course level

1: procedure CourseLevelHeuristic(course)

2: c= Copy(course)

3: if course required simple rooms

4: c.possibleRooms <- Shuffle(c.possibleRooms)

5: if course has multiple exams

6: c.possiblePeriods <-

DistributeExamPeriods(c.possiblePeriods)

7: else if course has multiple parts

8: c.possiblePeriods <-

DistributePartPeriods(c.possiblePeriods)

9: return c

4

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

5

DistributePartPeriods(possiblePeriods) – distributes and reorders assignable

periods for two-part course events with a calibrated distance between event parts.

GroupAndAssignByExamNumber(courses) – groups and reorders by exam

number, whereafter preceding exams will be assigned before subsequent exams by

default.

GroupAndAssignByParts(courses) – groups and reorders courses by their

respective parts (Written or Oral), whereafter Written exams will be always assigned

before Oral exams.

ReorderComplexCoursesFirst(courses) – groups and reorders courses by their

complexity first, where complexity is defined as the number of events attached to a

course due having multiple exams, multiple parts, or both.

Algorithm 4 Iterated Local Search

procedure SolveWithILS (instance, maxIterations,

hillClimbingIterations, operatorRate, changeRate, changeHomeRate,

perturbRate)

current <- Solve(instance) // Algorithm 1

best <- home <- current

for n from 1 to maxIterations

p <- random (0,1)

for h from 1 to hillClimbingIterations

if p < operatorRate

neighbor <- ChangeRoom(current)

else

numCourses <- changeRate * instance.totalCourses

for c from 1 to numCourses

 neighbor <- ChangeRoomPeriod(current)

if neighbor better than current

current <- neighbor

if current better than best

best <- current

h <- random (0,1)

if h < changeHomeRate or current better than home

home <- current

numCourses <- perturbRate * instance.totalCourses

for i from 1 to numCourses

current <- ChangeRoomPeriod(home)

return best

5

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6

2.3 Neighborhood structure

Battistutta et al. [3] define the MoveEvent operator, which changes the period-room

tuple of an event (i.e., a part of an exam). In our case, the neighborhood structure is a

variation of MoveEvent, which consists of two operators, namely ChangeRoom and

ChangeRoomPeriod, as described below.

ChangeRoom – randomly selects a given exam (including all its events) and moves

all corresponding events from their existing room to a new room, provided that all hard

constraints are satisfied.

ChangeRoomPeriod – extends the ChangeRoom operator with the ability to move

exam events from a given room and period to another randomly selected available room

and period.

2.4 Iterated Local Search

In Algorithm 4, we present the pseudocode of the proposed approach that is based on

the Iterated Local Search (ILS) metaheuristic. The initial solution is constructed by

using constructive heuristics and constraint propagation as discussed in Section 2.2.

This ILS-based procedure runs a form of hill climbing iteratively and explores the

search space using the neighborhood structure described above. Within the iterative

phase of ILS, we distinguish between three main steps, as follows.

The exploitation phase runs a hill climbing algorithm, which exploits the search

space using our neighborhood structure guided by the parameter operatorRate. This

parameter defines the selection of one of the existing neighborhood operators.

The selection phase selects the new home depending on the parameter

changeHomeRate, which determines whether the algorithm has more of an explorative

nature (where the current solution is accepted as the new home base, regardless of

quality) or exploitative nature (where the current solution becomes the new home base

only if its quality is better than the quality of current home base).

The perturbation mechanism, which, based on the parameter perturbRate,

applies the operator ChangeRoomPeriod multiple times to perturb the home solution

and consequently avoid the local optima.

3 Computation results

3.1 Data set and parameter tuning

The formulation of the examination timetabling problem from Battistutta et al [3] that

we have tackled in this paper has a dataset of 40 instances that is divided into 7 groups.

Each group presents timetabling requirements from different study department at

selected Italian universities. For our preliminary computational study, we have used the

revised version of the dataset [3] and have only selected two of the smaller groups in

the dataset (namely group D2 and group D3) that have at most 89 exams, 188 periods

and 15 rooms. The experiments have been conducted using an Apple M1 machine with

16 GB of memory.

6

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

7

3.2 Comparison results

During experimentation sampled from 100 attempts we managed to generate initial

feasible solutions for all instances in 0.3537s on average, with 0.01s being the shortest

and 2.58s the longest duration.

The preliminary computational experiments were conducted by running the

algorithm 10 times for 30 seconds for each of the instances belonging to the test subsets,

namely D2 and D3. All results and generated solutions have been validated with the

solution validator (named examtt toolbox) provided by Battistutta et al [3]. Table 1

displays the preliminary results, which show promising indications that the algorithm

can generate comparable and satisfactory solutions. For the D2 subset, our approach

falls behind the approach of Battistutta et. al [3], while for the D3 subset, our approach

finds the optimal solutions for 6 instances and is outperformed on the remaining 3

instances.

We cannot draw a direct comparison of the computation time against the approach

of Battistutta et. al [3], due to different computing environments, however as shown in

Table 1, the approach of Battistutta et. al [3] on average solves the D2 subsets for about

93 seconds and the D3 subsets on average for about 27 seconds.

4 Conclusion and future work

This paper presents an ongoing work about the design and implementation of an

Iterated Local Search metaheuristic that can find optimal solutions for a subset of

instances existing in the literature. We believe this approach is worth exploring further

because of promising preliminary results and the ability to produce feasible solutions

quickly, albeit not notably better than the existing ones for all instances in the test set.

Table 1. Comparison of the proposed approach against state-of-the-art methods.

Instance name
Simulated Annealing (SA) ILS algorithm

Avg Best Time Avg Best ILS vs. SA (%)

D2-1-18 427.77 426 94.7 630 570 25.26

D2-2-18 22.00 22 88.7 151 140 84.29

D2-3-18 22.00 22 95.0 169 97 77.32

D3-1-16 0.00 0 61.9 201 169 100

D3-1-17 0.00 0 83.5 472.5 401 100

D3-1-18 0.00 0 83.9 460 375 100

D3-2-16 0.00 0 0.8 1.7 0 0

D3-2-17 0.00 0 3.1 2.9 0 0

D3-2-18 0.00 0 3.5 0 0 0

D3-3-16 0.00 0 1.0 0 0 0

D3-3-17 0.00 0 2.3 3.1 0 0

D3-3-18 0.00 0 2.2 0 0 0

7

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8

As part of future work, along with the development of new neighborhood operators, we

aim to upgrade the existing operators with heuristic features that choose exam

reallocations based on partial solution penalties and restrict the selection of periods and

rooms to only those promising improvements. We will also explore applying our flat

entity approach to address the practical challenges with MiniZinc modeling mentioned

by Battistutta et. al [3]. Lastly, in addition to improving experimental benchmarking,

we intend to modify our heuristics approach to also explore the infeasible part of the

search space.

References

1. Qu, Rong, Edmund K. Burke, Barry McCollum, Liam TG Merlot, and Sau Y. Lee. "A survey

of search methodologies and automated system development for examination timetabling."

Journal of scheduling 12, no. 1 (2009): 55-89.

2. McCollum, Barry, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd Lewis, Andrew J.

Parkes, Luca Di Gaspero, Rong Qu, and Edmund K. Burke. "Setting the research agenda in

automated timetabling: The second international timetabling competition." INFORMS

Journal on Computing 22, no. 1 (2010): 120-130.

3. Battistutta, Michele, Sara Ceschia, Fabio De Cesco, Luca Di Gaspero, Andrea Schaerf, and

Elena Topan. "Local Search and Constraint Programming for a Real-World Examination

Timetabling Problem." In International Conference on Integration of Constraint

Programming, Artificial Intelligence, and Operations Research, Springer, Cham, (2020): 69-

81.

8

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Multi-neighbourhood Simulated Annealing for
the Capacitated University Examination

Timetabling Problem (ITC-2007)

David Van Bulck1[0000−0002−1222−4541], Dries Goossens1,2[0000−0003−0224−3412]

and Andrea Schaerf3[0000−0001−6965−0536]

1 Faculty of Economics and Business Administration, Ghent University,
Tweekerkenstraat 2, 9000 Ghent, Belgium

{david.vanbulck,dries.goossens}@ugent.be
2 FlandersMake@UGent � core lab CVAMO

3 Polytechnic Department of Engineering and Architecture, University of Udine, via
delle Scienze 206, 33100 Udine, Italy, andrea.schaerf@uniud.it

Keywords: Examination Timetabling · Simulated Annealing · ITC-2007-ETT

1 Introduction and problem description

Many variations of the Examination Timetabling Problem (ETT) exist, each
with their own resources, constraints, and objectives. In this extended abstract,
we consider the ETT in the classical version as proposed for the Second Interna-
tional Timetabling Competition (ITC-2007). This variant consists of allocating
each exam to a single period (time slot) and room, allowing exams to share a
room. Some of the hard constraints are for instance that no two con�icting ex-
ams (i.e. exams with at least one student in common) are assigned to the same
period, or that the capacity of the rooms is at least the number of students
allocated to the exams assigned to that room in a given period. The main soft
constraints are to spread the students' exams as much as possible over time,
while avoiding that exams with a di�erent length are scheduled together in the
same room. The assignment of exams to periods thus has some similarities with
graph colouring, whereas the assignment of exams to rooms resembles a packing
problem, given that a room can be shared among exams. For the sake of brevity,
we do not report the full problem description here, but instead we refer to [10].

2 Solution method

Following the spirit of the work by Bellio et al. [2] for the uncapacitated ETT,
we developed a multi-neighbourhood Simulated Annealing (SA) algorithm. The
choice for SA is motivated by the fact that SA has already proven to be very
e�ective for this [1, 9] and a number of other timetabling problems (see, e.g.,
[3, 6]). Our search space is composed by an array of pairs that assigns to each
exam a period and a room, and also includes solutions that may violate hard

9

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 D. Van Bulck et al.

Table 1. Considered neighbourhoods

Move(e,p,r) Move exam e to period p and room r.
Swap(e1,e2) Swap the period and room assigned to exams e1 and

e2.
Kick(e1,e2,p,r) Move exam e1 to the period and room assigned to e2.

Move exam e2 to period p and room r.

constraints such as con�icts or room capacities. These violations are included
in the cost function, along with the soft constraints, but with a suitably larger
weight.

The portfolio of neighbourhoods that we already implemented is given in
Table 1. These neighbourhoods were originally proposed for the uncapacitated
version to the ITC-2007 problem by Bellio et al. [2], and were adapted to deal
with the assignment of rooms which is not considered in the uncapacitated prob-
lem.

3 Preliminary experimental results

Preliminary results can be found in Table 2, which compares the best found
solutions over 30 runs with some of the best results found by algorithms pre-
viously published in the literature. Runtimes are set approximately according
to ITC-2007 speci�cations. Although the development and the experimentation
with our algorithm is still ongoing, at present we reach results quite comparable
with the state-of-the-art approaches albeit still inferior to the best known. Final
results will be discussed at the conference.

Table 2. Preliminary results. Best available solutions are from https://opthub.uniud.it

No. Best available [4] [5] [8] [1] Us
1 3488 3691 3787 4128 3752 3579
2 380 385 402 380 385 385
3 7041 7359 7378 7769 8175 7975
4 11806 11329 13278 13103 13681 14106
5 2327 2482 2491 2513 2544 2539
6 25145 25265 25461 25330 25560 25265
7 3424 3608 3589 3537 3522 3513
8 7356 6818 6701 7087 7505 7405
9 904 902 997 913 941 935
10 12878 12900 13013 13053 13582 13288
11 22465 22875 22959 24369 26114 24921
12 5095 5107 5234 5095 5153 5423

10

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Multi-neighbourhood Simulated Annealing for ITC-2007 3

4 Future work

The present work is an initial step toward a more comprehensive �nal goal. First
of all, we will develop other, more elaborate, neighbourhood relations, speci�cally
designed for this problem. Secondly, we plan to investigate SA variants (see [7]) ,
alternative metaheuristics, and hybrid techniques. Finally, we aim at performing
an instance space analysis and a corresponding algorithm selection procedure
for this problem.

Regarding the �rst point, we are currently developing a Kempe chain neigh-
bourhood, such that possible con�icts generated by a movement are repaired.
In detail, in order to repair any new con�ict introduced by moving exam e to
period p and room r, the move KempeChain(e,p,r), reassigns all exams in p in
con�ict with e to the period originally assigned to e and to the cheapest room
(greedily determined), and so on until there are no newly introduced con�icts
(see also [2]).

References

1. Battistutta, M., Schaerf, A., Urli, T.: Feature-based tuning of single-stage sim-
ulated annealing for examination timetabling. Annals of Operations Research
252(2), 239�254 (2017)

2. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A.: Two-stage multi-neighborhood
simulated annealing for uncapacitated examination timetabling. Computers and
Operations Research 132, 105300 (2021)

3. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., Urli, T.: Feature-based tuning of
simulated annealing applied to the curriculum-based course timetabling problem.
Computers & Operations Research 65, 83�92 (2016)

4. Burke, E.K., Bykov, Y.: An adaptive �ex-deluge approach to university exam
timetabling. INFORMS Journal on Computing 28(4), 781�794 (2016)

5. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. European Jour-
nal of Operational Research 258, 70�78 (2017)

6. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimen-
tal analysis of a simulated annealing approach to the post-enrolment course
timetabling problem. Computers & Operations Research 39, 1615�1624 (2012)

7. Franzin, A., Stützle, T.: Revisiting simulated annealing: A component-based anal-
ysis. Computers & Operations Research 104, 191�206 (2019)

8. Gogos, C., Goulas, G., Alefragis, P., Kolonias, V., Housos, E.: Distributed scatter
search for the examination timetabling problem. In: McCollum, B., Burke, E.K.,
White, G. (eds.) 8th International Conference on the Practice and Theory of Au-
tomated Timetabling (PATAT-2010). pp. 211�223. PATAT, Belfast (2010)

9. Leite, N., Melício, F., Rosa, A.C.: A fast simulated annealing algorithm for the
examination timetabling problem. Expert Systems with Applications 122, 137�
151 (2019)

10. McCollum, B., McMullan, P., Burke, E.K., Parkes, A.J., Qu, R.: The sec-
ond international timetabling competition: Examination timetabling track. Tech.
Rep. QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen's University, Belfast (UK)
(September 2007)

11

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm

for Nurse Rostering

Jeffrey H. Kingston

School of Information Technologies, The University of Sydney, Australia
jeff@it.usyd.edu.au

http://jeffreykingston.id.au

Abstract. A dynamic programming algorithm for optimally timetabling
one nurse appears in papers that perform nurse rostering using column
generation. This paper generalizes this algorithm, allowing it to assign
an arbitrary (but small) subset of the nurses on an arbitrary subset of
the days of the timetable, and handle every nurse rostering constraint
used in practice. The paper also presents work in progress on speeding
up the algorithm, mainly by improving dominance testing, its key step.
The aim is to fit the algorithm for use as the reassignment operator of a
VLSN search for nurse rostering.

Keywords: Nurse Rostering · Dynamic Programming · VLSN Search

1 Introduction

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward, so as to satisfy a given set of hard constraints and minimize the cost of
violating a given set of soft constraints.

Papers that use column generation to solve nurse rostering problems have
long used a polynomial-time dynamic programming algorithm for finding an
optimal timetable for a single nurse. This becomes one column of a set covering
integer program which is solved to produce a timetable for the whole ward.

This paper generalizes this dynamic programming algorithm, allowing it to
optimally assign an arbitrary (but small) subset of the nurses on an arbitrary
subset of the days of the timetable, and handle every nurse rostering constraint
used in practice. The paper also describes work in progress on speeding up the
algorithm, mainly by improving dominance testing, its key step.

The improved algorithm aspires to be used as the reassignment operator of
a very large-scale neighbourhood (VLSN) search for nurse rostering. In VLSN
search, a given initial solution is repeatedly improved by unassigning a large
part of it and reassigning that part, hopefully in a better way. The dynamic
programming algorithm can carry out this reassignment optimally, making it a
direct competitor for integer programming, the usual choice here. At present it
is not competitive, but the work is ongoing.

Implementing the algorithm presented here turned out to be a major task,
running to over 13,000 lines of C code. A detailed 100-page description appears
online [11]. This paper focuses on the key points, omitting many details.

12

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Jeffrey H. Kingston

Section 2 defines the problem, and presents the relevant literature. Sections
3 and 4 present the original algorithm using our terminology. Sections 5 and 6
present our generalizations and optimizations. Section 7 presents experiments.

2 The nurse rostering and single nurse rostering problems

Nurse rostering is the problem of assigning shifts to the nurses of a hospital
ward. Hospitals run 24 hours a day, so nurse rostering problems usually have
at least three shift types: morning, afternoon, and night. Each shift (one shift
type on one day) demands a certain number of nurses, often with specified skills.
There may be some flexibility in how many nurses to assign to each shift, and
the number typically changes from day to day. Nurses are not interchangeable
in general, because they have individual contracts (full-time, part-time, and so
on), skills (senior nurse, assistant, and so on), and requests for days off.

Perhaps the most characteristic feature of the problem is the large array
of constraints that each nurse’s timetable must or should satisfy. In practice
there are always hard constraints requiring each nurse to work at most one
shift per day, and constraints (hard or soft) on each nurse’s total workload over
the weeks that the problem spans. There are also rules such as ‘no day shift
immediately following a night shift’, ‘at most 5 consecutive busy days’, ‘at most
2 busy weekends’, and so on. These vary from one formulation of the problem
to another, and from one nurse contract to another.

Nurse rostering is one of the most-studied problems in the discipline of auto-
mated timetabling. There are survey papers [1, 4] but they are rather old now.
Much of the recent work is inspired by the Second International Nurse Rostering
Competition (INRC-II) [2, 3].

The general nurse rostering literature is large, but the problem of optimally
assigning a single nurse seems to have been studied only by researchers who
use integer programming with column generation. Each column represents a
complete timetable for one nurse; to generate a column is to solve a single nurse
problem, for which these researchers mostly use dynamic programming. The
integer program selects a subset of the columns that solves the full problem. For
a survey of this work, going back to 1998, we refer the reader to [12].

These column generation papers often use the resource constrained shortest
path problem [6] as a stepping stone. In our experience this does not yield any
useful insights into nurse rostering, and so in this paper we move directly from
nurse rostering to the dynamic programming algorithm.

The author is aware of one paper which uses dynamic programming to solve
a full resource assignment problem, for security guards [5]. As the number of re-
sources increases, the search space expands rapidly, making solving full problems
with dynamic programming only viable for small instances.

13

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 3

3 Overview of the dynamic programming algorithm

This section presents our starting point, the existing dynamic programming al-
gorithm for rostering a single nurse r.

On each day, nurse r can be assigned a shift of a given type (morning, after-
noon, etc.), or nothing. Let these choices be {s0, s1, ..., sa}, where s0 is a special
shift type that denotes doing nothing (a day off). We are assuming here, as is
usual, that a nurse may take at most one shift per day.

A solution may be an arbitrary set of assignments, but in this paper we
consider only solutions of a particular kind. Let the sequence of days for which
assignments are required be 〈d1, ..., dn〉. A solution is a sequence of k shift types
representing assignments for the first k days, where 0 ≤ k ≤ n. For example,

s1 s1 s1 s0 s0

represents a timetable in which r is assigned shifts of type s1 on the first three
days, followed by two days off; and

s2 s2 s2 s0 s0

is similar, with s2 replacing s1. A complete solution is a solution for all n days.
Let us first consider a tree search algorithm. Each node of its search tree is

one solution. For its root, the tree has the unique solution of length 0. Then, for
the first day, we try assigning a shift of each type for that day, omitting types
for which no shift is available, or for which r is not qualified. This produces
one child for each available shift type, being a solution of length 1. For each of
these we try assigning a shift of each type for the second day, and so on until
all solutions of length n have been tried. The cost of each solution is calculated
and the overall result is the best solution of length n.

When all shift types {s0, s1, ..., sa} are available on all days 〈d1, ..., dn〉, the
tree search tries (a+ 1)n complete solutions, an impossibly large number when
a timetable is needed over several weeks, as is common in practice. The idea of
dynamic programming is to show that some solutions dominate others, that is,
always produce better complete solutions in the end. Dominated solutions can
be discarded, and this can produce major savings. In fact, it leads to running
times which are polynomial in n [11], as is well known.

Define Pk to be the set of undiscarded solutions for 〈d1, ..., dk〉. For example,
the two solutions above might lie in P5. For the tree search, Pk contains up to
(a+ 1)k solutions.

The dynamic programming optimization explores the tree in breadth-first
order: it first builds P0 (just the length 0 solution), then P1, then P2, and so on.
To proceed from Pk to Pk+1, for each solution x in Pk, it constructs all solutions
y consisting of x plus one assignment of an available shift type to r on dk+1.
Before inserting y into Pk+1, it checks whether Pk+1 contains a solution that
dominates y. If so it discards y instead of inserting it. If not, it first removes
from Pk+1 and discards all solutions that are dominated by y, and then inserts
y. In this way, Pk+1 contains only undominated solutions.

14

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Jeffrey H. Kingston

For reasons that will become clear later, on the last day, dn, there will be just
one solution in Pn, and that is the desired optimal solution. That completes the
algorithm. But we still need a definition of dominance that allows the algorithm
to safely discard a large number of solutions.

4 Signatures and dominance

This section defines a dominance relation between solutions which allows many
solutions to be safely discarded. As it turns out, this relation is determined by
the constraints of the problem instance.

The signature of constraint c in solution x, written s(c, x), is a concise but
complete representation of x as it affects c, excluding parts of x for which c has
already yielded a cost.

Let us consider some examples. Suppose c is a constraint on the total number
of shifts worked by nurse r. Then s(c, x) would be the number of shifts worked
by r within x. It does not matter to c which shifts they are.

Suppose c is a constraint on the total number of busy weekends (weekends
where r works at least one shift). Then for s(c, x) we may choose the number of
busy weekends during x, but there is a catch when x’s last day is a Saturday:
the signature must record whether r works a shift on that day, because that
determines whether working a shift on the immediately following Sunday adds
to r’s number of busy weekends or not. So s(c, x) is an integer plus a Boolean
when x’s last day is a Saturday, and an integer on other days.

Suppose c is a constraint on the number of consecutive night shifts worked
by r. Then s(c, x) is the number of consecutive night shifts ending on the last
day of x, or 0 if r is not assigned a night shift on the last day of x. Sequences of
consecutive night shifts that terminated earlier have already yielded a cost and
do not influence s(c, x).

The reader familiar with history in nurse rostering will have noticed a strong
connection between signatures and history values [9]. A history value records
what r did that affects c before the first day; a signature records what r did that
affects c before and during the last day of x. The idea is the same, although [9]
assumes that cases like the Saturday treated above do not occur at the start of
the timetable. Here, we cannot assume such cases away.

Suppose solution x is for days d1, ..., dk. Suppose a constraint c depends
only on the assignments on those days. Then c yields its final cost when dk is
assigned, so s(c, x) is empty. Or suppose c depends only on the assignments on
days dk+1, ..., dn. Then there is nothing to remember about c on d1, ..., dk, so
again s(c, x) is empty. The only constraints for which s(c, x) is non-empty are
those which are affected both by the assignments on at least one of the days
d1, ..., dk, and also by the assignments on at least one of the days dk+1, ..., dn.

The signature of a solution x, written s(x), is the concatenation, over all con-
straints c, of s(c, x). Concretely, it is an array of integers (Booleans are encoded
as 0 and 1). The cost of solution x, written c(x), is the sum of all costs already
yielded by constraints up to and including x’s last day. Each solution x needs

15

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 5

just four fields: a pointer to its parent solution in the search tree; the assignment
that x adds to that parent; s(x); and c(x).

Given our definition of s(c, x) as a complete representation of x as it affects
c, it is not surprising that as solutions are built up, we can keep s(c, x) up to
date, and then on c’s last day, convert it into a final cost for c. For example, if
c is the number of shifts worked we can take this number from x’s parent and
add 1 or 0 to it, depending on whether x’s assignment is for a shift or a free day.
What is perhaps more surprising is that signatures support dominance testing
as well as cost calculations, as we will see shortly.

We say that solution x dominates solution y if the best complete solution that
can be derived from x by further assignments has cost no larger than the best
complete solution that can be derived from y by further assignments. Clearly, in
that case y can be discarded without risk of losing optimality.

In practice we use a more restricted definition of dominance: we require x

and y to have the same last day, we require c(x) ≤ c(y), and for each constraint
c, we require x to dominate y at c. By this last condition we mean that for
each combination of assignments t for later days, when we add those further
assignments to x and y, resulting in complete solutions xt and yt, the cost of c
in xt must not exceed the cost of c in yt. It should be clear that every case of
this more restricted definition of dominance is a case of the general definition.

There is no need to identify every case of dominance. All that matters is that
for each case that we do identify, it is indeed safe to discard y. Of course, the
more cases we identify, the faster the algorithm runs.

It is clear now why there is at most one solution on the last day, dn. The
signature array is empty because all constraints have reported their final cost by
then, so x dominates y when c(x) ≤ c(y), so only one solution will be kept.

To understand dominance, then, it remains to understand how solution x can
dominate solution y at constraint c. We answer this question for some kinds of
constraints now; in Section 5 we’ll see that we have in fact covered all cases.

Many constraints calculate a value that we call the determinant: the number
of shifts, the number of consecutive night shifts, or whatever. The cost of such a
constraint c is a monotone non-decreasing function of the amount by which the
determinant exceeds a maximum limit or falls short of a minimum limit. The
limits are fixed attributes of c.

The determinant is used as c’s signature value on each day a signature value
is needed. If c has a maximum limit only, then x dominates y at c when s(c, x) ≤
s(c, y). This is because when we add the same further assignments t to x and y,
producing complete solutions xt and yt, the determinant increases by the same
amount in both. So s(c, x) ≤ s(c, y) implies s(c, xt) ≤ s(c, yt), and the cost has
this same relation too, because the cost when there is a maximum limit only is
a monotone non-decreasing function of the determinant.

If c has a minimum limit only, x dominates y at c when s(c, x) ≥ s(c, y).
This is because in this case the cost is a monotone non-increasing function of
the determinant. If c has both a maximum limit and a minimum limit, then both
analyses apply and x dominates y at c when s(c, x) = s(c, y).

16

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Jeffrey H. Kingston

As expressed, this argument applies only to constraints on the total number
of something, not to constraints on the number of consecutive things. But the
argument is easily adapted to constraints on consecutive things, by changing xt

and yt to the solutions on the first day after the sequence ends. On that day, the
cost of the sequence is finalized and added to c(xt) and c(yt).

5 Generalizing to arbitrary nurses, days, and constraints

In this section we generalize the dynamic programming algorithm so that, start-
ing from an initial timetable that we want to improve, it can unassign and
reassign any (small) number of selected nurses on any number of selected days.
We don’t require the selected days to be consecutive, because we want to try
oddities like reassigning the eight weekend days of a four-week timetable. We
also generalize to arbitrary constraints.

To generalize from a single nurse to a set of selected nurses, the algorithm
begins by unassigning the selected nurses on the selected days, then proceeds
much as before. Each solution extends its parent solution by adding one assign-
ment (possibly of a free day) on its last day to each selected nurse. If there are
m selected nurses and a + 1 shift types, there are up to (a + 1)m ways to do
this. The signature of each solution is the concatenation of the signatures of the
selected nurses, in some fixed order, plus another signature for cover constraints,
which we will come to shortly.

To generalize from all days to selected days, we redefine 〈d1, ..., dn〉 to be
the sequence of selected days (in chronological order), not all days. A set of
undominated solutions Pk is built for each selected day dk, not for each day.

The other issue in generalizing this algorithm is to make sure that it can
handle every kind of constraint. We do this by supporting the constraints of the
XESTT nurse rostering model [7, 8], which have been shown in [8] to encompass
everything that occurs in practice.

Nurse rostering constraints are either cover constraints (XESTT calls them
event resource constraints), which require each shift to have a suitable number of
suitably qualified nurses, or resource constraints, which require individual nurses’
timetables to follow the many rules of nurse rostering: at most one shift per day,
limits on total shifts, limits on consecutive shifts, and so on.

Although we illustrated the signature idea using resource constraints only,
it applies equally well to cover constraints. Cover constraints always seem to
constrain the shifts of a single day, and so do not need signature values. But if
there was a multi-day cover constraint, for example a constraint requiring the
staffing of at least four of the week’s night shifts to include a senior nurse, then
that could be handled, using a signature value saying how many of the current
week’s night shifts have been assigned a senior nurse.

XESTT has four event resource constraints, only three of which are used in
nurse rostering, and seven resource constraints, only five of which are used. These
small numbers are owing to the generality of the constraints: they may reference
arbitrary sets of times and nurses. For example, no constraints are inherently

17

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 7

concerned with weekends; instead, an instance would define the set of weekend
times and reference that in its constraints.

We do not have space to define all these constraints in detail and explain
how they are handled. Instead, we’ll divide them into three groups and explain
how each group is handled.

The first group contains constraints which find the number of occurrences
of something (e.g. busy weekends) and compare that number, which we have
called a determinant, with lower and upper limits. As explained in Section 4,
these constraints are handled by storing the determinant as the signature value.
Assignments on unselected days are constant throughout the solve; their effect
here is to add a constant to the signature value. For example, if c constrains the
number of shifts worked by nurse r, then at the start of the solve, the signature
s(c, x) is the number of shifts worked on unselected days, and it increases from
there as the solve proceeds.

The second group contains constraints which do not have determinants and
limits. These we transform so that they do. For example, consider a constraint
requiring nurse r to be free on Tuesday. Let the determinant be the number of
shifts that r works on Tuesday, and apply maximum limit 0.

The third and final group contains constraints which find the total number
of consecutive occurrences of something and compare that number with lower
and upper limits. The signature is the number of consecutive occurrences in the
current run, as explained earlier. Handling unselected days is quite complicated,
since between any two selected days there may be a sequence of unselected days.
Their effect is pre-calculated so that it can be included quickly. For example,
suppose we are constraining nurse r’s number of consecutive night shifts, and
the selected days are the weekend days. Then for each run of consecutive week
days we pre-calculate the number of r’s consecutive night shifts a at the start of
the week, and the number b at the end of the week. Then as the solve proceeds,
if the preceding Sunday has a night shift we count that not as 1 night shift but
as 1 + a night shifts, and so on. For full details we refer the reader to [11].

The definition of dominance at c given above (‘≤’ when c has a maximum
limit only, ‘≥’ when c has a minimum limit only, and ‘=’ when c has both)
we call basic dominance. Our algorithm actually uses strong dominance, which
is basic dominance with three changes. First, XESTT constraints have an allow

zero flag, which when set specifies that a determinant with value 0 produces cost
0 regardless of the minimum and maximum limits. Its main use in nurse rostering
is in ‘complete weekends’ constraints, which require a nurse to work both days of
a weekend or neither. Strong dominance takes this into account. Second, strong
dominance understands that when c has a maximum limit only, s(c, x) may be
so small that no further assignments can increase it to the maximum limit, and
so x dominates every y at c because the cost of c in every xt must be 0. The
third change is similar, understanding that when c has a minimum limit only, if
s(c, x) has already reached it, then x dominates every y at c.

The algorithm discards solutions x such that c(x) equals or exceeds the cost
of the original solution (the solution from before the initial unassignments). If

18

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 Jeffrey H. Kingston

all solutions are discarded, the algorithm has been unable to improve on the
original. In that case, the original solution (recorded separately) is reinstated
before the algorithm returns. There are two points to note here.

First, constraints do not wait for their last day to report a cost; they report
a cost on every day that they are affected by. Each day, they report their cost
on that day minus the cost they reported on the previous day. This makes c(x)
as large as possible on every day, causing as much discarding as possible.

Second, every cost difference must be non-negative. A negative difference
means that there might have been an unjustified discard on the previous day.
Cost differences are naturally non-negative when they derive from maximum
limits. But costs may decrease as determinants grow towards minimum limits. All
constraints know this and only report costs that cannot go away later. Detailed
formulas showing how to do this appear online [11].

This algorithm runs in time polynomial in the number of selected days but
exponential in the number of selected nurses, according to a straightforward
worst-case analysis based on the fact that the solutions in each Pk have distinct
signatures [11]. The algorithm will usually do much better than the worst case.
For example, the analysis does not take into account the fact that solutions whose
cost equals or exceeds the cost of the original solution are discarded, but testing
shows that this has a pronounced effect, especially during the last few days.
However, testing also shows that selecting a few more days is not particularly
costly, but selecting just one more nurse can dramatically increase the running
time, confirming the general thrust of the analysis.

6 Optimizations

Our algorithm contains many minor optimizations. But here we focus on three
major ones, each of which significantly reduces running time, as we will show.

Generating fewer solutions. For each solution x there are up to (a+1)m

solutions y that extend x for one more day, where a is the number of shift types
and m is the number of selected nurses. Our first optimization, which is really
several optimizations combined, aims to reduce this large number, using ideas
that we expect have been tried before on other problems.

One idea that does not work is to identify equivalent nurses and avoid gener-
ating solutions that are symmetrical in those nurses’ assignments. As mentioned
earlier, nurses have several individual characteristics, and when those are com-
bined with the different timetables that nurses have on unselected days, finding
symmetries among the nurses is hopeless.

On the other hand, there are symmetries among the tasks that nurses may
perform (the variables that nurses may be assigned to) on each day. We have
already informally partitioned these tasks into classes—the ‘shift types.’ But
there are subtleties here. There may be a task in the night shift reserved by
a hard constraint for a senior nurse; some tasks may have hard constraints re-
quiring them to be assigned; others may have soft constraints requesting that
they remain unassigned. We analyse the event resource constraints that apply to

19

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 9

each task, and group the tasks into classes of equivalent tasks, placing the most
preferred tasks first in each class. When assigning nurses, there is no need to try
all combinations of tasks from one class; instead, each nurse tries only the most
preferred of the remaining unassigned tasks of the class.

The analysis may identify some tasks for which assignment is compulsory,
because a hard constraint requires it. As nurses are assigned to tasks on one
day, if the number of remaining unassigned nurses falls below the number of
remaining unassigned compulsory tasks, that line of generation of assignments
is abandoned. Compulsory tasks are common so this can be very effective.

As each decision to try assigning a particular nurse to a particular task
is made, the cost of that decision is calculated immediately and added to the
growing solution cost. If the result equals or exceeds the cost we are trying to
improve on, again that line of generation of assignments is abandoned.

We have not included experiments to show the effect of these optimizations
on running time. They are cheap to carry out, and some are hard to turn off.

Tradeoff dominance. Our second optimization, which we have not seen
elsewhere, improves the dominance test, finding more cases of dominance and
shrinking the sets Pk. We previously improved basic dominance into strong dom-
inance (Section 5); now we improve strong dominance into tradeoff dominance.

Suppose that solution x fails to dominate solution y, but only at one point
along the signature, and only by 1. Suppose that the corresponding constraint
has weight w. Then the effect of this failure is that at some point in the future
that constraint could have a cost in some xt which is at most w greater than its
cost in the corresponding yt (assuming the cost function is not quadratic), and
this is why dominance fails.

But if c(x) + w ≤ c(y), this extra w cannot make xt cost more than yt. In
other words, x still dominates y even though dominance fails at one point.

This idea easily extends to differences greater than 1, and to multiple points
along the signature. It is simply a matter, as we proceed along the signature, of
adding to c(x) the cost of ignoring each violation of dominance. Then, if c(x)
exceeds c(y) at any point, dominance has failed even with this tradeoff.

Representing sets of solutions by tries. Our third optimization aims to
speed up the insertion of a new solution x into the set of undominated solutions
Pk. Recall that this involves testing whether Pk contains a solution that domi-
nates x, and if so discarding x; and if not, finding and discarding all solutions
in Pk that are dominated by x, then inserting x. The straighforward approach
here, taken by all previous authors as far as this author can ascertain, is to take
each element of Pk and see whether it dominates x. If all those tests fail, take
each element of Pk again and see whether it is dominated by x, making two
dominance tests for each element of Pk.

The author experimented with a dominance test he calls weak dominance, in
which x dominates y if c(x) ≤ c(y) and the two signatures are equal. This finds
many fewer cases of dominance than strong dominance does, but it allows Pk

to be organized as a hash table indexed by signature, converting the search for
dominating and dominated solutions into a single hash table retrieval. However,

20

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 Jeffrey H. Kingston

it turned out that the faster table handling did not compensate for the larger
size of the sets Pk. The larger size did not slow down the hash table, but creating
the many extra solutions took too much time.

Another failed optimization involved maintaining a cache of solutions Ck

alongside each usual set of solutions Pk. All solutions y which were extensions
of the same solution x were inserted into Ck with the usual dominance testing.
When there were no more extensions of x, each surviving element of Ck was
inserted into Pk, again with the usual dominance testing, and Ck was cleared
ready to receive extensions of another x. The idea was that solutions which are
extensions of the same parent are likely to have dominance relations with one
another, and these relations can be found quickly within Ck. This is true, and
the cache halved some running times, but the improvement disappeared when
Pk was organized as a trie.

So let us turn now to an optimization that actually helped. The traditional
trie is a symbol table representing some set of values, each associated with a
key which is a sequence of characters. The root of the tree contains an array
of subtrees. Each subtree contains all values whose keys have the same first
character, and its index in the array is the integer value of that character. So to
retrieve a value by key, one uses the first character of the key to index the root
array to obtain a child, then the second character to index that child’s array,
and so on. When a subtree contains only a single value, it has a different format:
the value and its key are stored, and retrieval compares the key it is looking for
with the stored key to see whether the value is the one wanted. There are also
null subtrees representing empty sets of values.

Solutions are a natural fit for tries. A solution’s key is its signature, a sequence
of small integers well suited to array indexing.

To decide whether x is dominated by any solution already in trie T , we
proceed as follows. Suppose the first element of x’s signature is v, and that it
is associated with a maximum limit and so is dominated by any value less than
or equal to v. We need to recursively search only those subtrees with indexes in
the range 0 to v inclusive, not the whole trie. Similarly if v is associated with a
minimum limit, we need to search all subtrees from v to the end of the array of
children. If the test is equality, only the subree with index v needs to be searched.
This applies at each level of the trie.

Deleting all solutions of T that are dominated by x is similar, with the array
ranges swapped: if v is associated with a maximum limit, then all solutions
dominated by v lie in the range from v to the end of the array, and so on.
Insertion is just the usual trie insertion.

This description applies to basic dominance. Formulas saying exactly where
to search under strong dominance are derived online [11]. Tradeoff dominance is
a problem, because in principle the entire trie needs to be searched. But instead
of that, the algorithm proceeds heuristically: at each level of the trie, it searches
each position needed for strong dominance, plus up to two adjacent positions
where a tradeoff of w is required.

21

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 11

A signature entry representing workload in minutes can cause efficiency prob-
lems for tries, because it is likely to lead to large arrays of children, mainly filled
with null entries. The author has not investigated this in detail, but the answer
is probably to find the greatest common divisor d of all the workloads and store
the workload in minutes divided by d.

7 Experiments

This section offers experiments which show how the algorithm performs on a
difficult instance from a standard data set, and how effective the optimizations
are. We have not yet tried the algorithm on a wide variety of instances, or tried
calling it repeatedly as the reassignment operator of a VLSN search.

Size

0 5 10 15
0

20000

40000

60000
3 Nurse:Trainee resources

strong

trie

Days (1Mon-2Sun)

Secs

0 5 10 15
0

200

400

600
3 Nurse:Trainee resources

strong

trie

Days (1Mon-2Sun)

Fig. 1. The effect of introducing the trie data structure. The first graph shows the
number of undominated solutions on each of the 14 days during which the selected
resources are open to reassignment (almost 60,000 at the peak). This is the same with
or without the trie data structure, because the same strong dominance test is used. The
second graph shows the running time in seconds. For the ordinary array of undominated
solutions, the running time is more than 500 seconds. The trie running time appears
negligible. See Fig. 2 for a clearer view of the trie running time.

The experiments all use instance INRC2-4-030-1-6291.xml, the XESTT ver-
sion of a 4-week instance derived from the Second International Timetabling
Competition [2, 3] and tested by other authors [12, 13].

This instance divides into two independent parts, one for trainee nurses and
one for non-trainee nurses. We show the trainee nurse results, because the al-
gorithm runs more slowly on them. This is probably because trainee nurses can
take each other’s shifts, whereas non-trainee nurses may have varying skills, and
can take some of each other’s shifts but not all.

Figures 1 and 2 report on tests that select 3 nurses for reassignment over
the first 14 days. The 3 nurses are chosen at random but are the same in all
tests, as is the initial solution. This test happens to find an improvement on the
initial solution. Fig. 1 shows the effect of changing the way that the solutions are
stored in each Pk from an ordinary unsorted array to a trie. The same solutions
are found, but running time improves dramatically. Fig. 2 shows the effect of

22

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 Jeffrey H. Kingston

Size

0 5 10 15
0

20000

40000

60000
3 Nurse:Trainee resources

trie

triet

Days (1Mon-2Sun)

Secs

0 5 10 15
0

2

4

6
3 Nurse:Trainee resources

trie

triet

Days (1Mon-2Sun)

Fig. 2. The effect of introducing tradeoff dominance. This is the same instance as in
Fig. 1, and the points labelled ‘trie’ are the same as in Fig. 1. The points labelled ‘triet’
are for the trie data structure with tradeoff dominance instead of strong dominance.
The table size is reduced by more than half at the peak, and running time is reduced
by about 30%.

changing from strong dominance to tradeoff dominance within the trie. The
improvement is less dramatic but still useful.

The third figure, Fig. 3, shows what happens when the number of trainee
nurses is increased to 4, using tries with tradeoff dominance. This run generates
millions of undominated solutions and takes about 6000 seconds (100 minutes)
to complete, a very bad result.

8 Conclusion

This paper has generalized the dynamic programming algorithm for optimal
nurse rostering, and made some progress in optimizing it, in preparation for
using it as the reassignment operator of a VLSN search. The implementation is
available online [10] along with a detailed description [11].

Size

0 5 10 15
0

1000000

2000000

3000000
4 Nurse:Trainee resources

triet

Days (1Mon-2Sun)

Secs

0 5 10 15
0

2000

4000

6000

8000
4 Nurse:Trainee resources

triet

Days (1Mon-2Sun)

Fig. 3. As before, with tries and tradeoff dominance, but reassigning 4 trainee nurses.

The experiments have shown that the algorithm is able to reassign a fairly
large number of days, for example 14. It is not able to reassign a large number

23

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Improving the Dynamic Programming Algorithm for Nurse Rostering 13

of nurses. In this paper we have been able to reassign 3 nurses quickly, but not
4, so further improvement is needed.

Tries and tradeoff dominance do not interact well, and the implementation
tested here does not find every case of tradeoff dominance when tries are used.
The author has gathered statistics showing that the number of undominated
solutions kept when both are used can be five times larger than when tradeoff
dominance is applied to a simple list of undominated solutions. The trie is still
faster, but it would be better if both ideas could perform at their best.

A well-known enhancement is to always extend a lowest cost solution next,
chosen across all days. If a new best complete solution is found, all incomplete
solutions whose cost exceeds its cost will then never be extended. The author
has gathered statistics showing that 70% of the solutions created by the solve in
Fig. 3 would either not be created or not be extended, if this was done.

Hand analysis shows that even tradeoff dominance is very conservative. By
this we mean that there are many cases where one solution is morally certain to
dominate another, but the dominance test does not succeed, because it cannot
rule out the possibility that a set of highly improbable events will occur which
allow the more costly solution to produce a superior extension. Further analysis
of dominance testing could produce a major payoff.

As a last resort, we could keep, say, only the best 10,000 undominated solu-
tions on each day. This would provide a very robust upper limit on the running
time. In Fig. 3, if the solutions on each day are sorted by increasing cost, the
solutions on the path to the optimal complete solution have remarkably low
indexes in the sorted lists. For example, on the day with the largest number
of undominated solutions, there are 2,486,741 undominated solutions, but the
index of the solution on the path to the optimal complete solution is just 25.
Of course, keeping only the best 10,000 solutions on each day would remove
the guarantee of optimality. But then, the VLSN search that this algorithm is
intended to support offers no guarantee of optimality either.

References

1. Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and H. Van
Landeghem, The state of the art of nurse rostering, Journal of Scheduling 7, pages
441–499 (2004). DOI 10.1023/B:JOSH.0000046076.75950.0b

2. Ceschia, S., Nguyen, T. T. D., De Causmaecker, P., Haspeslagh, S., Schaerf, A.:
Second international nurse rostering competition (INRC-II), problem description and
rules. oRR abs/1501.04177 (2015). http://arxiv.org/abs/1501.04177

3. Ceschia, S., Nguyen T. T. D., De Causmaecker, P., Haspeslagh, S., Schaerf,
A.: Second international nurse rostering competition (INRC-II) web site,
http://mobiz.vives.be/inrc2/

4. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems – a biblio-
graphic survey. European Journal of Operational Research 151, 447–460 (2003)

5. Elshafei M., Alfares, H. K.: A dynamic programming algorithm for days-off schedul-
ing with sequence dependent labor costs. Journal of Scheduling 11, 85–93 (2008)

6. Irnich, S., Desaulniers, G., et al.: Shortest path problems with resource constraints.
In: Column generation, chap. 2, 33âĂŞ65. Springer US (2005)

24

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 Jeffrey H. Kingston

7. Kingston, J. H.: XESTT web site, http://jeffreykingston.id.au/xestt (2017)
8. Kingston, J. H., Post, G., Vanden Berghe, G.: A unified nurse rostering model based

on XHSTT. In: PATAT 2018 (Twelfth International Conference on the Practice and
Theory of Automated Timetabling, Vienna, August 2018), 81–96

9. Kingston, J. H.: Modelling history in nurse rostering. In: PATAT 2018
(Twelfth international conference on the Practice and Theory of Automated
Timetabling, Vienna, August 2018), 97–111. Also Annals of Operations Research,
https://doi.org/10.1007/s10479-019-03288-x

10. Kingston, J. H.: KHE web site (Version 2.7), http://jeffreykingston.id.au/khe
(2022)

11. Kingston, J. H.: The KHE User’s Guide (Version 2.7), Appendix C: Resource
reassignment using dynamic programming. http://jeffreykingston.id.au/khe (2022)

12. Legrain, A., Omer, J., Rosat, S.: A rotation-based branch-and-price approach for
the nurse scheduling problem. Mathematical Programming Computation 2019, 1–34

13. Ceschia S., Schaerf, A.: Solving the INRC-II nurse rostering problem by simu-
lated annealing based on large neighborhoods. In: PATAT 2018 (Twelfth international
conference on the Practice and Theory of Automated Timetabling, Vienna, August
2018), 331–338

25

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Predicting nurse rosters with machine learning

techniques

Shayekh Hassan1[0000-0002-6196-0318], Nadia Cissen1[0000-0002-6792-8925] and Leendert Kok1

1 ORTEC B.V., Houtsingel 5 2719 EA Zoetermeer, The Netherlands
shayekh.hassan@ortec.com

Abstract. Optimizing nurse rosters is a challenge in practice. A large number of

labor rules, many individual preferences, and fuzzy objectives make it hard and

cumbersome to create the right optimization model with all the relevant data.

Since there are a lot of data patterns in nurse rosters, we tried a different approach

using machine learning. We implemented supervised machine learning tech-

niques to predict nurse rosters for a medical center by training our models on past

rosters. The medical center uses as a rule of thumb that a roster is good if at least

80% of the roster is executed as planned. In our computational experiments, we

found the best results with ensemble learning with an accuracy of over 90%. We

consider this a remarkable result, given that the machine learning models have

zero explicit knowledge of labor rules, preferences, roster objectives, occupancy

requirements, and availabilities.

Keywords: Nurse rostering, Supervised learning, Roster prediction

1 Introduction

ORTEC Workforce Scheduling (OWS) is a leading employee rostering solution for

various industries. Traditionally, OWS creates and optimizes rosters based on hard and

soft constraints [1]. However, it has been observed that many users of OWS, especially

in the healthcare industry, make significant changes to the optimized rosters or create

rosters even entire manually [2]. The main reason for this is that there are typically

many tacit roster preferences and criteria of planners and nurses that are too cumber-

some for the users to include in OWS as constraints [2]. Next to that, there are many

data patterns in healthcare rosters, such as working several night shifts in a row, having

an entire weekend on or off, certain colleagues typically working together, etc. [2].

These two observations raised the question: would it be possible to predict rosters by

learning from the past ones?

26

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2

2 Model and solution approach

For this research, we obtained a dataset from a large medical center in the Nether-

lands. We choose the neurology department to create the supervised learning models,

and we use two other departments, cardiology and IC Nurses, to verify the robustness

of the models. We choose these departments because:

• They have a high number of nurses (Neurology: 186, Cardiology: 357, and IC

Nurses: 258).

• The cardiology department is similar to the neurology department in terms of plan-

ning difficulty.

• According to planners, the IC nurses department is the most difficult one to plan.

We use data from 2019 and 2020, because further in the past, nurses and shifts were

quite different from now, and therefore can contribute very little in predicting current

rosters. We excluded data from 2021, as those rosters were not finalized yet at the time

of data availability.

We categorized the shifts in the data by their start time into five different categories:

day off, early, day, late, and night shift. The motivation for categorization is that the

number of unique shifts for a department is very high, with only minor differences in

start and end time. For example, the Neurology department has 49 shifts between 2019

and 2020. If it is possible to correctly predict the shift category a nurse will work, we

will be able to further narrow down the unique shift the nurse works based on other

deterministic methods (e.g., matching required and available skills) or further investi-

gation using machine learning techniques. Therefore, the scope of this study has been

limited to predicting nurse rosters based on the above-mentioned five categories of

shifts only.

 We choose random forest as the first supervised learning method for this study, pri-

marily because of its ability to perform without much feature selection [3] and handle

discrete data well [4]. We train the model by taking the roster of a certain day as the

output and the preceding days as input. For input, we experimented with different ho-

rizons: 7 days, 30 days, 91 days, 183 days, and 366 days.

For predicting the whole roster of a month, we start with predicting the first day of

that month using the preceding days as input. For the second and subsequent days of

the month, we include the preceding predicted days in the input and iteratively construct

this way for the entire month.

3 Computational experiments

We split the data such that we could use the roster of December 2020 as the test set

and the preceding 12 months of data as the training set. Since this is a time-series data,

we applied cross-validation on a rolling basis in 5 steps [5]. We found that the random

forest model predicts the rosters the best when the whole preceding year is used as

input. For this input (366 days), the weighted F1 scores for the three departments are

0.8505, 0.8904, and 0.6598 (See Figure 1).

27

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

3

Fig. 1. Weighted average F1 score of random forest model

We also developed gradient boosting and K-nearest neighbor (KNN) methods to

compare the results. We used similar data processing methods as with the random forest

model, and we used the same input and output structure. These models provided similar

results: the highest weighted average F1 scores are achieved when the input is 366 days,

and the performance is the lowest for the department of IC nurses. Gradient boosting

performed marginally better than the other two.

We also developed an ensemble learning model, combining the random forest, gra-

dient boosting and KNN with maximum voting [6]. The results indicate that ensemble

learning has a significantly higher weighted average F1 score compared to the other

models. For input of 366 days, the weighted F1 scores for the three departments are

0.924 0.7432, and 0.9304.

Fig. 2. Weighted average F1 score of all models with 366 days as input

0.5

0.6

0.7

0.8

0.9

1

7 days 30 days 91 days 183 days 366 days

Neurology IC Nurses Cardiology

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neurology IC Nurses Cardiology

Random forest Gradient boosting K-nearest neighbor Ensemble Learning

28

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4

4 Conclusions

To conclude, supervised machine learning models, especially when multiple non-

parametric models are combined, can predict nurse rosters to a high degree of accuracy

based on past rosters of a year. Computational experiments indicate that accuracy and

F1 score of over 90% could be reached for certain departments. According to the plan-

ners, if the final roster is at least 80% similar to the planned roster, it is already consid-

ered good in practice. There is even more to win by including more information in the

predictions, for example, labor rules, already scheduled holidays, etc. Further research

will be conducted on applying these models to other customer data, improving these

models’ performances, and creating new models to predict more details (i.e., the exact

shift a nurse will work).

5 References

1. Van Draat, L. F., Post, G., Veldman, B., & Winkelhuijzen, W: Harmonious

personnel scheduling. Medium Econometrische Toepassingen, 14, 4-7 (2006).

2. Weersel, S. Preference learning: What defines an optimal shift schedule?. MS

thesis. University of Twente, Twente (2019).

3. Fawagreh, K., Gaber, M.M., Elyan, E.: Random forests: From early develop-

ments to recent advancements. Systems Science & Control Engineering. 2, 602–

609 (2014).

4. Janitza, S., Tutz, G., Boulesteix, A.-L.: Random Forest for ordinal responses:

Prediction and variable selection. Computational Statistics & Data Analysis. 96,

57–73 (2016).

5. Hyndman, R.J., Athanasopoulos, G.: 5.10 Time series cross-validation. In: Fore-

casting: Principles and practice. Otexts, Lexington, Ky (2021).
6. Rokach, L.: Pattern classification using ensemble methods. World Scientific,

Hackensack, New Jersey (2010).

29

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance

of the Uncapacitated Examination Timetabling

Problem

Angelos Dimitsas1, Vasileios Nastos1, Christos Valouxis2, Panayiotis
Alefragis3, and Christos Gogos1

1 Dept. of Informatics and Telecommunications University of Ioannina, Arta, Greece
{a.dimitsas,vnastos,cgogos}@uoi.gr

2 Dept. of Electrical and Computer Engineering, University of Patras, Greece
cvalouxis@upatras.gr

3 Dept. of Electrical and Computer Engineering, University of Peloponnese,Patras,
Greece alefrag@uop.gr

Abstract. Examination timetabling is a problem well known to the
scheduling community. Its simplest version, which is the Uncapacitated
Examination Timetabling Problem is easily described and comprehended.
Nevertheless, proof of optimality is notoriously di�cult even for moder-
ate size problems. In this paper we describe the e�ort that our team ex-
ercised in �nally proving the optimality of the sta83 instance of Carter's
dataset. The problem was decomposed naturally in three parts and for
each part a di�erent approach managed to prove optimality of the cur-
rently best known solution. Several hours of computation were needed,
but now we are con�dent that no solution exists with cost less than the
proved optimal value. This work also presents optimal solutions to sub-
problems that exist in various public datasets problems and two best
known solutions of such problems.

Keywords: Examination Timetabling · Mixed Integer Programming ·

Heuristics

1 Introduction

Timetabling problems arise in several domains including health-care, education,
call centers, airlines and others. Rostering and scheduling are also commonly
used terms to describe timetabling problems. In this paper we study the Un-
capacitated Examination Timetabling Problem (UETP). UETP is the problem
of scheduling university examinations to periods (time-slots) in such a way that
no student should be examined at the same period for more than one course.
Furthermore, the schedule of each student should allow enough time for study-
ing between successive examinations. The problem is uncapacitated in the sense
that no room capacities or availabilities are considered.

Our contribution to UETP is twofold. Firstly, we present a way of decom-
posing and reducing the sizes of the problems that results in obtaining two new

30

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 A. Dimitsas et al.

best known solutions for benchmark instances. Secondly, and most noteworthy
we propose a novel way of approaching a certain known instance of the Carter's
dataset [6] of the UETP that results in actually proving the optimal value of the
instance.

An outline of the paper follows. Section 2 provides a succinct description of
the problem. Section 3 presents a glimpse of the broad bibliography for university
examination problems capacitated or not. The next section describes our e�orts
to cleanse and decompose the problem instances so as to reduce their sizes,
in an e�ort to feed various solution approaches with easier to digest problems.
Section 5 is devoted to attacking the UETP problem instances with three speci�c
methods that are later used in Section 6 to prove optimality for problem instance
sta83 of the well known Carter's dataset. Next, our conclusions follow.

2 Problem Description

Each UETP instance contains information about the set of examinations that
each student is enrolled in. Each instance has a speci�c number of periods that
can be used to schedule the examinations to. The single hard constraint is that
no student is allowed to participate in more than one examination per period. To
allow time for each student to study between his examinations, for each student
s, for each pair of examinations taken by s, a penalty of 16 is imposed if the
two examinations occur in adjacent time slots (called distance 1), penalty 8 is
imposed for distance 2, 4 for distance 3, 2 for distance 4, and 1 for distance 5.

The natural way to represent an instance is as an undirected weighted graph
G = (V,E) where each vertex in V is an examination and each edge in E connects
two examinations with common students. The weight of each edge is the number
of common students for the examinations it connects.

3 Related work

The �eld of educational timetabling is very active. Several papers are typi-
cally published every year regarding course timetabling (post-enrollment and
curriculum-based), examination timetabling, high school timetabling, thesis de-
fense timetabling and others. Several surveys regarding the �eld have been pub-
lished and present the challenges that such problems pose [12], [9]. The survey
by Qu et al. [10] focuses on examination timetabling that is the subject of our
work too. Recent surveys by Tan et al. [13] and Ceschia et al. [7] demonstrate the
strong interest of the timetabling community for educational timetabling prob-
lems. Maybe this can be justi�ed by the familiarity of such problems to academia
circles. In [7] focus is given on �standard� formulations and benchmark instances
that are also used in our work are presented. Another recent work for real world
examination timetabling problems, this time, is the paper from Battistutta et
al. [3].

31

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 3

Our team is also active in educational timetabling. In [8] we proposed a
novel way of estimating lower bounds for UETP instances. Ideas about symme-
try elimination, problem decomposition and cleansing of the instances were also
presented there. The current paper serves as a follow-up and provides experi-
mental results based on those ideas.

4 Preprocessing

Before solving each problem we perform a cleansing process through which we
remove problem components that are insigni�cant and only add noise to the
problem. The premise is that by solving the cleansed problem, we will still be
able to �nd optimal solutions that will be optimal for the original problem. Fur-
thermore, we identify independent subproblems that exist in each problem. Such
subproblems can be solved independently and the solution to the original prob-
lem can be stitched by using the solutions of the subproblems. An exploration
of the main ideas that we use for cleansing and decomposing the problems are
more extensively described in our latest paper [8]. A synopsis follows.

Initially, we remove obvious noise students and examinations [2] (see lines 1
and 2 of Algorithm 1). Then, we identify subgraphs of the graph that can be
handled independently. Note that the size of a subgraph refers to the number
of its nodes which is equal to the number of the corresponding subproblem's
exams. Subgraphs of size lower than ⌊P−1

6 ⌋+ 1 are identi�ed as noise. This can
be justi�ed by the fact that we can spread the examinations of such subgraphs to
the P available periods with zero penalty. Examinations with degree lower than
P
11 are also noise since they can be always positioned with zero penalty. Then,
any student that has a single non-noise examination and an arbitrary amount of
noise examinations is also considered as noise. The process repeats until no more
examinations or students can be marked as noise. A description of the procedure
is given in Algorithm 1.

Another form of preprocessing involves the identi�cation of interchangeable
examinations that was proposed in [8]. These examinations have the same neigh-
borhoods, as de�ned in graph G, and the same number of common students for
each neighbor. As these examinations are practically the same we can enforce
them to either be in the same period if they are not in con�ict or to follow a spe-
ci�c sequence of appearance in the �nal schedule if they have common students.
By eliminating this type of symmetry of the problem, MIP/CP solvers are able
to better explore the solution space.

4.1 Datasets

The standard benchmark dataset for UETP is Carter's dataset (a.k.a. Toronto
dataset). Those instances were contributed in [6] back in 1996 and since then
were used in many papers. Recently, 19 new instances that are modi�ed ver-
sions of other more complex formulations, were added by Bellio et al. [4]. All
of them are publicly available in https://opthub.uniud.it/ which is a site that

32

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 A. Dimitsas et al.

Algorithm 1: Remove noise examinations and students from an exam-
ination timetabling problem

Input: An examination timetabling problem represented as a graph G
Output: Graph G with noise examinations and noise students removed

1 Find students enrolled in a single exam, tag them as noise
2 Find examinations with only noise students, tag them as noise
3 Remove tagged examinations and students from G
4 do // loops until no more noise examinations are found

5 done = True
6 Let S be the set of disconnected components (subgraphs) of G
7 while S ̸= ∅ do
8 Gi = next(S) // i is the identifier of the subgraph

9 if |Gi| < ⌊P−1
6

⌋+ 1 then
10 Tag all examinations of Gi as noise
11 Tag all students enrolled in examinations of Gi as noise
12 Remove tagged examinations and students from Gi and G
13 done = False

14 do

15 more_noise = False
16 for each examination e in Gi do

17 if dege < P
11

then

18 Tag e as a noise
19 Tag all students enrolled in e as noise
20 Remove tagged examinations and students from Gi and G
21 more_noise = True
22 done = False

23 while more_noise
24 Remove Gi from S

25 while not done

hosts de�nitions, datasets and solutions of several timetabling problems that
have attracted the interest of the timetabling community.

The characteristics of the instances used in this paper are shown in Table 1.
Con�ict density is a metric that is computed by dividing the number of edges
of the problem's corresponding graph by n(n − 1)/2, where n is the number
of vertices. Values for noise students and examinations are computed based on
Algorithm 1. Moreover, the table presents the best known values that were ob-
tained by solutions that we have downloaded from https://opthub.uniud.it/ in
April 2022. Costs assume integer values and since the problem is of minimization
nature, lower values are favored. Normalized costs are shown in the rightmost
column of the table and are computed by dividing each integer cost by the cor-
responding number of students. The star symbol (∗) in best known cost (95947)
of instance sta83 indicates that this cost is optimal. At Section 6 we show that
this is indeed the case. We consider it as the highlight of our work, since it is the

33

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 5

�rst instance among the Carter's dataset for which it is proven that an optimal
solution has been reached. It should be noted that the table has symbol † for
the best known costs of two instances, ITC2007_9 and ITC2007_10. These best
known values were contributed by our team and were obtained by exploiting the
concept of noise examinations and students and the decomposition of problems
to subproblems that enabled us to use optimal solutions to independent sub-
problems and search for good solutions using the Variable Neighborhood Search
approach described in [2].

Table 1. Instances - descriptive statistics - noise examinations and noise students -
best known costs

Instance id Exams Students Periods Con�ict density Noise exams Noise students Best known cost Best known normalized cost
car92 543 18419 32 0.137986 10 3969 67084 3.6421
car91 682 16925 35 0.128386 13 3409 71727 4.2379
ear83 190 1125 24 0.266945 0 1 36473 32.4204
hec92 81 2823 18 0.420679 0 321 28325 10.0337
kfu93 461 5349 20 0.055579 33 276 68462 12.7990
lse91 381 2726 18 0.062592 3 99 26643 9.7737
pur93 2419 30029 42 0.029495 83 2627 120144 4.0009
rye93 486 11483 23 0.075279 1 2025 89999 7.8376
sta83 139 611 13 0.143989 0 0 ∗95947 ∗157.0327
tre92 261 4360 23 0.180696 3 667 33094 7.5904
uta92 622 21266 35 0.125557 5 6180 62675 2.9472
ute92 184 2749 10 0.084937 0 78 68090 24.7690
yor83 181 941 21 0.288889 0 1 32375 34.4049
ITC2007_1 607 7883 54 0.050495 25 227 5628 0.7139
ITC2007_2 870 12484 40 0.011695 238 2430 1538 0.1232
ITC2007_3 934 16365 36 0.026187 124 1306 20768 1.2690
ITC2007_4 273 4421 21 0.149968 0 4 47869 10.8276
ITC2007_5 1018 8719 42 0.008693 343 407 1567 0.1797
ITC2007_6 242 7909 16 0.061555 15 2622 30343 3.8365
ITC2007_7 1096 13795 80 0.019323 358 2620 262 0.0190
ITC2007_8 598 7718 80 0.045489 101 229 409 0.0530
ITC2007_9 169 624 25 0.078402 26 9 †2909 †4.6619
ITC2007_10 214 1415 32 0.049713 53 91 †12184 †8.6106
ITC2007_11 934 16365 26 0.026187 93 1306 54347 3.3209
ITC2007_12 78 1653 12 0.184482 4 684 10631 6.4313
D1-2-17 281 37 38 0.053254 21 1 2428 65.6216
D5-1-17 277 43 45 0.087166 53 0 3653 84.9535
D5-1-18 306 49 45 0.066560 47 0 3245 66.2245
D5-2-17 344 43 45 0.092447 2 0 8362 194.4651
D5-2-18 425 47 59 0.083629 6 0 6619 140.8298
D5-3-18 132 43 22 0.081309 2 0 1406 32.6977
D6-1-18 511 57 60 0.059975 74 0 9793 171.8070
D6-2-18 539 57 78 0.067639 10 0 7883 138.2982

4.2 Decomposed instances

After applying Algorithm 1 some problems are decomposed to subproblems. For
most instances a number of examinations and students are removed since they
are in e�ect noise. The resulting subproblems are presented in Table 2. The name
of each subproblem follows the pattern d_i_(Ex_Sy_IDz), where d is the name
of the originating instance, i is a number that assumes value 1 for the smallest
subproblem and is incremented by 1 for each subsequent subproblem (subprob-
lems are ordered by size = number of exams), x is the number of examinations, y
is the number of students and z is the smallest examination number that exists in
the subproblem. Number z is needed in order to di�erentiate among subproblems
having the same number of examinations and same number of students. This is
indeed the case for subproblems D1-2-17_1 and D1-2-17_2 that both have 8

34

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 A. Dimitsas et al.

examinations and 1 student but in the �rst case the identifying examination is
217 while for the second case the identifying examination is 257. Note that in
Table 2 the number of examinations and the number of students exclude noise
examinations and noise students respectively. Again, the presence of symbol ∗
denotes that the corresponding integer cost is optimal. It should be also noted
that the normalized cost is computed by dividing the integer cost by the number
of students (including noise ones) that exists in the originating instance.

5 Optimality proving tools

We have identi�ed three di�erent approaches to prove optimality for certain
instances, and we present them below. Under certain conditions (number of
exams, con�ict density, current best known solution, number of periods) these
approaches may be able to prove that a solution is indeed optimal.

5.1 Mixed Integer Programming

As optimality is our main concern the �rst thoughts that come to mind are
Linear Programming and Mixed Integer Programming. The mathematical model
described below can solve an UETP instance, provided that the instance size is
manageable. For a graph G = (V,E) where vertices V serve as the exams, each
edge in E means that two examinations have common students. The weight of
an edge Wv1,v2 connecting vertices v1 and v2 is equal to the number of common
students these examinations have. P is the number of available periods.

The integer decision variables vn in Equation 1 denote the period an exami-
nation will take place while the derived binary decision variables in Equation 2
help us to activate or deactivate penalties in the objective function in Equa-
tion 3. The constraint in Equation 4 forces examinations with common students
to take place in di�erent periods. Equation 5 forces binary decision variables in
Equation 2 to indicate the distance between two exams. This constraint is not
linear but capable solvers like IBM ILOG CPLEX using mathematical modeling
tricks are able to linearize it out of the box. Equation 6 allows only one of the
penalty indicating variables in Equation 2 to be active at any time. This con-
straint is redundant but its presence seems to help the solver in reaching better
solutions.

vn ∈ [0, P) ∀n ∈ 1 . . . |V| (1)

y16v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y8v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y4v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y2v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E
y1v1,v2 ∈ {0, 1} ∀(v1, v2) ∈ E

(2)

35

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 7

Table 2. Problems resulted by decomposed instances of Table 1 - All noise examina-
tions and noise students are removed

Instance id Exams Students Con�ict Density Best known cost Best known normalized cost
car92_1(E533_S18328_ID1) 533 18328 0.143139 67084 3.6421
car91_1(E669_S16750_ID1) 669 16750 0.133375 71727 4.2379
ear83_1(E190_S1125_ID1) 190 1125 0.266945 36473 32.4204
hec92_1(E81_S2823_ID1) 81 2823 0.420679 28325 10.0337
kfu93_1(E428_S5194_ID1) 428 5194 0.064326 68462 12.7990
lse91_1(E378_S2724_ID1) 378 2724 0.063576 26643 9.7737
pur93_1(E2336_S29766_ID1) 2336 29766 0.031566 120144 4.0009
rye93_1(E485_S11425_ID1) 485 11425 0.075590 89999 7.8376
sta83_1(E30_S162_ID1) 30 162 0.717241 ∗16002 ∗26.1899
sta83_2(E47_S210_ID3) 47 210 0.351526 ∗47250 ∗77.3322
sta83_3(E62_S239_ID4) 62 239 0.364357 ∗32695 ∗53.5106
tre92_1(E258_S4355_ID1) 258 4355 0.184840 33094 7.5904
uta92_1(E617_S21264_ID1) 617 21264 0.127539 62675 2.9472
ute92_1(E7_S20_ID30) 7 20 0.904762 ∗645 ∗0.2346
ute92_2(E177_S2729_ID1) 177 2729 0.090588 67445 24.5344
yor83_1(E181_S941_ID1) 181 941 0.288889 32375 34.4049
ITC2007_1_1(E582_S7798_ID1) 582 7798 0.054563 5628 0.7139
ITC2007_2_1(E9_S33_ID396) 9 33 0.888889 ∗0 ∗0.0000
ITC2007_2_2(E623_S9636_ID1) 623 9636 0.020856 1538 0.1232
ITC2007_3_1(E810_S15726_ID1) 810 15726 0.034214 20768 1.2690
ITC2007_4_1(E273_S4421_ID1) 273 4421 0.149968 47869 10.8276
ITC2007_5_1(E11_S9_ID434) 11 9 0.690909 ∗0 ∗0.0000
ITC2007_5_2(E13_S41_ID206) 13 41 0.487179 ∗0 ∗0.0000
ITC2007_5_3(E14_S263_ID120) 14 263 0.989011 189 0.0217
ITC2007_5_4(E637_S7559_ID1) 637 7559 0.018236 1378 0.1580
ITC2007_6_1(E4_S12_ID5) 4 12 1.000000 ∗33 ∗0.0042
ITC2007_6_2(E7_S75_ID122) 7 75 0.666667 ∗7 ∗0.0009
ITC2007_6_3(E27_S210_ID9) 27 210 0.293447 146 0.0185
ITC2007_6_4(E189_S7386_ID3) 189 7386 0.093662 30157 3.8130
ITC2007_7_1(E18_S143_ID178) 18 143 0.732026 ∗0 ∗0.0000
ITC2007_7_2(E720_S10034_ID2) 720 10034 0.040604 262 0.0190
ITC2007_8_1(E497_S7388_ID1) 497 7388 0.062764 409 0.0530
ITC2007_9_1(E143_S603_ID2) 143 603 0.105683 2909 4.6619
ITC2007_10_1(E7_S81_ID1) 7 81 1.000000 ∗196 ∗0.1385
ITC2007_10_2(E9_S91_ID78) 9 91 0.888889 ∗14 ∗0.0099
ITC2007_10_3(E11_S29_ID87) 11 29 1.000000 ∗54 ∗0.0382
ITC2007_10_4(E12_S111_ID121) 12 111 0.984848 1021 0.7216
ITC2007_10_5(E15_S59_ID200) 15 59 0.857143 292 0.2064
ITC2007_10_6(E16_S220_ID133) 16 220 0.958333 878 0.6205
ITC2007_10_7(E16_S124_ID166) 16 124 0.800000 338 0.2389
ITC2007_10_8(E16_S56_ID51) 16 56 0.550000 76 0.0537
ITC2007_10_9(E17_S143_ID149) 17 143 0.757353 836 0.5908
ITC2007_10_10(E19_S208_ID13) 19 208 0.964912 2356 1.6650
ITC2007_10_11(E23_S215_ID98) 23 215 0.909091 6123 4.3272
ITC2007_11_1(E841_S15857_ID1) 841 15857 0.031989 54347 3.3209
ITC2007_12_1(E5_S62_ID35) 5 62 0.900000 ∗22 ∗0.0133
ITC2007_12_2(E69_S1464_ID1) 69 1464 0.232310 10609 6.4180
D1-2-17_1(E8_S1_ID217) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_2(E8_S1_ID257) 8 1 1.000000 ∗5 ∗0.1351
D1-2-17_3(E10_S1_ID119) 10 1 1.000000 ∗17 ∗0.4595
D1-2-17_4(E11_S1_ID218) 11 1 1.000000 ∗26 ∗0.7027
D1-2-17_5(E12_S1_ID189) 12 1 1.000000 ∗36 ∗0.9730
D1-2-17_6(E13_S2_ID100) 13 2 0.538462 ∗0 ∗0.0000
D1-2-17_7(E14_S1_ID173) 14 1 1.000000 ∗62 ∗1.6757
D1-2-17_8(E18_S1_ID1) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_9(E18_S1_ID51) 18 1 1.000000 ∗150 ∗4.0541
D1-2-17_10(E28_S2_ID7) 28 2 0.592593 ∗190 ∗5.1351
D1-2-17_11(E120_S18_ID44) 120 18 0.164286 1787 48.2973
D5-1-17_1(E11_S3_ID98) 11 3 1.000000 ∗48 ∗1.1163
D5-1-17_2(E13_S3_ID99) 13 3 0.846154 ∗12 ∗0.2791
D5-1-17_3(E200_S34_ID5) 200 34 0.158945 3593 83.5581
D5-1-18_1(E9_S2_ID263) 9 2 1.000000 ∗8 ∗0.1633
D5-1-18_2(E13_S3_ID88) 13 3 0.846154 ∗12 ∗0.2449
D5-1-18_3(E14_S2_ID200) 14 2 0.736264 ∗10 ∗0.2041
D5-1-18_4(E223_S41_ID1) 223 41 0.118046 3215 65.6122
D5-2-17_1(E18_S1_ID199) 18 1 1.000000 ∗108 ∗2.5116
D5-2-17_2(E324_S42_ID1) 324 42 0.101307 8254 191.9535
D5-2-18_1(E18_S1_ID97) 18 1 1.000000 54 1.1489
D5-2-18_2(E56_S5_ID94) 56 5 0.318182 140 2.9787
D5-2-18_3(E345_S41_ID1) 345 41 0.116144 6425 136.7021
D5-3-18_1(E5_S2_ID40) 5 2 1.000000 ∗6 ∗0.1395
D5-3-18_2(E7_S1_ID59) 7 1 1.000000 ∗18 ∗0.4186
D5-3-18_3(E118_S40_ID3) 118 40 0.097349 1382 32.1395
D6-1-18_1(E12_S1_ID470) 12 1 1.000000 ∗7 ∗0.1228
D6-1-18_2(E22_S2_ID85) 22 2 0.636364 ∗32 ∗0.5614
D6-1-18_3(E403_S52_ID1) 403 52 0.092947 9754 171.1228
D6-2-18_1(E14_S1_ID1) 14 1 1.000000 ∗1 ∗0.0175
D6-2-18_2(E22_S1_ID343) 22 1 1.000000 ∗56 ∗0.9825
D6-2-18_3(E493_S54_ID3) 493 54 0.077904 7826 137.2982

36

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 A. Dimitsas et al.

min 16 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y16v1,v2 + 8 ∗

∑
v1,v2∈E

Wv1,v2 ∗ y8v1,v2

+4 ∗
∑

v1,v2∈E
Wv1,v2

∗ y4v1,v2 + 2 ∗
∑

v1,v2∈E
Wv1,v2 ∗ y2v1,v2

+
∑

v1,v2∈E
Wv1,v2 ∗ y1v1,v2

(3)

s.t. v1 ̸= v2 ∀(v1, v2) ∈ E (4)

y8v1,v2 = (v1 − v2 = 2) + (v1 − v2 = −2) ∀(v1, v2) ∈ E
y4v1,v2 = (v1 − v2 = 3) + (v1 − v2 = −3) ∀(v1, v2) ∈ E
y2v1,v2 = (v1 − v2 = 4) + (v1 − v2 = −4) ∀(v1, v2) ∈ E
y1v1,v2 = (v1 − v2 = 5) + (v1 − v2 = −5) ∀(v1, v2) ∈ E

(5)

y16v1,v2 + y8v1,v2 + y4v1,v2 + y2v1,v2 + y1v1,v2 ≤ 1 ∀(v1, v2) ∈ E (6)

Finally, let I+ be the set of sets of interchangeable examinations as de�ned
in [8]. In order to break a symmetry of the problem we enforce an order over
the examinations belonging to each set. This is formulated in Equation 7, where
members of each set S of the sets in I+ are ordered among each other.

vi ≤ vi+1 ∀vi ∈ S : i ∈ 1 . . . |S| − 1, ∀S ∈ I+ (7)

Other formulations of the mathematical model have been proposed in the
past. An example is the work in [4] that uses the so-called channeling con-
straints that were originally proposed in [1]. A di�erence in our model is that we
employ the concept of interchangeable examinations that are embedded in the
formulation. Moreover, the objective function is constructed equivalently, but
di�erently, in our case.

5.2 Intelligent enumeration

Some of the instances have a comparatively small number of available periods.
It's noteworthy that even small sub-problems with a few periods and a relatively
low number of examinations are hard to optimally solve by current state of the
art mixed integer programming solvers. A new method was developed to handle
instances, and this method depending on the number of examinations, available
periods and the con�ict density of the corresponding graph is able to solve some
problems to optimality. Moreover, the same method can be exploited and reach
good solutions for bigger instances.

37

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 9

To best describe this process we will use a toy example with its graph rep-
resentation pictured in Figure 1. Let the available periods for this problem to
be four. The problem consists of �ve examinations with a varying number of
common students between certain pairs of exams. Note that exams 1, 2, 3 form a
non trivial clique e.g. they are a complete sub-graph of the graph. As no student
is allowed to participate in more than one examination per period, those three
examinations will end up in three di�erent periods. Also, examination 5 with
a weighted degree of just 2 doesn't seem to play a major part in the grander
scheme of things.

1

2

100

3

150

4
50200

5
2

Fig. 1. Toy example for demonstrating the intelligent enumeration scheme.

The method can be used to either search for a good solution or to prove
optimality, based on characteristics of the problem in question. The main idea
remains the same for both cases. Firstly, we reduce the problem size by removing
some of its exams. Then, we generate partial solutions, evaluate their cost and
if it falls under some cut-o� limit, which could be the cost of the best known
solution, we �ll the missing examinations to form a complete solution. This
process is expected to act as a �lter and has the potential to be computationally
faster than a full enumeration.

The main idea of the method is to exploit a clique in the graph. In selecting a
clique, it usually makes sense to choose the maximum clique. In the toy example,
the maximum clique is the set of examinations {1, 2, 3}. It is guaranteed that
the clique's examinations will end up on di�erent periods which, for convenience,
we name after them, {P1, P2, P3} correspondingly. Since we have four available
periods we will name the period that will not be occupied by any of them as PE .
The remaining examinations {4, 5} can be easily checked in this small example
about their possible �nal positions. So, examination 4 can be placed in any of
{P2, P3, PE} and examination 5 can join any period {P1, P2, P3, PE}.

Since examinations for the clique are �xed in periods {P1, P2, P3} the possible
assignments for examinations 4 and 5 are (4 : P2, 5 : P1), (4 : P2, 5 : P3), (4 :
P2, 5 : PE), (4 : P3, 5 : P1), (4 : P3, 5 : P2), (4 : P3, 5 : PE), (4 : PE , 5 : P1), (4 :
PE , 5 : P2), (4 : PE , 5 : P3) while (4 : P2, 5 : P2), (4 : P3, 5 : P3), (4 : PE , 5 : PE)
are infeasible as examinations 4 and 5 are in con�ict. In total, there are 9 feasible
schedules. If we had opted to leave examination 5 out, there would be just 3
feasible schedules (4 : P2), (4 : P3), (4 : PE).

38

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 A. Dimitsas et al.

Initially, we ignore examination 5 and we examine all possible permutations
of {P1, P2, P3, PE}. We complement every permutation with each of the 3 pos-
sible partial schedules (4 : P2), (4 : P3), (4 : PE). Since each schedule and its
reverse have exactly the same objective value, we can skip mirrored permuta-
tions, e�ectively cutting o� half of the search space, thus eliminating this kind of
symmetry. Nevertheless, for large numbers of periods, it is unrealistic to traverse
all possible permutations, even by considering half of them. In the toy example,
we evaluate (4!/2) ∗ 3 partial solutions and we keep those that have cost under
a cut-o� barrier. The unscheduled examination 5 has a weighted degree of just
2, while other examinations have weighted degrees ranging from 52 to 350. So,
most of the partial solutions should be �ltered out.

Examination 5 of the toy example was initially ignored. A similar decision
must be taken for each problem, about the examinations that will be initially
ignored too. Unfortunately, this is not a trivial task. We cannot remove exam-
inations of the chosen clique, should we wish to do so we should pick another
clique. Intuitively, we want to initially ignore examinations with low degrees
and weighted degrees, as they are able to appear in more periods. Consequently,
they allow for more possible outcomes while at the same time their impact on
the objective function is minor. It should be noted that not all partial solutions
(solutions with ignored examinations still unscheduled) may lead to feasible solu-
tions. So, for the case that full enumeration is unrealistic, quick feasibility checks
can reveal unpromising partial solutions that are meaningless to be completed.
The method is tuned by balancing the number of possible partial schedules gen-
erated with respect to the impact that the selected examinations have on the
objective. The tuning is guided by selecting, through sampling, suitable exami-
nations that will hopefully result in cutting-o� many possible solutions. For the
toy example the costs of these partial solutions are depicted in Table 3

Table 3. Permutations and partial solutions costs for the toy example in Fig. 1

P1 P2 P3 PE 4 : P2 4 : P3 4 : PE

0 1 2 3 6800 6400 6200
0 1 3 2 4600 4000 4200
0 2 1 3 6800 7200 6600
0 2 3 1 5000 4800 5400
0 3 1 2 4600 5200 4800
0 3 2 1 5000 5200 5600
1 2 0 3 6400 6400 6000
1 2 3 0 6800 6400 6800
1 3 0 2 4400 4800 4800
1 3 2 0 6800 7200 7200
2 3 0 1 4400 4000 4400
2 3 1 0 6400 6400 6000

39

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 11

To further augment our �lter while keeping computational cost low it's pos-
sible for partial solutions that are under the cut-o� barrier to calculate the
minimum cost each unscheduled examination can possibly introduce to the par-
tial solution. If the sum of those minimum costs plus our partial solutions cost
is under the cut-o� barrier, the partial solution may lead to a desired complete
solution. This process can be seen as a multi-layer �lter like the one depicted in
Fig. 2.

Fig. 2. Filter process.

5.3 Estimating lower bounds

Each students schedule is also an UETP sub-problem where his examinations
are a complete graph where all edges have a weight of 1. This problem can be
solved optimally for almost all instances, especially for those with a low number
of periods.

Summing up those minimum penalties for all students can provide us with
a lower bound. In the rare occasion that a solution's objective function is equal
to this bound then this solution is optimal.

40

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 A. Dimitsas et al.

6 sta83 optimal solution

No optimality has ever been proved for any Carter's dataset instance until
now. In this section we show that the solution for sta83 having value 95947
(95947/611=157.0327 in decimal value, where 611 is the total number of stu-
dents for sta83) which appears in many papers is indeed optimal.

Instance sta83 consists of 139 exams, 13 periods and has a relatively low
con�ict density of value 0.14. The instance has no noise examinations and no
noise students as de�ned in Section4. The instance is comprised of 3 disconnected
components as shown in Fig. 3.

sta83_30

sta83_47

sta83_62

Fig. 3. Disconnected components of sta83. The weight of each edge is indicated by its
thickness.

We can divide the problem into three independent subproblems because these
components are disconnected. That is, there are three unique groups of students,
each of which does not have an examination in common with the other two

41

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 13

groups, allowing us to work on each component independently. The sum of these
answers would be the optimal solution provided that all three of them are solved
optimally. Motivated by the prospect of proving optimality for a Carter's dataset
instance, we focused our attention on this task, and we managed to optimality
solve each subproblem using a di�erent approach, resulting in a novel way of
handling high con�ict-density components.

6.1 Component sta83_62

This is the largest component of sta83, having 62 examinations and a con�ict
density of 0.36. We tried to solve it using the model described in Section 5.1
using the IBM ILOG CPLEX IP solver. Unfortunately, after several hours the
solver was unable to prove optimality. We tried to warm start the solution with
the current best solution and have set the MIP emphasis parameter �rst to �em-
phasize optimality over feasibility� and then to �emphasize moving best bound�.
Both attempts were unsuccessful.

We noticed that the component has a special structure. It contains 10 sets of
examinations with each set consisting of exactly 5 interchangeable examinations.
These examinations amount for 50 of the 62 examinations that the component
has in total. Details of these sets are presented in Table 4. Since interchangeable
examinations can freely swap places with each other while keeping the objec-
tive value unchanged, the introduction of the symmetry breaking constraints
of Equation 6 greatly improved the solver's e�ciency in proving the optimal
solution.

We also noticed that 3 examinations existed (72, 133, 136) in the graph that
had connections with all other exams. So, we tried an approach that �xed these
3 examinations in speci�c periods and then tried to solve the remaining problem
using IBM ILOG CPLEX. This time, the result was successful, the solver was
able to return a result, either optimal or infeasible in a few minutes. It should be
noted that infeasibility occurs because the cost of the best known solution is used
as a cuto� constraint. So, we had only to try all possible places for positioning
the 3 examinations and then solve the resulting problem. Since there are only 13
periods in instance sta83, this would mean that only

(
13
3

)
= 286 con�gurations

existed that should be multiplied by 3!
2 since the 3 examinations can occupy the

�xed periods in any order (divided by 2 due to the inherent symmetry of the
problem).

By exploiting the above observations, IBM ILOG CPLEX IP solver was able
to solve each subproblem in a few minutes. After solving all subproblems, the
optimal solution for sta83_62 was proved to be 32695. This solution occurred
when examinations 72, 133 and 136 were �xed to periods 3, 6 and 8 respectively.
The symmetric solution also exists and is produced by �xing examinations 72,
133 and 136 to periods 9, 6 and 4. Of course, many more symmetric solutions
exist due to the interchangeable exams.

42

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 A. Dimitsas et al.

6.2 Component sta83_47

This component proved to be the easy part. It consists of 47 examinations and
has a con�ict density of 0.35. As described in subsection 5.3 we can estimate a
lower bound by adding the minimum cost each student's schedule could possibly
in�ict. So, for each student in isolation, an IP model is formulated that given
only the number of periods and the number of examinations that this student
participates, decides about the schedule that results to the minimum possible
cost. Of course, since each student is examined in isolation if two students share
the same number of examinations then the problem needs to be solved just once.
In practice, this is the case for several students. By adding minimum penalties
of all students we have a lower bound for this component, which is 42750. The
best known solution turns out to have cost equal to the lower bound obtained
in this manner. Thus, the optimal solution for this component is 47250.

6.3 Component sta83_30

This was the last component to solve. It's the smallest one with just 30 examina-
tions but a high con�ict density of 0.72. With high hopes since just the smallest
piece of the puzzle was missing, we were surprised to �nd out that to the best of
our ability our MIP models were not able to prove an optimal solution. We have
tried the same trick that we have used successfully in component sta83_62. We
noticed that in the case of sta83_30 there is only one examination (134) that is
connected to every other one. So, we tried to �x this examination to each period
in turn and then to solve the remaining problems using IBM ILOG CPLEX. Un-
fortunately, this did not helped the solver to prove the optimality of the solution.
Each subproblem seemed to run forever.

By observing closely the high density graph of this component we came up
with the idea of separating examinations with high degrees and examinations
with relatively low degrees. A similar idea has been exploited by [11] and others
in constructing timetables giving precedence to high degree examinations and

Table 4. Component sta83_62, sets of interchangable examinations and their charac-
teristics.

Set Degree Weighted Degree

{17, 38, 58, 85, 120} 8 8
{18, 39, 59, 86, 121} 16 240
{19, 40, 60, 87, 122} 16 264
{20, 41, 61, 88, 123} 15 168
{21, 42, 62, 89, 124} 12 88
{22, 43, 63, 90, 125} 16 160
{23, 44, 64, 91, 126} 15 160
{24, 45, 65, 92, 127} 16 264
{25, 46, 66, 93, 128} 16 280
{26, 47, 67, 94, 129} 16 280

43

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 15

leaving for a later phase the low degree ones. In our approach, we isolated the
maximum clique, which for this particular instance comprises of 12 examinations
and tried to arrange those examinations to the 13 periods leaving one period
empty for each possible arrangement.

A signi�cant observation is that irrelevant of the periods that the clique
occupies, the possible placements for the remaining examinations will be the
same because their possible positions are constrained by the examinations of
the clique. By multiplying the number of those possibilities with the number of
permutations of the periods we were able to count all possible solutions to be
13!∗109152 where 13! is the number of possible period permutations and 109152
is the number of possible ways to schedule the remaining examinations for the
speci�c component. This number is still quite large so we exploited the method
described in Section 5.2. We aim to �nd a set of examinations that has minor
impact on the cost but at the same time possible �nal positions of the sets'
examinations might be disproportionate large. Fig. 4 which shows the degrees
and weighted degrees of examinations was used as a visual aid for identifying
the examinations needed. These examinations should reside at the lower left
corner and should have the desirable characteristics. For sta83_30 a good set of
examinations proved to be {5, 131, 28, 48, 76} that manages to lower multiplier
109152 to just 47.

Fig. 4. Scatter plot of sta83_30 that gives insight about the set of examinations that
should be scheduled last

The unscheduled examinations weighted degree is comparatively low and so
the method has the potential of working e�ectively. By keeping in the set of
initially unscheduled examinations, examinations that can easily move around

44

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 A. Dimitsas et al.

the schedule, the number of possible partial solutions becomes quite low. More-
over, the low weighted degree that these examinations have prohibits from heavy
impacts on the objective function. So, the �ltering process is working. For the
case of sta83_30 this �intelligent� search resulted in 13 distinct optimal solu-
tions (and their symmetric ones) all having the same cost, 16002. The search
was implemented in Julia [5] using its parallel computing features for the CPU.
Five high end workstations were simultaneously running the experiment and the
time needed was about 12 hours.

7 Conclusions

This work was about the uncapacitated examination timetabling problem. It
continues previous work of our team. A key observation is that even for this
rather simple scheduling problem that is only an abstraction of the correspond-
ing real-life problem, the proof that a given solution is optimal is de�nitely not
trivial. Nevertheless, our team succeeded in proving the optimality of a certain
instance, namely sta83 of the Carter's dataset. In order for this to happen we
had to decompose the problem into independent subproblems. Having 3 prob-
lems of moderate size gave us the opportunity of experimenting with various
approaches. No method was able to solve all three subproblems. After many
experiments and carefully analyzing the components, we �nally discovered three
approaches that were able to prove optimality. Each subproblem was solved by a
di�erent approach and the optimal solution for sta83 was proved. Furthermore,
we contributed two new best solutions to public dataset problems, alongside with
several optimal solutions to subproblems that exist in various instances.

Acknowledgements We acknowledge support of this work by the project
�Dioni: Computing Infrastructure for Big-Data Processing and Analysis.� (MIS
No. 5047222) which is implemented under the Action �Reinforcement of the Re-
search and Innovation Infrastructure�, funded by the Operational Programme
�Competitiveness, Entrepreneurship and Innovation� (NSRF 2014-2020) and co-
�nanced by Greece and the European Union (European Regional Development
Fund).

References

1. Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models
and solution techniques for frequency assignment problems. Annals of Operations
Research 153(1), 79�129 (2007)

2. Alefragis, P., Gogos, C., Valouxis, C., Housos, E.: A multiple metaheuristic variable
neighborhood search framework for the uncapacitated examination timetabling
problem. In: Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling-PATAT. vol. 1, pp. 159�171 (2021)

45

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A proven optimal result for a benchmark instance of the UETP 17

3. Battistutta, M., Ceschia, S., Cesco, F.D., Gaspero, L.D., Schaerf, A., Topan, E.:
Local search and constraint programming for a real-world examination timetabling
problem. In: International Conference on Integration of Constraint Programming,
Arti�cial Intelligence, and Operations Research. pp. 69�81. Springer (2020)

4. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A.: Two-stage multi-neighborhood
simulated annealing for uncapacitated examination timetabling. Computers & Op-
erations Research 132, 105300 (Aug 2021)

5. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh
approach to numerical computing. SIAM Review 59(1), 65�98 (2017).
https://doi.org/10.1137/141000671

6. Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic
Strategies and Applications. Journal of the Operational Research Society 47(3),
373�383 (Mar 1996)

7. Ceschia, S., Di Gaspero, L., Schaerf, A.: Educational timetabling: Problems, bench-
marks, and state-of-the-art results. arXiv preprint arXiv:2201.07525 (2022)

8. Gogos, C., Dimitsas, A., Nastos, V., Valouxis, C.: Some insights about the unca-
pacitated examination timetabling problem. In: 2021 6th South-East Europe De-
sign Automation, Computer Engineering, Computer Networks and Social Media
Conference (SEEDA-CECNSM). pp. 1�7. IEEE (2021)

9. Kristiansen, S., Stidsen, T.R.: A comprehensive study of educational timetabling,
a survey. Department of Management Engineering, Technical University of Den-
mark.(DTU Management Engineering Report 8 (2013)

10. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T., Lee, S.Y.: A survey of search
methodologies and automated system development for examination timetabling.
Journal of scheduling 12(1), 55�89 (2009)

11. Rahman, S.A., Bargiela, A., Burke, E.K., Ozcan, E., McCollum, B.: Construction
of examination timetables based on ordering heuristics. In: 2009 24th International
Symposium on Computer and Information Sciences. pp. 680�685. Ieee (2009)

12. Schaerf, A.: A survey of automated timetabling. Arti�cial intelligence review 13(2),
87�127 (1999)

13. Tan, J.S., Goh, S.L., Kendall, G., Sabar, N.R.: A survey of the state-of-the-art of
optimisation methodologies in school timetabling problems. Expert Systems with
Applications 165, 113943 (2021)

46

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization

Stephanie Hamilton and Donovan R. Hare

Department of Mathematics
University of British Columbia

Kelowna, British Columbia, Canada V1V 1V7
donovan.hare@ubc.ca

Abstract. The exam scheduling problem is a computationally di�cult
problem whose solution assigns exams to timeslots and rooms while sat-
isfying a variety of examinee and institutional requirements. This paper
proposes a generic speci�cation of the problem that has wide applicabil-
ity to real-world situations. In particular, the number of student hard-

ships (i.e., students assigned multiple exams in a speci�ed time interval)
is de�ned in a way to encompass most contexts. Constraint program-
ming (CP) implementations of the generic speci�cation are then de�ned
to model the timeslot assignment subproblem and a room assignment
subproblem independently.
Two approaches are proposed and implemented to solve the overall prob-
lem from the subproblems: the use of a novel group of cuts, and the use
of bin-packing global constraints. The cuts provide necessary conditions
for a feasible solution of the timeslot assignment problem to have feasible
room assignments. It is also shown that these cuts are su�cient condi-
tions in certain general cases. A �nal section gives an empirical study
using the data from the University of British Columbia.

1 Introduction

Educational timetabling is an interdisciplinary research area that has received a
lot of attention over the last 20 years. In essence, the problem involves assigning
university exams to timeslots and rooms in such a way that students do not
write any of their own exams simultaneously, which can be elaborated on by
imposing other institutional requests. Automated timetabling �rst caught the
attention of mathematicians in the 1960's, at a time when most scheduling was
done manually [6,8]. Fast forward 60 years to where the theory has advanced
remarkably but in practice the scheduling software many institutions use do not
implement these new research techniques, and thus institutions still struggle to
get quality timetables that satisfy student and instructor needs [12]. Part of this
is due to the research gap between theory and reality [10].

To address this gap, there have been three international timetabling com-
petitions (ITCs) focusing on university timetabling. Since this problem is com-
putationally di�cult (i.e., NP-hard), researchers have tried various methods to
tackle it. A sample of these methods include heuristics such as simulated anneal-
ing, population-based algorithms such as memetic algorithms, graph colouring

47

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 S. Hamilton and D. Hare

heuristics, integer programming, and constraint-based methods (for recent lit-
erature reviews and surveys, refer to [1,3,7,13]). The winner of ITC 2007, who
used a constraint satisfaction program with iterative forward search and a hill
climbing heuristic, applied their model at Purdue University, with the possibility
of it being utilized by other American universities [11]. In other real-life applica-
tions, constraint programming (CP) and integer programming appear to be the
popular modeling techniques of choice [1,2,4,9], likely due to the �exibility these
methods have in expressing constraints and the acceptable solutions provided.
However, to further complicate the problem, many institutions have unique pref-
erences, and therefore their scheduling needs are beyond the scope of the models
that solve the exam scheduling problem for other universities and the benchmark
datasets used in the ITCs. Therefore, even though there is an abundance of soft-
ware within the academic community, institutions may be forced to continue
producing schedules with rigid algorithms that must then be post-processed and
�xed manually to meet complex scheduling requirements.

One of the complexities of the exam scheduling problem is that in most cases,
for each exam, at least two assignments need to be made, a timeslot assignment
and a room assignment, where the timeslot assigned to an exam in�uences the
rooms available for that exam. Some authors have attempted to address this by
decomposing the problem into di�erent stages, typically a timeslot assignment
phase and room assignment phase, though other decompositions have also been
introduced [2,9]. This decoupling becomes increasingly complicated when multi-
ple exams are allowed in one room. In this work we also explore decoupling the
problem into timeslot and room phases. We introduce a necessary condition for
the timeslot assignment model, where we generate cuts to direct the model to-
wards producing feasible timeslot assignment solutions that will result in feasible
room assignments in the next phase. These necessary conditions are su�cient
for the case when each room can be assigned at most one exam at any given
time.

The remainder of the paper is organized as follows. In Section 2, we provide a
generic speci�cation of the exam scheduling problem and the requirements that
can be imposed on a solution. Here we introduce the student hardship require-
ment, which to the best of our knowledge, has not until now been given a formal
speci�cation in the literature. In Section 3.1, we describe the corresponding CP
implementation of the generic speci�cation for the timeslot assignment model.
Here we describe the new necessary condition on the timeslot assignment that
assists in �nding a feasible room assignment. In Section 3.2, the CP requirements
for the room assignment model are explained. Finally, in Section 4, we discuss
the results from the experiments conducted with data from the Okanagan cam-
pus of the University of British Columbia (UBC), where we speci�cally focus on
reducing student hardships of three types, and demonstrate the validity of the
two phase model.

48

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 3

2 Generic Speci�cation of the Exam Scheduling Problem

Let Z+ denote the set of nonnegative integers and Z++ = Z+ \{0}. All intervals
throughout will be subsets of Z+ and for k1, k2 ∈ Z+, k1 ≤ k2, denote the
(integer) interval [k1, k2] = {k1, . . . , k2}, and de�ne [k2] = [1, k2]. For an interval
[a, b], de�ne the length of [a, b] to be ℓ([a, b]) = b − a if b > a, and ℓ ([a, b]) =
ℓ(∅) = 0 otherwise. Moreover, for a �nite monotonically increasing sequence of
integers r0, . . . , rq, de�ne r(i, j] to be the interval [ri + 1, rj] for 0 ≤ i < j ≤ q.

The exam scheduling problem is de�ned as the following: given a �nite set of
pairwise disjoint1 integer intervals T = {[s1, f1], . . . , [sm, fm]} called the times-
lots, a set P called the persons, a set E of subsets of P called the exams, a
function ε : E → Z++ called the exam sizes, a function δ : E → Z++ called
the exam durations, a set R called the rooms, and a function σ : T × R → Z+

called the temporal room sizes, �nd an assignment τ : E → T called the timeslot
assignment, and an assignment ρ : E → R called the room assignment, such that
for all E,E′ ∈ E, E ̸= E′, the following four requirements are satis�ed.

Requirement 1 (Person Single-Tasking) τ(E) ̸= τ(E′) if E ∩ E′ ̸= ∅.

Requirement 2 (Exam Duration) δ(E) ≤ ℓ(τ(E)).

Requirement 3 (Room Single-Tasking) ρ(E) ̸= ρ(E′) if τ(E) = τ(E′).

Requirement 4 (Room Size) ε(E) ≤ σ (τ(E), ρ(E)).

Requirement 1 ensures that no person (including the invigilator) has two
exams assigned to the same timeslot (see Requirement 6 for an extension to this
requirement for the case of overlapping timeslots). Requirement 2 restricts the
duration of an exam to not exceed the length of its assigned timeslot. Moreover,
Requirement 3 ensures that no room is assigned two di�erent exams during
a timeslot (see Requirement 7 for a relaxation of this requirement). Finally,
Requirement 4 ensures that the room assigned to an exam during the assigned
timeslot can accommodate the exam's size requirement2 (see Requirement 8 for
a relaxation of this requirement).

In this speci�cation, there is no distinction in the set of persons between
students and instructors as they both are present during their exam. In the case
of hardships, however, the students and instructors are separated as necessary
(see Section 2.2). Moreover, for each person p ∈ P and exam E ∈ E, if p ∈ E,
then we say p writes E, or E is written by p, even though p may be an instructor.

We will refer to [sk, fk] ∈ T as timeslot k. As notational convenience, let
σk(R) = σ([sk, fk], R) for each timeslot k. The temporal room sizes function
allows one to ensure that a room R does not use a timeslot k by specifying
σk(R) = 0. This may be necessary if a room is closed during the timeslot, or to

1 The pairwise disjoint restriction is relaxed in Requirement 6. Moreover, there is no
loss of generality for exam scheduling in assuming that time can be discretized.

2 Typically, for every exam E, ε(E) = |E| − 1.

49

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 S. Hamilton and D. Hare

limit timeslots that overlap for the room (see Requirements 7 and 8). Moreover,
for each room R ∈ R, let T (R) = {[sk, fk] ∈ T : σk(R) > 0} be called the
e�ective timeslots of room R.

A nonempty collection A of subsets of a set A is called intersecting if for all
A1, A2 ∈ A, A1 ∩ A2 ̸= ∅. Using the maximal intersecting subsets of exams for
Requirement 1 is desired but �nding them is computationally impractical (i.e.,
NP-hard). Instead, there are some natural intersecting subsets that can be used.
For each person p ∈ P , let the intersecting subset of exams that p writes be
denoted by

E(p) = {E ∈ E : p ∈ E}.

Moreover, the maximal intersecting subsets of timeslots � we will call this col-
lection B∗ � is the set of maximal cliques of the corresponding interval graph
which can be found in linear time.

We will assume a �xed τ and ρ in the de�nitions that follow.

2.1 Extending the Exam Scheduling Problem

The exam scheduling problem can be extended to include a variety of other
constraints from real-world contexts.

The �rst of these extensions further limits τ and ρ for particular situations.

Requirement 5 (Time and Room Specific) An exam E ∈ E can be forced to
be assigned a timeslot from a subset B of timeslots by the additional requirement
τ(E) ∈ B. Moreover, the exam can be forced to be assigned a room from a subset
Q of rooms by the additional requirement ρ(E) ∈ Q.

In certain cases of modeling the exam scheduling problem, it may be nec-
essary to allow the timeslots of the problem to overlap (i.e., not be pairwise
disjoint). This occurs most commonly when modeling exams that are allowed
varying lengths.

Requirement 6 (Overlapping Timeslots) If the timeslots are allowed to
overlap, then Requirement 1 is replaced with:

τ(E) ∩ τ(E′) = ∅ if E ∩ E′ ̸= ∅.

Moreover, Requirement 3 is replaced with:

ρ(E) ̸= ρ(E′) if τ(E) ∩ τ(E′) ̸= ∅.

Note that Requirement 6 generalizes Requirement 1 as non-overlapping times-
lots satisfy τ(E) ∩ τ(E′) = ∅ if and only if τ(E) ̸= τ(E′).

The third of these extensions allows for the use of a large room such as a
gym to host several exams at once. For each R ∈ R and timeslot k, let

CR,k = {E ∈ E : ρ(E) = R, τ(E) = [sk, fk]}

50

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 5

be called the concurrent exams in room R during timeslot k.
If more than one exam is allowed in a room during a given time, then Require-

ment 3 is either removed entirely or it is replaced with the following requirement
to limit the number of concurrent exams assigned to the room.

Requirement 7 (Room Task Limit) During a timeslot k, and for a room
R ∈ R, to limit the room to be assigned at most γk(R) concurrent exams, the
following is required:

|CR,k| ≤ γk(R).

Concurrent exams pose logistical challenges if timeslots overlap. In practice,
concurrent exams assigned to a room can start at the same time but may �nish
at di�erent times. These exams would be assigned di�erent overlapping timeslots
where one timeslot is contained in the other. Such a situation can be handled
by using the larger timeslot for both exams. This is su�cient since it is not
the case, in practice, that an exam would start in the middle of a timeslot of
another exam in the same room and, say, end later. Thus, in order to simplify the
model without losing applicability, we can e�ectively model concurrent exams for
rooms that allow multiple tasks by limiting these rooms to have non-overlapping
timeslots when they multi-task. More formally, this limitation is for all R ∈ R

and all [sk, fk], [sk′ , fk′] ∈ T (R) with k′ ̸= k, if γk(R) > 1 and γk′(R) > 1,
[sk, fk] ∩ [sk′ , fk′] = ∅. If γk(R) = 1, then other timeslots can intersect [sk, fk].

With more than one exam allowed in a room at a given time, Requirement 4
is replaced with the following requirement.

Requirement 8 (Room Multitasking Size) For a room R ∈ R to host con-
current exams, for every timeslot k,∑

E∈CR,k

ε(E) ≤ σk(R).

Requirement 9 (Coupled Exams) To require two exams E and E′ to be
written

1. during the same timeslot, then require τ(E) = τ(E′), or
2. in the same room, then require ρ(E) = ρ(E′).

Note that Requirement 9.2 only makes sense if we have Requirement 8 as
well.

2.2 Measuring Hardships

We focus here on measuring, and later minimizing, the number of times persons
have a certain number of examinations assigned to timeslots that are within a
certain amount of time.

Let d ∈ Z+ represent a length of time. We �rst start by collecting the times-
lots of T that are within d time units of each other as measured by the di�erence

51

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 S. Hamilton and D. Hare

of the latest �nish time with the earliest start time of its members. This set is
de�ned by:

Bd =
k⋃

i=1

{B ⊆ T : [sj , fj] ∈ B where sj ≥ si and fj ≤ si + d} .

For a given person p ∈ P , the exams written by person p during a B ∈ Bd is
given by

Wp,B = {E ∈ E(p) : τ(E) ∈ B}.
For a given positive integer w, representing a minimum number of writes, the
set of (w, d)-hardships (of τ) is de�ned to be

Hw,d = {(p,B) : p ∈ P,B ∈ Bd, |Wp,B | ≥ w}.

Thus |Hw,d| is the number of times persons are in at least w exams that are
assigned by τ to be within any d time units of the schedule.3

Example 1. Three Exams in 27 Hours Hardships
If a student at UBC writes three exams that span at most 27 hours from the

start of the �rst exam to the end of the last exam, then a 3-in-27-hours hardship
occurs and the student has the right to request another time to write one of the
exams. This creates many issues ranging from exam calibration and fairness to
exam security. It also puts an extra demand on the administrative and faculty
resources. Exam schedules having zero 3-in-27-hours hardships are thus clearly
valued.

UBC's examination period spans 12 days and there are four timeslots per
day: 8:30 a.m., 12:00 p.m., 3:30 p.m., and 7:00 p.m. However a Sunday only
has two timeslots: 12:00 p.m., and 3:30 p.m. Each exam is assumed to be
two and a half hours long. Discretizing time so that 8:30 a.m. on the �rst
day is at time 17 = 8.5 × 2, and is a Monday, the set of timeslots T have
�rst week time intervals Monday: [17, 22], [24, 29], [31, 36], [38, 43]; Tuesday:
[65, 70], . . . ; Sunday: [312, 317], [319, 324]; along with second week time intervals
[353, 358], . . . , [566, 571]. To measure those students having a hardship of 3 ex-
ams in 27 hours, the required timeslot sets are represented by B54 (half hour
increments). See Table 1 for some examples.

Thus to minimize the number of persons having a 3-in-27-hours hardship, τ
is chosen so as to minimize |H3,54|. It is also possible to restrict that no persons
have such a hardship by constraining |H3,54| to be zero. ⊓⊔

Requirement 10 (Hardships) For a positive integer w, representing a num-
ber of writes, and nonnegative real number d, representing a length of time, to
ensure that no persons have w examinations assigned to timeslots that are within
time d (i.e., no (w, d)-hardships), then require:

|Hw,d| = 0.

3 The set of persons P can be reduced here to just include students or just instructors
depending on the application of the hardship.

52

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 7

Table 1. Example Timeslot Sets of B54 for 3-in-27-hours Hardships

Day Timeslot Sets Involving Day

First Monday {[17, 22], [24, 29], [31, 36], [38, 43], [65, 70]},

{[24, 29], [31, 36], [38, 43], [65, 70], [72, 77]},

{[31, 36], [38, 43], [65, 70], [72, 77], [79, 84]},

{[38, 43], [65, 70], [72, 77], [79, 84], [86, 91]}

First Sunday {[264, 269], [271, 276], [278, 283], [312, 317]},

{[271, 276], [278, 283], [312, 317], [319, 324]},

{[278, 283], [312, 317], [319, 324]},

{[312, 317], [319, 324], [353, 358]},

{[319, 324], [353, 358], [360, 365], [367, 372]}

Last Friday {[497, 502], [504, 509], [511, 516], [518, 523], [545, 550]},

{[504, 509], [511, 516], [518, 523], [545, 550], [552, 557]}

{[511, 516], [518, 523], [545, 550], [552, 557], [559, 564]}

{[518, 523], [545, 550], [552, 557], [559, 564], [566, 571]}

To ensure that these type of hardships are minimized, then include |Hw,d| as a
term in the minimizing objective function of the model.

A special class of hardship are back-to-back exams. These hardships occur
when a person writes two exams in two consecutive timeslots on the same day.
Using the timeslots from Example 1, the back-to-back hardships are represented
by H2,12. Given the regular nature of the timeslots of the example, a more
e�cient implementation is outlined at the end of the section entitled CP of
Requirement 10.

3 CP Implementation of the Generic Speci�cation

In what follows, we partition our CP implementation of the exam scheduling
problem into a timeslot assignment subproblem and into one room assignment
subproblem for each timeslot. The timeslot assignment subproblem is solved �rst

53

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 S. Hamilton and D. Hare

and the result τ is used as input for each of the room assignment subproblems.
The room assignment subproblem for timeslot k assigns rooms to only those
exams assigned to timeslot k by τ . We say τ is room-assignable if the assign-
ment has a feasible room assignment subproblem solution for each timeslot. The
timeslot assignment subproblem contains constraints that are necessary and, in
all but one scenario, are also su�cient (see Theorem 1) to ensure that all of its
feasible solutions are also room-assignable. The scenario that cannot guarantee
su�ciency occurs when Requirement 8 is speci�ed. In this case, the timeslot as-
signment subproblem constraints are only necessary, although in practice do well
in �nding room-assignable solutions. An extension to the CP implementation of
the timeslot assignment subproblem is also described in Section 3.3 that ensures
all feasible solutions are room-assignable even with Requirement 8. However, it
may not be possible to use this extension in practice, depending on the size of
the input, as discussed in the Section 3.4. In order to highlight these performance
considerations in the discussion, the sizes are calculated in this section for some
of the relevant implementation options.

Throughout this section, we will use catalog of Beldiceanu, Carlsson and
Rampon [5] as the source for de�nitions of known constraint programming global
constraints. To facilitate the description of the implementation, the names of
constraint programming variables will use a bold typeface.

3.1 Timeslot Assignment Subproblem

The timeslot assignment subproblem �nds a timeslot assignment τ that ensures
the implicit existence of a feasible room assignment ρ without actually deter-
mining ρ. In this section, we describe a CP implementation of the generic speci-
�cation by �rst de�ning the decision variables and then de�ning the constraints
for each of the requirements.

Primary Decision Variables In order to �nd a τ satisfying the requirements,
for each E ∈ E, we de�ne a constraint programming integer-valued decision
variable tE whose domain is the set of indices of the timeslots, [m] = {1, . . . ,m},
with the understanding (to be encoded by the constraints) that if tE is bound to
k, then τ(E) = [sk, fk]. For any subset D of exams, we let TD = {tE : E ∈ D}
be the corresponding set of decision variables.

CP of Requirement 1 (Person Single-Tasking).
Requirement 1 can be restated as follows: each intersecting subset of exams of size
two must have the timeslot assignments of the exams di�erent from each other.
When this requirement is applied to any intersecting subset I ⊆ E of exams, the
timeslot assignments of any pair of exams from I must be di�erent from each
other, and so all of the timeslot assignments of exams from I must be di�erent
from each other. Thus we impose the global constraint alldifferent(TI) (see [5,
p. 434]) to implement Requirement 1 for all pairs of exams in I.

The larger the size of the intersecting subset of exams, the greater the possi-
ble propagation power of the alldifferent constraint. That being said, using

54

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 9

the maximal intersecting subsets of exams would be ideal but it can be computa-
tional too expensive to �nd such subsets. If such sets are not known, then it can
be e�ective to use E(p) for each person p ∈ P . The key is that for all E,E′ ∈ E,
E ̸= E′ if {E,E′} is intersecting, then E ∩ E′ is a subset of at least one of the
intersecting subsets used.

CP of Requirement 2 (Exam Duration).
The duration requirement for an E ∈ E is implemented by restricting the initial
domain of tE directly by removing each k such that δ(E) > ℓ ([sk, fk]) (or
indirectly and equivalently, by using the constraint tE ̸= k).

CP of Requirements 3 and 4 (Room Single-Tasking) and (Room Size).
In order to ensure that τ is chosen to implicitly satisfy Requirements 3 and 4, we
consider a sequence of constraints that are parameterized by a positive integer
c which will ensure the necessary but not su�cient statement that the number
of exams of size larger than c assigned to a timeslot is at most the number of
rooms of size larger than c during the timeslot.

To implement this idea, de�ne E>
c = {E ∈ E : ε(E) > c} and for k ∈ [m],

de�ne R>

c,k = {R ∈ R : σk(R) > c}. The format of the restrictions are provided
by the set of triples Fc = {(k, 0, |R>

c,k|) : k ∈ [m]} for the global constraint
global_cardinality_low_up(TE>

c
, Fc) (see [5, p. 1040]). This constraint en-

sures that, for each k, the number of decision variables tE where E ∈ E>
c and

that are bound to k is between 0 and |R>

c,k|. In other words, the number of exams
E with ε(E) > c that are assigned by τ to timeslot k is at most the number of
rooms that have size larger than c throughout the timeslot.

A timeslot assignment τ satisfying the global_cardinality_low_up con-
straint for a �xed minimum size c does not guarantee that there is a feasible
room assignment ρ. But a sequence of these global_cardinality_low_up con-
straints does. Let [sk, fk] be a �xed timeslot. For this timeslot, we now consider
the number of distinct room sizes and let q = qk denote this number. De�ne
r0 = 0 and consider the (non-multi-)set of room sizes {σk(R) : R ∈ R>

0,k} =
{r1, . . . , rq} where the ri's are labeled so that they are strictly increasing. Note
that for an exam scheduling problem to be feasible, E>

rq = ∅. The CP constraints
for Requirements 3�4 are then

global_cardinality_low_up(TE>
ri
, Fri) for i ∈ [0, q − 1].

(Constraints 3�4)

As described above, Constraints 3�4 must be necessarily satis�ed by any fea-
sible solution of the room assignment problem for timeslot k. The next theorem
shows that they are also su�cient.

Theorem 1. A feasible solution of the timeslot assignment problem with Re-
quirement 3�4 is room-assignable if and only if the solution satis�es Constraints 3�
4.

55

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 S. Hamilton and D. Hare

Proof. Any feasible solution of the timeslot assignment problem with Require-
ments 3�4 that is room-assignable must satisfy Constraints 3�4 given the de�-
nition of the constraints described above.

On the other hand, consider a feasible solution τ to the timeslot assignment
problem with Constraints 3�4 satis�ed. We show that this solution is room-
assignable for an arbitrary but �xed timeslot [sk, fk]. Let q = qk, the number
of distinct room sizes of the timeslot. For each i ∈ {0, ..., q − 1}, let S(i) be the
statement that all exams assigned to [sk, fk] by τ that have size larger than ri
can be assigned rooms in timeslot [sk, fk]. Note that all of the rooms assigned
for these exams must have size larger than ri.

Fix k ∈ [m] and for i ∈ {0, ..., q − 1}, let Ki = {E ∈ E>
ri : τ(E) = [sk, fk]}.

With i > 0 note that, Ki ⊆ Ki−1, and, as well that Ki−1 \Ki is precisely the set
of those exams that are assigned to the timeslot with size in the range r(i− 1, i]
(i.e., size larger than ri−1 but at most ri). Moreover,

|Ki| = |{tE ∈ TE>
ri

: tE is bound to k}|

since E ∈ Ki if and only if E ∈ E>
ri and τ(E) = [sk, fk], if and only if decision

variable tE ∈ TE>
ri
is bound to k.

Rephrased, S(i) is the statement that the exams of Ki can be assigned to
rooms in the timeslot. The following proves that S(0) is true by showing S(q−1)
is true and then inducting backwards to zero by proving that S(i) implies S(i−1)
for all i ∈ [q − 1].

S(q − 1) is true. The constraint global_cardinality_low_up(TE>
rq−1

, Frq−1)

ensures that |{tE ∈ TE>
rq−1

: tE is bound to k}| ≤ |R>

rq−1,k
|. Thus |Kq−1| ≤

|R>

rq−1,k
| and hence there are enough rooms of size more than rq−1, that is those

of size rq, so that each of the |Kq−1| exams can be assigned to a room of size at
most rq, one exam to a room, during the timeslot.

S(i) implies S(i−1). Suppose, for some i ∈ [q−1], S(i) is true. Thus the exams
in Ki can be assigned to rooms during the timeslot. None of these exams can be
assigned to rooms whose sizes are in the range r(i− 1, i] since they all have size
larger than ri. Assign each of these exams to their own room. There are then
|R>

ri−1,k
| − |Ki| remaining rooms without assigned exams for the timeslot that

have size larger than ri−1. The set of remaining exams to be assigned for the
timeslot that have size larger than ri−1 is Ki−1 \Ki. Moreover, the constraint
global_cardinality_low_up(TE>

ri−1
, Fri−1

) ensures that |Ki−1| ≤ |R>

ri−1,k
|

which in turn implies

|Ki−1 \Ki| = |Ki−1| − |Ki| ≤ |R>

ri−1,k
| − |Ki|.

Thus there are enough unassigned rooms of size larger than ri−1 (and hence size
at least ri) so the exams with sizes in (ri−1, ri] in Ki−1 can be assigned to their
own room. Thus S(i− 1) is true.

By induction, we have that S(0) is true and hence all of the exams assigned
to the timeslot under τ have been assigned a room during the timeslot. ⊓⊔

56

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 11

From a given timeslot assignment τ satisfying these constraints, a greedy
algorithm can then be used to assign rooms of a given timeslot. This is done by
�rst ordering the rooms from largest to smallest in a list as well as ordering the
exams largest to smallest in a separate list. Then repeat the following: assign
the largest room to the largest exam, and delete each from their respective lists.

Typically, the number of rooms of a small size is much larger than the num-
ber of rooms of a larger size (e.g., in most universities there is only one gym).
Moreover, many small size rooms do not get assigned an exam for a given times-
lot. For these reasons, the room assignment problem is typically di�cult for the
larger sized exams. Thus in practice, not all minimum sizes need be considered
above to ensure a feasible room assignment.

CP of Requirement 5 (Time and Room Specific).
Requirement 5 is straightforward to implement. For the timeslot assignment part,
if E ∈ E and B ⊆ T , the requirement τ(E) ∈ B is implemented by reducing
the domain of tE to be {k : [sk, fk] ∈ B} using not equal constraints or other
constraint programming primitives.

CP of Requirement 6 (Overlapping Timeslots).
In order to extend Requirement 1 for overlapping timeslots, the among_low_up
global constraint is used (see [5, p. 494]). For eachB ∈ B∗, let VB = {k : [sk, fk] ∈
B}. Using an intersecting subset I ⊆ E of exams, the among_low_up(0, 1,TI, VB)
constraint is used to require that at most one variable from TI can take a value
from VB . This will force that at most one timeslot from any two timeslots that
overlap be chosen for each pair of exams from I. See Requirement 1 for the
discussion regarding which intersecting sets of exams to use.

Note that when the timeslots are pairwise disjoint, |B| = 1 and hence
|VB | = 1. For an intersecting subset I of exams, the constraint for this case,
among_low_up(0, 1,TI, VB), is logically equivalent to alldifferent(TI). On
the other hand, with overlapping timeslots, alldifferent(TI) is weaker logi-
cally than among_low_up(0, 1,TI, VB). Thus these alldifferent constraints
should not be removed given the possibility that their inclusion could provide
some additional propagative usefulness.

The room assignment restriction for Requirement 6 is discussed in Section 3.2.

CP of Requirement 7 (Room Task Limit).
We treat Requirement 7 in a similar way as we have for Requirements 3 and 4.
In fact, Requirement 7 is a generalization of those requirements. Let k ∈ [m],
q = qk, and j ∈ [0, q − 1]. The maximum number of concurrent exams of size
greater than rj that can be scheduled during timeslot [sk, fk] is given by

γ>

j,k =
∑

R∈R>
rj,k

γk(R).

Note if Requirements 3 and 4 are in force, then γk(R) = 1 for all R ∈ R>

rj ,k
, and

hence γ>

j,k =
∣∣∣R>

rj ,k

∣∣∣.

57

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 S. Hamilton and D. Hare

For a positive integer u, let Eu = {E ∈ E : ε(E) = u} be the set of ex-
ams of size u. Consider the (non-multi)-set of exam sizes U = {ε(E) : E ∈ E}.
For each exam size u ∈ U and each k ∈ [m], introduce a CP variable nu,k

that is constrained to count the number of exams of size u assigned to times-
lot [sk, fk]. By de�ning F ′

u = {(k,nu,k) : k ∈ [m]}, the CP global constraint
global_cardinality(TEu

, F ′
u) (see [5, p. 1034]) ensures nu,k will equal the

desired count.
Like Requirements 3 and 4, we need to use a sequence of constraints in

order that a timeslot assignment with this requirement guarantees that there is
a corresponding feasible room assignment ρ. For each i ∈ [q] and each k ∈ [m],
use the standard global constraint representing the following sum of integer CP
linear terms that counts the number of exams of sizes in r(i − 1, i] that are
assigned to timeslot k:

n∗
i,k =

∑
u∈U

u∈r(i−1,i]

nu,k.

Moreover, for j ∈ [0, q − 1],

n>

j,k =

q∑
i=j+1

n∗
i,k

counts the number of exams of sizes larger than rj that are assigned to the
timeslot. Note that n∗

q,k = n>

q−1,k and if i < q, then n∗
i,k = n>

i−1,k − n>

i,k. The
CP constraints for Requirement 7 are then,

n>

j,k ≤ γ>

j,k for j ∈ [0, q − 1] and k ∈ [m]. (Constraints 7)

Constraints 7 must be necessarily satis�ed by any feasible solution of the room as-
signment problem for timeslot k. They need to be combined with the constraints
of Requirement 8 in order that a room with concurrent exams has enough space
for the assigned examinees. In order to implement the mq constraints of Con-
straints 7, at most m|U | new CP variables are required along with their de�ning
m|U | global constraints.

CP of Requirement 8 (Room Multitasking Size).
Let timeslot [sk, fk] be �xed and q = qk in the following discussion. Continuing
with the description of the CP implementation of Requirement 7, for a given
room size ri, a necessary (linear) constraint for feasibility when concurrent exams
are allowed is: ∑

u∈U
u>ri

unu,k ≤
∑

R∈R>
ri,k

σk(R).

The left hand side represents the sum of the sizes of those exams of size larger
than ri scheduled in the timeslot, whereas the right hand side represents the sum
of the sizes of the rooms larger than ri. This constraint is not su�cient as it is
possible that a collection of exams satis�es the constraint by collectively having

58

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 13

enough room space but without a way to partition the rooms for the exams.
For example, four exams of size 60 cannot �t into three rooms of size 80 even
though the constraint is satis�ed. To be precise, for each potential room size ri
and exam size u, let πk(ri, u) be the maximum number of exams of size u that
can be concurrent in rooms of size ri during the timeslot:

πk(ri, u) =
∑
R∈R

σk(R)=ri

⌊ri
u

⌋
.

The previous example provides the constraint that at most πk(80, 60) = 3 exams
of size 60 can be hosted by rooms of size 80. Note that πk(ri, 1) is just the sum
of the sizes of rooms of size ri that can be assigned exams during the timeslot.

Let u▽
q be the minimum size of the exams of E>

rq−1
.4 The �rst necessary

condition of Requirement 8 for a feasible solution of the timeslot assignment
problem to be feasible for the room assignment problem requires that the number
of exams assigned to the timeslot that are forced to be assigned to the largest
size rooms must not exceed the rooms' collective capacity:

n∗
q,k ≤ πk(rq, u

▽
q).

Continuing now with smaller sized rooms, without any assumption of room
assignments for exams, one can at least represent the cumulative remaining space
(residual capacity) of the size of rooms of a given minimum room and exam size
for use in other necessary conditions. To this end, for i ∈ [q], we de�ne the CP
variable ci,k as:

ci,k =
∑

R∈R>
ri−1,k

σk(R)−
∑
u∈U

u>ri−1

unu,k.

Consider all the exams of E>
rq−2

\ E>
rq−1

= {E ∈ E : ε(E) ∈ (rq−2, rq−1]}
and u▽

q−1 to be the minimum size of these exams. Exams from this set must be
assigned to rooms of size rq−1 or of size rq. None of these exams of size larger
than rq−1 can be assigned to rooms of size rq−1 so they must be assigned to
rooms of size rq. There are thus at most πk(rq−1, u

▽
q−1) of these exams assigned

to rooms of size rq−1. The residual capacity for exams of size larger than rq−1 in
rooms of size rq is given by cq,k. Thus these rooms can be assigned to at most⌊
cq,k
u▽
q−1

⌋
of exams of size at most rq−1. Therefore, a necessary condition for the

number of exams of size in the range r(q − 2, q − 1] assigned to the timeslot is:

n∗
q−1,k ≤ πk(rq−1, u

▽
q−1) +

⌊
cq,k
u▽
q−1

⌋
.

4 We may suppose the E>
rq−1

is nonempty since otherwise we will just skip this step and
not produce a constraint for i = q−1. This is also true for the remaining discussion.

59

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 S. Hamilton and D. Hare

For i ∈ [q−2], let u▽
i be the minimum size of the exams of E>

ri−1
\E>

ri . Now for
such a �xed i, the exams from E>

ri−1
\E>

ri must be assigned to rooms whose sizes
are from ri, . . . , rq. No exams of size larger than ri can be assigned in rooms of
size at most ri. Using the same reasoning as in the last paragraph, rooms of size

ri and of size rq can be assigned at most πk(ri, u
▽
i)+

⌊
cq,k
u▽
i

⌋
of these exams. For

j = [i+2, q− 1], we wish to determine the residual capacity of the rooms of size
rj for exams whose sizes are in the range r(j − 1, j]. Unfortunately, this number
depends on a feasible room assignment. We will thus determine an upper bound,
de�ned by c′j,k in the next paragraph, of the residual capacity of rooms of size
rj from assigning exams of sizes in the range r(j − 1, j] for any feasible room
assignment. Given this upper bound, the rooms of size rj can be assigned at

most

⌊
c′j,k
u▽
i

⌋
exams during the timeslot. Thus the number of exams of sizes in

the range r(i− 1, i] assigned to the timeslot must satisfy:

n∗
i,k ≤ πk(ri, u

▽
i) +

q∑
j=i+1

⌊
c′j,k
u▽
i

⌋
. (1)

We now turn to determining an expression for c′j,k. Since exams of sizes in the
range (rq−1, rq] must be assigned to rooms of size rq, c

′
q,k = cq,k. For j ∈ [q− 1],

we determine c′j,k by �rst considering an upper bound, n′
j,k, of the maximum

number of exams whose sizes are in the range r(j − 1, j] that can be assigned to
rooms of sizes larger than rj . De�ne

n′
j,k = min

{
n∗

j,k,

⌊
cj+1,k

u▽
j

⌋}
.

There are only n∗
j,k exams whose sizes are in the range r(j − 1, j] and assigned

to the timeslot, and so those assigned to rooms larger than rj cannot exceed

this number. On the other hand, the term

⌊
cj+1,k

u▽
j

⌋
is an upper bound for the

maximum number of exams of sizes in the range r(j − 1, j] that can be assigned
to rooms of sizes larger than rj considering the residual capacity of the exams
of size larger than rj that are assigned to the timeslot. Thus n′

j,k is an upper
bound to the stated maximum.

De�ne now n′′
j,k = n∗

j,k − n′
j,k. Then n′′

j,k is a lower bound on the fewest
number of exams of sizes in the range r(j − 1, j] assigned to rooms of size rj .
Thus the remaining capacity of rooms of size rj from exams of sizes in the range
r(j − 1, j] is at most c′j,k = πk(rj , 1)− u▽

j n
′′
j,k.

For i ∈ [q], and k ∈ [m], the constraint given in (1) can be considered the most
general form of a constraint of the CP implementation of Requirement 8 if we
allow the empty summand to be disregarded when i = q (i.e., set the summand
to 0). As well, if for any i, E>

ri \ E>
ri+1

= ∅, then the constraint is disregarded
altogether for all k ∈ [m]. We label the entire collection of these constraints that

60

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 15

includes the constraint given in (1) for each i and each k as Constraints 8. Our
implementation of the mq constraints of Constraints 8 required 2mq new CP
variables along with their de�ning 2mq constraints.5

Constraints 8 provide necessary constraints for a feasible solution of the
timeslot assignment problem to be room-assignable, however they may not be
su�cient. One of the issues that makes the constraints insu�cient is that the
terms c′i,k depend on terms ci,k that represent the residual capacity of the rooms
of size at least ri, and are thus cumulative. It is possible (as provided in the ex-
ample) that they cannot be partitioned into the number of parts provided by
the constraints in a way that ensures exams of the size being considered can be
assigned to these rooms. Another issue is that the size of the parts for each con-
straint, u▽

i , does not guarantee there is enough space for the exams in E>
ri−1

\E>
ri

with sizes larger than u▽
i . To �x these issues, one can tighten the constraints but

in doing so risk infeasibility of the timeslot assignment problem or, at best, risk
removing feasible solutions to both problems. The �rst potential issue described
is nontrivial to overcome. It turned out, however, to not be an issue for our target
problems. The second issue can be �xed by replacing u▽

i in the expressions with
u△
i , the maximum size of the exams of E>

ri−1
\ E>

ri . If this leads to infeasibility,

any number between u▽
i and u△

i could be used (e.g., the average of the size of
the exams). In practice, we used u▽

i and achieved feasible timeslot assignment
solutions that were also room-assignable.

We refer to Constraints 7�8 as the room-cuts as they provide redundant
constraints for the number of tasks and sizes of the rooms in any solution to an
exam scheduling problem.

CP of Requirement 9 (Coupled Exams).
For Requirement 9.1, to require exams E and E′ to have the same timeslot
(τ(E) = τ(E′)), a CP equality constraint for their corresponding decision vari-
ables tE and tE′ is speci�ed. The independent Requirement 9.2, requires that
E and E′ have the same room (ρ(E) = ρ(E′)). As there is no corresponding
decision variable in the timeslot assignment model for the room assignments, it
is possible that if Requirement 9.1 is not also speci�ed, then the timeslot assign-
ment found may not allow for a feasible room assignment. On the other hand, a
more usual requirement would be that both Requirement 9.1 and 9.2 are spec-
i�ed for the given pair of exams. In this case, the exams themselves could be
considered as a single exam before the problem is speci�ed (i.e., E ∪E′ replaces
E and E′). Requirement 7 may then need to be adjusted as the two exams are
now counted as one.

CP of Requirement 10 (Hardships).
Given a subset D of exams, we wish to measure the spread of the timeslot
assignments of exams from D. Let the start and �nish times of the timeslots

5 Some of the intermediary variables described in this section simply store expressions
and are thus not counted. The new variables counted here are the ci,k's and the
n′

j,k's. It may be possible to optimize this further.

61

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 S. Hamilton and D. Hare

be collected in
...
s = (s1, . . . , sm) and

...
f = (f1, . . . , fm) respectively. For each

exam E ∈ E, we de�ne a new constraint programming variable sE via the global
constraint element(tE ,

...
s , sE) (see [5, p. 958]) which ensures that sE is bound

to sk if and only if tE is bound to k (i.e., sE is stE). Moreover, for each exam
E ∈ E, using element(tE ,

...
f ,fE) de�nes fE so that fE is bound to fk if and

only if tE is bound to k (i.e., fE is ftE).
A new constraint programming decision variable s▽

D is de�ned via the global
constraint minimum

(
s▽
D, {sE : E ∈ D}

)
(see [5, p. 1378]) that represents the min-

imum start time of the intervals indexed by the variables assigned to exams
from D. A similar decision variable f△

D is de�ned through the global constraint
maximum

(
f△
D, {fE : E ∈ D}

)
that represents the maximum �nishing time of the

intervals indexed by the variables assigned to exams from D (see [5, p. 1348]).
The constraint programming variable lD, representing the length of the spread
of the timeslot assignments of exams from D, is thus the di�erence of decision
variables f△

D − s▽
D. Moreover, when a solution τ is found from binding decision

variables t, f , s, fD, sD and lD, the variable lD will be bound to ℓ(IB) where
B = {τ(E) : E ∈ D}. Note that the domain of lD is a subset of [0, ℓ(IT)].

In order to measure the number of times persons are in at least w exams that
are assigned by τ to be within any d time units of the schedule (i.e., |Hw,d|), we
consider a subset of exams D such that |D| = w and such that ∩D ̸= ∅. The
number of persons writing all of the w exams in D is | ∩ D|. Thus if lD ≤ d,
then these w exams will be written within d time units and hence will contribute
| ∩D| to |Hw,d|, but 0 otherwise.

Since time is discretized, we de�ne d+ to be the next time unit after d. We
use a combination of global constraints to map the decision variable lD to d if
lD ≤ d, and to d+ otherwise. The constraint programming variable iD,d de�ned
by maximum{d, minimum{lD, d+}} encodes this understanding since if lD ≤ d,
then minimum{lD, d+} will have the value of lD and hence maximum{d, lD} will
be d. On the other hand, if lD > d, then lD ≥ d+ and so minimum{lD, d+} will be
d+ and hence maximum{d, d+} will also be d+. Let

...
d be a (d+1)-tuple with the

�rst d values as | ∩D| and the last value as 0. The new constraint programming
variable hD,d de�ned by the global constraint element

(
iD,d,

...
d , hD,d

)
will be

equal to | ∩D| if lD ≤ d, and 0 otherwise.
Finally, |Hw,d| is represented by the CP variable hw,d that is de�ned by the

standard global constraint representing the sum of integer CP variables:∑
D⊆E
|D|=w

hD,d.

Note that this sum need only be taken over those D ⊆ E with |D| = w that
have ∩D ̸= ∅ since hD,d is zero otherwise.

Note also that this sum could have an exponential number of terms if w ≈
1
2 |E|. This, however, does not happen in practice since for a subset of exams D
of size w to have non-empty intersection means that some person is taking w
exams and so typically this number is at most seven. Moreover, w is usually
three as in Example 1 and restricting the number of this type for a variety of

62

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 17

d's will also restrict the hardships with w > 3 for larger time widths. Thus there
are usually less than |E|3 terms in the sum. As well, the number of d's used is
conventionally small given the small number of exams possible in a day and the
fact that �hardship� loses its meaning with larger d's.

Adding a CP constraint that sets hw,d to 0 for some w and d will ensure that
no (w, d)-hardships of τ will occur in a feasible solution. On the other hand, the
variables hw,d can be weighted and added to a minimizing objective function if
hardships are necessary for a feasible solution to be found.

Many exam scheduling problems have hardship constraints that involve each
day of the schedule. Two common examples are back-to-back exam hardships
and 2-in-1-day exam hardships. When such constraints are required and the
timeslots of the problem have a simple and regular structure, these hardships can
be implemented in a more straightforward way than the above, as the following
example illustrates. By adding the 8:30 a.m. and 7:00 p.m. timeslots to Sunday
and setting the temporal room sizes to zero for these timeslots, the index of a
timeslot in Example 1 can be used to determine the day index of the timeslot.
Suppose E1, E2 ∈ E are such that E1∩E2 ̸= ∅. Let D = {E1, E2} and de�ne the
boolean CP decision variable h′

D,d to represent the truth value of the following
logical expression that uses the exams' corresponding timeslot variables:

(tE1
− 1)/4 = (tE2

− 1)/4 and |tE1
− tE2

| ≤ d.

The expression uses the integer division and absolute value arithmetic functions
of CP variables that are found in most CP solvers as well as the use of the truth
value of a constraint arithmetically. Since there are four timeslots per day, h′

D,d

indicates if E1 and E2 are assigned the same day index, and at the same time
if they are within d timeslots from each other. Thus a back-to-back hardship
occurs when h′

D,1 is true, while a 2-in-1-day hardship occurs when h′
D,3 is true.

For d at least one and less than the number of timeslots in a day, if h′
D,d is

true, then we say a day d-hardship has occurred. Given p ∈ P , the number of
day d-hardships occurring for person p can be represented by a CP variable dp,d

de�ned by:

dp,d =
∑

D⊆E(p)
|D|=2

h′
D,d.

The total number of day d-hardships is thus dd =
∑
p∈P

dp,d which can be min-

imized or constrained. It may be of interest as well to minimize or constrain
d△
d = max

p∈P
dp,d so as to load balance the day d-hardships between all exam

writers. See Section 4 for some examples of the use of these constraints.

3.2 Room Assignment Subproblem

The room assignment subproblem is relatively straightforward compared to the
timeslot assignment subproblem. This is especially the case when the timeslots
are not allowed to overlap, and we will make this assumption in what follows.

63

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

18 S. Hamilton and D. Hare

The necessary modi�cations will be discussed in the CP of Requirement 6 section
if timeslots are allowed to overlap.

For each of the timeslots [sk, fk], k ∈ [m], the room assignment subproblem
�nds room assignment ρk using the exams assigned to [sk, fk] by τ from a feasi-
ble solution of the timeslot assignment subproblem. In what follows, a timeslot
[sk, fk] will be considered �xed and let Ek = τ−1([sk, fk]) be the set of exams
assigned to the timeslot. Moreover, let the rooms of R>

0,k be labeled R1, . . . , Rv.

Primary Decision Variables For each E ∈ Ek, we de�ne a CP integer-valued
decision variable rE whose domain is the set of indicies of the rooms, [v], with
the understanding that if rE is bound to i, then ρk(E) = Ri. For any subset
D ⊆ Ek of exams, we let RD = {rE : E ∈ D} be the corresponding set of
decision variables.

CP of Requirement1�2 (Person Single-Tasking and Exam Duration).
Requirements 1�2 are satis�ed by a feasible τ and thus have no corresponding
constraints in this section. We now focus on the remaining ones.

CP of Requirement 3 (Room Single-Tasking).
Requirement 3 forces every exam to be assigned its own room. This can be
achieved by imposing the global constraint alldifferent(REk

, [v]).

CP of Requirement 4 (Room Size).
Requirement 4 ensures that the room assigned to an exam E ∈ Ek is the appro-
priate size. This is achieved by setting the domain of E equal to {i ∈ [v] : Ri ∈
R>

ε(E),k}.

CP of Requirement 5 (Time and Room Specific).
Requirement 5 is also straightforward to implement for the room assignment
part. If E ∈ Ek and Q ⊆ R, the requirement ρ(E) ∈ Q is implemented by
reducing the domain of rE to be {i : Ri ∈ Q} by requiring the CP variable to
be not equal to each value in {i : Ri ∈ R \ Q}, or by other domain-reducing
constraint programming primitives.

CP of Requirement 6 (Overlapping Timeslots).
If timeslots are allowed to overlap, then the replacement of Requirement 3 with
this requirement for the room assignment problem ensures that a room cannot
be assigned to an exam from each of two overlapping distinct timeslots. In order
to model this, several room assignment models have to be solved as a single
model, or the extension to the timeslot assignment implementation should be
used (see Section 3.3). To simplify the discussion, we will assume that the single
model consists of all rE for all exams E ∈ E1 ∪ · · · ∪ Em = E. The constraints of
this requirement then are rE ̸= rE′ , for E ∈ Ek and E′ ∈ Ek′ of all k, k′ ∈ [m],
k < k′, with [sk, fk] ∩ [sk′ , fk′] ̸= ∅.

64

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 19

CP of Requirement 7 (Room Task Limit).
The requirement is encoded in the set of triples Gk = {(i, 0, γk(Ri)) : i ∈ [v]} for
the global constraint global_cardinality_low_up(REk

, Gk) (see [5, p. 1040]).
This constraint ensures that, for each i ∈ [v], the number of decision variables
rE with E ∈ Ek that are bound to i is between 0 and γk(Ri). In other words,
the number of exams assigned to room Ri is at most γk(Ri) during the timeslot.
Note that Requirement 7 has the limitation that no other timeslots overlap with
[sk, fk] and thus cannot be assigned to rooms during [sk, fk].

CP of Requirement 8 (Room Multitasking Size).
For each E ∈ Ek and i ∈ [v], let bE,i be a CP decision variable that is one if
the constraint rE = i is true and zero otherwise. This requirement can then be
modeled by the following constraints:∑

E∈Ek

ε(E)bE,i ≤ σk(Ri) for each i ∈ [v].

CP of Requirement 9 (Coupled Exams).
Requirement 9.1 is completely satis�ed by a feasible solution to the timeslot
assignment problem. Requirement 9.2 can be modeled for exams E, E′, using
the constraint rE = rE′ .

3.3 Extending the Timeslot Assignment Subproblem

Depending on the size of the input data (i.e., the sizes of the sets T , E and R),
it may be possible to solve the timeslot assignment problem and all of the room
assignment problems simultaneously through the use of the global constraint
bin_packing_capa (see [5, p. 600]). A bin packing constraint requires items
to be packed (i.e., assigned) into bins so that all items get a bin and the sum
of the weights of the items of a bin does not exceed the capacity of bin. The
correspondence between the exam scheduling problem and a bin packing con-
straint has the exams as items, the rooms as bins, and the number of examinees
as the weight of an item. Since the assignment of an exam to a room depends
on a timeslot, this uni�ed model speci�es a bin packing constraint for each of
the timeslots. To get around the requirement of the bin packing constraint that
each item must be packed into a bin, a virtual room is added to each of the
constraint's bins with a new unique value, v∗, for the room's index. Additional
constraints will ensure that an exam that is scheduled in timeslot k is not sched-
uled in the virtual room in timeslot k, and vice versa. The virtual room has
unlimited capacity in all timeslots so as to allow any combination of exams to
be packed into it in any particular timeslot thereby not restricting the exams to
use actual rooms if they are not assigned to the timeslot.

To be more precise, the model includes, for each exam E ∈ E, the previously
described timeslot assignment primary decision variable tE , as well as room
assignment primary decision variables rE,k, where k ∈ [m] and rE,k is a modi�ed

65

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

20 S. Hamilton and D. Hare

room assignment primary decision variable rE for timeslot k. Each rE,k has its
domain extended to include v∗, the index of the virtual room.

If an exam E is assigned timeslot k, then the exam is not assigned the virtual
room in timeslot k, and vice versa. This is modeled through the set of constraints

tE = k if and only if rE,k ̸= v∗, for all k ∈ [m], (2)

which are easily expressed in CP solvers. We store each pair of the index of a
bin (i.e., room) along with its capacity (i.e., room size) in the set

βk =
{(

1, σk(R1)
)
, . . . ,

(
v, σk(Rv)

)}
∪ {(v∗,∞)}.

Moreover, each pair of a bin (i.e., room) assignment decision variable for item
(i.e., exam) E at timeslot k along with the item's weight (i.e., number of ex-
aminees of E) is stored in the set ιk = {(rE,k, ε(E)) : E ∈ E}. For k ∈ [m],
the constraint bin_packing_capa(βk, ιk) then ensures that all the exams get
assigned to rooms in timeslot k without exceeding any room's size. Combined
with (2), an exam gets assigned to an actual room in timeslot k if and only if
the exam is assigned to timeslot k.

The collection of all these m global constraints along with the m|E| con-
straints from (2) thus implement Requirement 8.

The rE,k variables can be reused to implement Requirement 7 in the global
constraint of its CP implementation in Section 3.2. Each of the m timeslots
requires a single global constraint and has at most |R| new CP counter variables.

We refer to this CP implementation of Requirements 7�8 as the room-packings
constraints.

3.4 Remarks on Usage of Implementations

In this section, we discuss several possible scenarios regarding the use of the
CP implementations of the requirements of the exam scheduling problem. A few
factors go into deciding which scenario to use. The main factor is the sizes of
the inputs to the problem, speci�cally the number of:

1. timeslots, m,
2. exams, |E|,
3. di�erent sizes of exams, |U |,
4. rooms, |R|, and
5. maximum di�erent sizes of rooms, q = max

k∈[m]
qk.

The main consideration of the implementation is whether rooms are prohibited
from hosting concurrent exams (Requirement 3) or not (Requirement 8). If the
rooms are prohibited from hosting concurrent exams, then Theorem 1 ensures
that any feasible solution from the timeslot assignment CP implementation will
be room-assignable. Thus the room-cuts and room-packings are not required.

When rooms are allowed to host concurrent exams, room-cuts or room-
packings must be speci�ed in the timeslot assignment implementation. An anal-
ysis of the sizes of the inputs to the problem might be required to determine

66

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 21

whether to use room-cuts, room-packings or both. The following table lists the
number of variables, non-global constraints, and global constraints required by
each implementation option. The other constraints of the timeslot assignment
implementation are not considered.

Table 2. Implementation Metrics of Model Options for Concurrent Exams

Model Option
Timeslot Assignment Implementation

Variables # Non-Global # Global

room-cuts (|U |+ 2q)m (3q)m |U |m

room-packings (|E|+ |R|)m |E|m 2m

To compare di�erent cells of Table 2, observe that |U | ≤ |E| and q ≤ |R|. If
room-cuts are used alone, then the room assignment implementation must be
run for each timeslot. Also, the room-cuts are necessary but not su�cient for a
feasible solution of the timeslot assignment implementation, without the room-
packings, to be room-assignable. The real-world data sets we have encountered
(see next section), however, have shown to always provide room assignable so-
lutions. Moreover, if there are many rooms of small sizes to choose from, only
larger rooms need be used in the room-cuts so that the number of distinct room
sizes can be reduced to be much smaller than 1

2 |R| and
1
3 |E|.

4 Experiments

The driving purpose of the models presented here was to produce workable
schedules for the Okanagan campus of University of British Columbia (UBC) for
the 2021/2022 academic year. Other than producing the �nal exam schedules,
but within the context of using this real data, our experiments are designed to
compare the room-packings model with the room-cuts model. A follow up study
will provide a more complete analysis.

The data provided by UBC includes anonymized student enrollment data,
instructor requests, and room sizes and availabilities. The exam scheduling prob-
lem at this institution includes a few exceptional scenarios that require special
handling, as listed below.

Cross-listed and Common Exams: A course that has di�erent titles because it
is shared between di�erent programs is called cross-listed. Cross-listed courses
are required to have their exams scheduled at the same time and location. For

67

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

22 S. Hamilton and D. Hare

such courses, the data of their exams are merged during a preprocessing stage
so that the merged exam is the union of the cross-listed exams. The merged
exam is treated as a single exam both in the timeslot and room assignment
models. Though this scenario could be handled by implementing Requirement
9, we chose to merge the exams so that when implementing Requirements 7 and
8 in the timeslot assignment model, the cumulative size of the grouped exams is
accounted for.

A course that has multiple sections but a common exam is treated similarly.

Double-Seating Requirement: Every room's e�ective size is half of its true ca-
pacity, excluding the gym. We call this the double-seating requirement. The re-
quirement is implemented through appropriate σ input data.

Gym: The gym is a special room. First of all, it is the only room that does not
require double-seating (its e�ective size is the true capacity of the room). Fur-
thermore, while most rooms require single-tasking, the gym uses multi-tasking,
allowing at most three exams to take place concurrently. The use of the gym is
also minimized, since it is a large room and it is not desirable to have multiple
exams take place in the same location. This is handled by creating a variable to
track if an exam is assigned the gym, and minimizing the sum of these variables
in the objective function of the room assignment model.

UBC's examination period follows the structure shown in Example 1. We are
considering two datasets: the (Winter) Term 1 and 2 data from the 2021/2022
academic year. Statistics about these datasets are listed in Table 3.

Our primary focus with the experiments is to test the e�ectiveness of the
proposed models while meeting the university's 3-in-27-hours hardship require-
ment (see Example 1). To do so, we consider a room-packings model and a
room-cuts model for each data set. The room-packings model implements Re-
quirements 7�8 in the timeslot assignment model as described in Section 3.3
(the room-packings constraints). The room-cuts model uses the CP implemen-
tation of Requirements 7�8 for the timeslot assignment model as explained in
Section 3.1 (the room-cuts). The minimum size of the exams of E>

ri−1
\ E>

ri , u
▽
i ,

was used for these constraints.
For both approaches the models were con�gured as follows. The constraints

included in the timeslot assignment model are listed in Table 4. We consider
two variations of objective functions. The �rst objective function only minimizes
the number of times students have back-to-back exams, that is, we minimize
d1. The second objective function minimizes a weighted sum, which includes the
number of back-to-back and 2-in-1-day hardships, where the former hardship has
a higher priority/weight. The latter metric will be referred to as 2-in-1s. When
searching for solutions, the exam timeslot assignment variables, tE , are branched
on �rst, using CP Optimizer's default settings. Then the default settings of CP
Optimizer's search engine choose the remaining variables and values to search
on.

68

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 23

Table 3. Data properties for the UBC 2021/2022 data sets.

Data Property Term 1 Term 2

Number of exams 358 378
Number of exams requiring a room 217 275
Number of exams representing cross-listed sections 23 33
Number of exams representing common exams 41 41
Number of students enrolled in exams 10031 9369
Average number of exams per student 3.4 3.4
Average number of students per exam 96.4 84.9
Number of instructors 256 269
Number of regular roomsa 32 32
Number of gyms 1 1
Number of computer rooms 8 8
Number of restricted rooms 4 6
Number of triples of exams with students in common 15848 15457
Number of pairs of exams with students in common 9345 9033
Concurrent exam periods constraints (Req. 9.1) 20 19
Di�erent period constraints 0 0
Concurrent exam rooms constraints (Req. 9.2) 0b 0
Di�erent room constraints 0 0
Time speci�c constraints (Req. 5) 9 8
Room speci�c constraints (Req. 5) 7 25

a All rooms are available for all timeslots.
b All sets of exams with this requirement were amalgamated into a single exam in
preprocessing.

Table 5 lists the constraints for the room assignment model. A lexicographic
objective function is used to �rst minimize the number of exams assigned to
the gym and then minimize the excess space in the room. The room assignment
model takes in the solution from the timeslot assignment model and assigns the
exams to rooms. The room assignment model is run once for each timeslot and
uses the default search settings in CP Optimizer. The time taken to solve the
room assignment problem given a feasible timeslot assignment is negligible, as
�nding the room assignment is trivial for the CP solver.

All experiments were conducted on an Intel i9-10900K @ 3.70GHz (10 cores�
20 threads/workers) with 32.0 GB memory using IBM ILOG CPLEX Optimiza-
tion Studio 20.1.0.0, with the timeslot assignment model having a time limit of
24 hours. The search was always terminated by this limit and the solutions never
reached optimality.

Table 6 shows the results for minimizing only back-to-backs. In this scenario
the room-cuts outperform the room-packings model for both terms. However,

69

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

24 S. Hamilton and D. Hare

Table 4. List of constraints included in the timeslot assignment model for the experi-
ments.

Requirement Description Constraint
Type

1 No student/instructor can have
more than one exam per timeslot

Hard

2 Exam duration requirement
is met implicitly by input data

Hard

5 Set domain for the exam timeslot
based on instructor requests

Hard

7, 8 Room-cuts (necessary condition
to satisfy room constraints)

Optional,
Hard

7, 8 Room-packings Optional,
Hard

9 Cross-listed or common exams required
to be assigned the same timeslot

Hard

10 Zero 3-in-27-hours hardships (h3,54 = 0) Hard

10 Maximum 2-in-1-day hardships
per student is 1 (d△

3 ≤ 1)
Hard

10 Minimize 2-in-1-day hardships (d3) Optional,
Optimized

10 Minimize back-to-back hardships (d1) Optional,
Optimized

there is a trade-o�: minimizing this metric comes at a cost of increasing the 2-in-
1s (even though a back-to-back counts as a 2-in-1-day). For example, in Term 2,
the room-cuts approach results in 4 back-to-backs but 1486 2-in-1s, while the
room-packings approach leads to 17 back-to-backs but only 1275 2-in-1s. This
observation led us to explore a weighted objective for our comparisons.

Table 7 shows the results from minimizing the weighted objective, where
back-to-backs were given a 20-to-1 priority over 2-in-1s. For these experiments
the room-packings approach leads to less back-to-backs exams for both terms.

70

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 25

Table 5. List of constraints included in the room assignment model for the experi-
ments.

Requirement Description Constraint
Type

3, 7 Gym hosts at most three exams;
all other rooms host at most one exam

Hard

4, 8 Number of students writing exams scheduled in
a room is at most the e�ective room sizea

Hard

5 Set domain for the exam room
based on instructor requests

Hard

a The constraint may be softened for exams with speci�c room requests.

Table 6. Results from experiments minimizing the number of back-to-back (d1) hard-
ships for the UBC 2021/2022 Term 1 and Term 2 data sets. All experiments required
h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs

Term 1 Term 2

room-cuts 38 4

room-packings 58 17

On the other hand, room-cuts have a lower number of 2-in-1s for Term 1. We can
see from the overall objective that the room-packings approach performs better
for the weighted objective.

One downside to the 2021/2022 data sets is that they were produced during
the COVID-19 pandemic. This resulted in courses having the option of holding
their exams online in Term 1 or Term 2 if the course's instructor required special
accommodations. Therefore not all exams needed rooms, and so that the exam
schedule had more �exibility due to having less constraints. To further push the
model and gauge how well it may perform in future years without online courses,
we modi�ed the data sets so that all exams were written in-person and needed
to be scheduled in a room on campus. The resulting data sets had 65% and 35%
more exams needing rooms for Term 1 and Term 2, respectively. The results

71

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

26 S. Hamilton and D. Hare

Table 7. Results from experiments minimizing a weighted function of the number of
back-to-back (d1) and 2-in-1-day (d3) hardships for the UBC 2021/2022 Term 1 and
Term 2 data sets. All experiments required h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs 2-in-1s Objective Value

Term 1 Term 2 Term 1 Term 2 Term 1 Term 2

room-cuts 146 91 735 728 3655 2548

room-packings 115 67 771 646 3071 1986

for these runs with these are shown in Table 8. For Term 1, these results agree
with those seen in Table 7. For Term 2, we get a surprising outcome. Using
the room-cuts approach here led to a better objective in terms of both back-
to-backs and 2-in-1s compared with the room-packings approach. Furthermore,
these metrics were also better than the results from the original data set, for both
the room-cuts and room-packings approaches. When comparing the statistics for
the original and modi�ed versions of the Term 2 data, it is not obvious why this
is the case. However, due to the nature of these experiments and because these
results are not proven to be optimal, it is easily possible for this scenario to occur
due to di�erences in the search trees explored by CP Optimizer.

Table 8. Results from experiments minimizing a weighted function of the number of
back-to-back (d1) and 2-in-1-day (d3) hardships for the augmented UBC 2021/2022
Term 1 and Term 2 data sets. All experiments required h3,54 = 0 and d△

3 ≤ 1.

Model Option
back-to-backs 2-in-1s Objective Value

Term 1 Term 2 Term 1 Term 2 Term 1 Term 2

room-cuts 197 58 827 745 4767 1905

room-packings 172 117 1021 723 4461 3063

These experiments serve to illustrate the robustness of our model for moderate-
sized universities, as well as the di�culty in choosing an approach for ensuring

72

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Exam Scheduling With Hardship Minimization 27

room-assignable solutions in the exam scheduling problem. Our results illustrate
that even for the same data sets, the choice between using room-cuts versus
room-packings constraints varies depending on the objective function used. Fur-
thermore, there are several other considerations to take into account. First, the
selected CP solver may not have built-in bin-packing constraints available and
it may be too onerous to build them from scratch. In this case using room-cuts
would be the only choice. If the university is large, then exploring room-cuts
may be necessary to reduce the number of variables and constraints in the CP
model. If there are several room restrictions that cannot be softened and should
not be ignored in the timeslot assignment model, then the room-packings ap-
proach would be most appropriate. Altogether, both approaches presented here
are valuable tools that provide modeling options for researchers and practitioners
in various scenarios.

Future work will be done to establish lower bounds on the objective functions
to narrow the optimality gap. Furthermore, more tests will be conducted to study
each model's performance on various benchmark and real-world data sets.

5 Conclusion

In this paper we presented a generic speci�cation of the exam scheduling prob-
lem that encompasses a large variety of institutional requests. We also described
in detail how this speci�cation can be implemented using constraint program-
ming. In particular, we introduced a general de�nition and implementation of
student hardships, which we illustrated with three real-world examples: the 3-in-
27-hours, back-to-back, and 2-in-1-day hardships. As well, we introduced a novel
set of cuts that establish necessary conditions for a timeslot assignment solution
to emit feasible room assignments. These room-cuts allow the exam scheduling
problem to be decoupled into separate timeslot and room assignment phases.

The CP implementation of these models demonstrated its capabilities in the
production of the 2021/2022 �nal exam schedules at the Okanagan campus of
the University of British Columbia. Moreover, our testing compared the room-
cuts model with the room-packings model using variations of the most recent
data from UBC. The room-cuts implemented in the timeslot assignment model
ensured feasibility in the room assignment model for all tests conducted. On
the other hand, the room-packings model uses bin-packing constraints to join
the timeslot and room assignment subproblems ensuring such feasibility intrin-
sically. Furthermore, the room-cuts model achieved competitive solutions when
compared with the room-packings model. In conclusion, we have illustrated that
both approaches are robust and can tackle the exam scheduling problem in-
stances explored in this work, thus advancing the theory and tools for researchers
and practitioners alike.

Acknowledgements The authors are grateful for the generous support from
the following sources: the Natural Sciences and Engineering Research Coun-
cil of Canada; the Provost and Vice-President Academic, University of British

73

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

28 S. Hamilton and D. Hare

Columbia, Okanagan; and the Department of Computer Science, Mathematics,
Physics and Statistics, University of British Columbia, Okanagan. The authors
would also like to thank each of the anonymous referees for their helpful com-
ments.

References

1. Abou Kasm, O., Mohandes, B., Diabat, A., El Khatib, S.: Exam timetabling
with allowable con�icts within a time window. Computers and Industrial En-
gineering 127, 263�273 (2019). https://doi.org/10.1016/j.cie.2018.11.037,
http://www.sciencedirect.com/science/article/pii/S0360835218305771

2. Al-Hawari, F., Al-Ashi, M., Abawi, F., Alouneh, S.: A practical three-phase ILP
approach for solving the examination timetabling problem. International Transac-
tions in Operational Research 27(2), 924�944 (Mar 2020). https://doi.org/10.
1111/itor.12471, https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.

12471

3. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university
course timetabling problem. Computers and Industrial Engineering 86, 43�59
(2015). https://doi.org/10.1016/j.cie.2014.11.010, http://dx.doi.org/10.
1016/j.cie.2014.11.010

4. Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., Topan,
E.: Local Search and Constraint Programming for a Real-World Examination
Timetabling Problem. In: Hebrard, E., Musliu, N. (eds.) Integration of Constraint
Programming, Arti�cial Intelligence, and Operations Research. pp. 69�81. Springer
International Publishing, Cham (2020)

5. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global Constraint Catalog (2005),
https://hal.archives-ouvertes.fr/hal-00485396/

6. Broder, S.: Final examination scheduling. Communications of the ACM 7(8), 494�
498 (Aug 1964). https://doi.org/10.1145/355586.364824, https://dl.acm.

org/doi/abs/10.1145/355586.364824

7. Cataldo, A., Ferrer, J.C., Miranda, J., Rey, P.A., Sauré, A.: An inte-
ger programming approach to curriculum-based examination timetabling. An-
nals of Operations Research 258(2), 369�393 (Nov 2017). https://doi.org/

10.1007/s10479-016-2321-2, https://link.springer.com/article/10.1007/

s10479-016-2321-2

8. Cole, A.J.: The preparation of examination time-tables using a small-store
computer. The Computer Journal 7(2), 117�121 (Feb 1964). https://doi.

org/10.1093/comjnl/7.2.117, https://academic.oup.com/comjnl/article/7/

2/117/335177

9. Genc, B., O'Sullivan, B.: A Two-Phase Constraint Programming Model for Exam-
ination Timetabling at University College Cork, vol. 12333 LNCS. Springer Inter-
national Publishing (2020). https://doi.org/10.1007/978-3-030-58475-7_42,
http://dx.doi.org/10.1007/978-3-030-58475-7_42

10. McCollum, B.: A perspective on bridging the gap between theory and practice
in university timetabling. In: Burke, E.K., Rudová, H. (eds.) Practice and The-
ory of Automated Timetabling VI. pp. 3�23. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

11. Müller, T.: Real-life examination timetabling. J Sched 19, 257�270 (2016). https:
//doi.org/10.1007/s10951-014-0391-z, http://www.unitime.org.

74

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/10.1016/j.cie.2018.11.037
https://doi.org/10.1016/j.cie.2018.11.037
http://www.sciencedirect.com/science/article/pii/S0360835218305771
https://doi.org/10.1111/itor.12471
https://doi.org/10.1111/itor.12471
https://doi.org/10.1111/itor.12471
https://doi.org/10.1111/itor.12471
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12471
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12471
https://doi.org/10.1016/j.cie.2014.11.010
https://doi.org/10.1016/j.cie.2014.11.010
http://dx.doi.org/10.1016/j.cie.2014.11.010
http://dx.doi.org/10.1016/j.cie.2014.11.010
https://hal.archives-ouvertes.fr/hal-00485396/
https://doi.org/10.1145/355586.364824
https://doi.org/10.1145/355586.364824
https://dl.acm.org/doi/abs/10.1145/355586.364824
https://dl.acm.org/doi/abs/10.1145/355586.364824
https://doi.org/10.1007/s10479-016-2321-2
https://doi.org/10.1007/s10479-016-2321-2
https://doi.org/10.1007/s10479-016-2321-2
https://doi.org/10.1007/s10479-016-2321-2
https://link.springer.com/article/10.1007/s10479-016-2321-2
https://link.springer.com/article/10.1007/s10479-016-2321-2
https://doi.org/10.1093/comjnl/7.2.117
https://doi.org/10.1093/comjnl/7.2.117
https://doi.org/10.1093/comjnl/7.2.117
https://doi.org/10.1093/comjnl/7.2.117
https://academic.oup.com/comjnl/article/7/2/117/335177
https://academic.oup.com/comjnl/article/7/2/117/335177
https://doi.org/10.1007/978-3-030-58475-7_42
https://doi.org/10.1007/978-3-030-58475-7_42
http://dx.doi.org/10.1007/978-3-030-58475-7_42
https://doi.org/10.1007/s10951-014-0391-z
https://doi.org/10.1007/s10951-014-0391-z
https://doi.org/10.1007/s10951-014-0391-z
https://doi.org/10.1007/s10951-014-0391-z
http://www.unitime.org.

Exam Scheduling With Hardship Minimization 29

12. Oude Vrielink, R.A., Jansen, E.A., Hans, E.W., van Hillegersberg, J.: Prac-
tices in timetabling in higher education institutions: a systematic review. An-
nals of Operations Research 275(1), 145�160 (2019). https://doi.org/10.1007/
s10479-017-2688-8, https://doi.org/10.1007/s10479-017-2688-8

13. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T., Lee, S.Y.: A survey
of search methodologies and automated system development for examination
timetabling. Journal of Scheduling 12(1), 55�89 (2009). https://doi.org/10.

1007/s10951-008-0077-5

75

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10479-017-2688-8
https://doi.org/10.1007/s10951-008-0077-5
https://doi.org/10.1007/s10951-008-0077-5
https://doi.org/10.1007/s10951-008-0077-5
https://doi.org/10.1007/s10951-008-0077-5

Scheduling Worker Timetables in Flowshops with
Multi-Skill Workers

Ehud Ikar1[0000−0002−9626−9324], Elad Shufan2[0000−0001−7960−5798], Hagai
Ilani2[0000−0003−3548−1572], and Tal Grinshpoun1[0000−0002−4106−3169]

1 Ariel University, Ariel, Israel
ehud.ikar@msmail.ariel.ac.il, talgr@ariel.ac.il

2 Shamoon College of Engineering, Ashdod, Israel
elads@sce.ac.il, hagai@sce.ac.il

Abstract. This work is inspired by a production line for manufacturing
identical products (jobs) by multi-skilled workers. The production of each
job consists of a set of pre-ordered successive operations, similar to the
problem of a flow shop. However, different from the standard flow shop
model, each operation may be performed only by a subset of workers who
have the required skills for that operation. The workers are non-identical
in the sense that each may posses a different set of skills. The objective
is to schedule the timetables of the workers in a manner that minimizes
the makespan.
There are two known formulations in the literature that capture the
extremes of the multi-skilled workers at focus. The first, flexible (a.k.a.
hybrid) flow shop, deals with scenarios in which several single-skilled
workers can perform the same operation. The second, reentrant flowshop,
deals with scenarios in which multi-skilled workers can perform different
tasks but without overlaps, i.e., each operation can be performed by
exactly one specific worker.
In a previous study we focused on the reentrant flowshop extreme; we
formulated the problem as an integer program (IP) and obtained deep
insights on two simple heuristics that solve the problem, in some cases
even to optimality. Here, we study extensions of the IP formulation to the
multi-skilled flow shop problem (MSFFP). The IP formulation is inspired
by modelling the problem as a multi-mode resource constrained project
scheduling problem. This model also enables adaptation of heuristics for
solving the MSFFP along with several lower bounds that help guaran-
teeing a reasonable approximation to the optimal makespan.

Keywords: Production Line · Worker Timetabling · Multi-Skilled Work-
ers · Identical Jobs · Resource-Constrained Project Scheduling.

76

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

A knowledge-based approach to detecting and
explaining conflicts in timetabling problems

Kylian Van Dessel · Joost Vennekens

Received: date / Accepted: date

Keywords timetabling · conflict detection · declarative programming ·
knowledge representation and reasoning

1 Introduction

Traditional research on combinatorial optimization problems, such as schedul-
ing, focuses on computational efficiency. The typical goal is to compute better
solutions within given time constraints, or to compute optimal solutions faster.
Over the years, the field of Operational Research (OR), and more recently also
the field of Artificial Intelligence (AI) put numerous techniques forward that
can solve combinatorial optimization problems in a highly efficient manner.
The benchmarks used in this research are often artificially generated. Moreover
they typically consist of well-defined problem definitions over consistent prob-
lem instances, i.e. there are no contradicting hard constraints and instances
are not constrained to the point that there is no longer a solution. This has
lead to a mismatch between academic result and real-life applications, in which
problems are most often ill-defined.

To overcome this gap, both research fields have put a substantial effort in
solving optimization problems for real-world benchmarks. E.g., the biannual
international timetabling competition gathers a large number of real-world
applications for its tracks [7] and more and more conferences in the field include

K. Van Dessel
Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver
Tel.: +32-15-688191
E-mail: kylian.vandessel@kuleuven.be

J. Vennekens
Jan Pieter De Nayerlaan 5, 2860 Sint-Katelijne-Waver
Tel.: +32-15-688235
E-mail: joost.vennekens@kuleuven.be

77

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Kylian Van Dessel, Joost Vennekens

talks on real-world applications or even have dedicated tracks for them, such
as PATAT or ICAPS.

In this work we aim to identify if and, more importantly, why a problem
specification is ill-defined. If we can explain in a comprehensible manner why
a conflict occurs, then the inconsistency can be reported to the user. The user
can then use this information to construct a consistent specification that can
be handled by the system. We focus on inconsistencies in the problem instance,
rather than in the problem definition itself. Existing systems typically try to
detect or prevent such inconsistencies in a rather ad hoc manner, e.g., by
means of a user-friendly interface or by performing input data checks. These
techniques are only usable for shallow inconsistencies such as typing errors
and miscounts. For the detection of more profound conflicts, more complex
inference is required.

In this paper, we propose a knowledge-based approach for detecting and
explaining conflicts in instances of the School Timetabling Problem (STP) in
the context of Belgian secondary schools. We do this in an effort to tackle
the problem from a Knowledge Representation and Reasoning (KRR) point
of view as opposed to the more traditional research from the field of OR. We
believe that the declarative aspect of our proposed system will allow conflicts
to be explained in a more comprehensible manner.

An additional contribution will be the compilation of a data set with real-
istic conflicts based on actual STP instances, which will also be used for the
validation of our work.

2 The IDP knowledge base system

In order to explain inconsistencies in a comprehensible manner, we start from
a purely declarative knowledge base. In this approach, a problem specification
consists of a set of hard and soft constraints much like in OR techniques. How-
ever, we focus on writing down the knowledge base in an intuitive language,
which is understandable for non-experts, as opposed to the mathematical mod-
els often used in OR techniques.

The STP has been studied in such a context of declarative programming
before, e.g., in ASP [1]. State-of-the-art answer set programming (ASP) sys-
tems typically use a two-step ground-and-solve process to unite a declarative
specification language with an efficient solver. A traditional ASP system first
grounds the problem specification to a propositional program. This step re-
duces complex language constructs and shorthands, added to the language for
expressiveness and ease of modeling, to their most basic, variable-free form. In
a second step an ASP solver is then used to generate answer sets (solutions)
for the ground program [3].

The knowledge-based system we propose for studying conflict detection and
explanation in the context of the STP, is the IDP system [2]. This system is
similar to ASP systems, but uses a language based on First Order Logic (FO),
extended with additional language features such as types and aggregates (as

78

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Title Suppressed Due to Excessive Length 3

opposed to the non-monotonic reasoning ASP-language used by traditional
ASP systems).

Example 1 The trivial constraint that each class should be taught by a
teacher can be expressed by the following FO sentence:

∀c[Class] : ∃t[Teacher] : Teaches(t, c).

This sentence is grounded to a disjunction of propositions over each element
of the type Teacher, and this for each element of the type Class. Consider
the following structure:

Teacher = {Mary, John,Carl}
Class = {Maths, Physics}

The constraint is grounded to the ground program:

Teaches(Mary,Maths) ∨ Teaches(John,Maths) ∨ Teaches(Carl,Maths).

T eaches(Mary, Physics) ∨ Teaches(John, Physics) ∨ Teaches(Carl, Physics).

A solution found by the solver would then look like this:

Teaches(John,Maths). T eaches(Mary, Physics).

For knowledge-based systems, several conflict detection techniques are known
[4,6]. These techniques typically work by detecting an unsatisfiable core: a
minimal subset of an inconsistent theory that is still inconsistent [5]. However,
because existing techniques look for unsatisfiable cores in ground (i.e., propo-
sitional) theories, these cores tend to be very big and not comprehensible for
a non-programmer. Because we aim to provide information to a timetabler,
this makes these techniques unusable for us. We therefore develop a method
which reduces an inconsistent theory to a smaller theory, that is still tractable
in size and written in the same language as the original problem specification,
i.e., the highly expressive FO(·)-language.

3 Diagnosis of an unsatisfiable problem

When representing a problem specification in a knowledge base, we first need
to specify which symbols will be used for the representation (i.e. the vocab-
ulary). The constraints then correspond to a theory over these symbols and
a specific instance corresponds to a structure for part of the vocabulary. As
such, the STP can be represented as a combination of a theory on all the hard
and soft constraints of the problem (e.g., “Each class should be taught by a
therefore qualified teacher”) and a structure defining a specific STP instance
(e.g., “Mary is a teacher”, “teacher Mary is qualified to teach class Math”).

For a given theory T and structure S, the problem of finding a solution is
that of solving the model expansion problem MX(S, T), which computes the
set of all structures S′ that extend S such that S′ |= T .

79

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Kylian Van Dessel, Joost Vennekens

We assume the problem to be unsatisfiable, thusMX(S, T) = {}, i.e., there
are no solutions, and look for reductions S′ of S for which MX(S′, T) is still
empty. S′ is considered a reduction of S if the domain of S′ is a subset of the
domain of S and, for each symbol P , the interpretation of P in S′, denoted
PS′

, is equal to the restriction of PS to the domain of S′. If for each solution
M to MX(S, T), there exists a reduction M ′ of M such that M ′ is a solution
of MX(S′, T), we call the reduction T-safe.

To help users understand why a model expansion problem MX(S, T) is
unsatisfiable, we might therefore look for reductions S′ of S that are T -safe and
for which MX(S′, T) is unsatisfiable. However, in the case that MX(S, T) is
empty, the notion of safeness is actually not very relevant, since each reduction
is safe in that case.

Definition 1 Let T be a theory and Σ a subset of the vocabulary of T . A
reduction policy for T relative to Σ is a set of pairs (P (x), ρ(y⃗, x)) where P
is a type in Σ and ρ is a Σ-formula. Given a Σ-structure S, we say that a
reduction S′ of S follows a reduction policy if it is the case that, for all pairs
(P (x), ρ(y⃗, x)) in the policy and for each domain element d that is removed
from type P , also all elements e1, e2, . . . , en are removed from their respective
types for which S |= ρ[x/d, y⃗/e⃗]. A reduction policy is T -safe if, for each Σ-
structure S, all reductions that follow the policy are T -safe.

If we have a T -safe reduction policy, we can use the reductions that follow
this policy to conclude that, if at least one of these is unsatisfiable, also the
original model expansion problem is unsatisfiable.

Definition 2 A diagnosis of an unsatisfiable problem MX(S, T) is a T -safe
reduction S′ of S such that MX(S′, T) is unsatisfiable as well. Such a diagnosis
is called minimal if S′ itself is the only diagnosis of MX(S′, T).

Example 2 Consider the following simple example. Each class must be taught,
by a teacher who is qualified to teach it, but each teacher may teach only a
single course:

∀c[Class] : ∃t[Teacher] : Teaches(t, c).
∀c[Class] t[Teacher] : Teaches(t, c) ⇒ Qualified(t, c).

∀t[Teacher] c[Class] c′[Class] : Teaches(t, c) ∧ c ̸= c′ ⇒ ¬Teaches(t, c′).

This theory is unsatisfiable in the following structure:

Teacher = {Mary, John,Carl}
Class = {Maths, Physics, English}

Qualified = {(Mary,Maths), (Mary, Physics), (John,English), (Carl, English)}

80

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Title Suppressed Due to Excessive Length 5

Obviously, the problem here is the fact that Mary is the only teacher qualified
to teach both Maths and Physics. In other words, this problem will already
manifest itself in the following reduction S′ of S:

Teacher = {Mary}
Class = {Maths, Physics}

Qualified = {(Mary,Maths), (Mary, Physics)}

This reduction is T -safe. To prove this, it suffices to show that the reduction
policy consisting of the single pair (Teacher(x), Qualified(x, y)) is T -safe.
Because of the first formula, it is clear that Qualified(t, c) covers the first
formula. In order to be allowed to remove the teachers John and Carl, this
covering formula asks that we also remove all classes that John and Carl are
allowed to teach. We see that, indeed, ClassS

′
no longer contains the class

English. Therefore, MX(S′, T) has at least as many solutions as the origi-
nal problem MX(S, T). In other words, removing a set of teachers together
with all the classes they may teach only makes the problem easier. Because
MX(S′, T) is unsatisfiable, it is a diagnosis of MX(S, T). Since removing ei-
ther Mary or one of her two classes would render the problem satisfiable,
MX(S′, T) has no more diagnoses and hence it is a minimal diagnosis. On the
other hand, removing only the teachers but not the classes is not safe, since it
makes the problem harder.

We are not interested in just any diagnosis. We are looking for those we
can explain to a user. To this end, we set up a frame that dictates which safe
reductions we want to apply to which elements in order to detect a certain
kind of conflict. If we apply such a frame to an inconsistent problem and the
reduction is inconsistent as well, then we have a diagnosis of that kind of
conflict. We try to define these frames in a way that the reductions that follow
the frame are as small as possible to still explain the conflict, but note that a
correct diagnosis is not necessarily minimal.

4 Discussion and Future work

We presented a knowledge-based approach for detecting and explaining con-
flicts in optimization problems. The problem specification is written down in
an intuitive, understandable language, unlike the typical mathematical mod-
els used in OR techniques. Additionally, as opposed to existing KRR research
on computing unsatisfiable cores from the ground program, we propose a re-
duction on the level of the problem specification itself. In this way, we not
only detect the conflicts, but also have the ability of explaining them in a
comprehensible manner to a non-programmer.

We will put the proposed concepts to practice and study their correctness
and performance in the context of the STP. We focus on ill-defined problem
specifications. To this end, we compile a data set with conflicts from a real-
life context. For our experiments we will use the IDP knowledge base system,

81

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Kylian Van Dessel, Joost Vennekens

which provides an expressive declarative language (FO(·)) for representing the
problem specification.

References

1. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming as a
modeling language for course timetabling. Theory and Practice of Logic Programming
13(4-5), 783–798 (2013). DOI 10.1017/S1471068413000495

2. Bruynooghe, M., Blockeel, H., Bogaerts, B., Cat, B.D., Pooter, S.D., Jansen, J., Labarre,
A., Ramon, J., Denecker, M., Verwer, S.: Predicate logic as a modeling language: Mod-
eling and solving some machine learning and data mining problems with IDP3. CoRR
abs/1309.6883 (2013). URL http://arxiv.org/abs/1309.6883

3. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and solving in answer set
programming. AI Magazine 37(3), 25–32 (2016). DOI 10.1609/aimag.v37i3.2672. URL
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2672

4. Liffiton, M., Sakallah, K.: Algorithms for computing minimal unsatisfiable subsets of
constraints. J. Autom. Reasoning 40, 1–33 (2008). DOI 10.1007/s10817-007-9084-z

5. Lynce, I., Silva, J.: On computing minimum unsatisfiable cores (2004)
6. Torlak, E., Chang, F.S.H., Jackson, D.: Finding minimal unsatisfiable cores of declarative

specifications. In: J. Cuellar, T. Maibaum, K. Sere (eds.) FM 2008: Formal Methods, pp.
326–341. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

7. Van Bulck, D., Goossens, D., Belien, J., Davari, M.: The fifth international timetabling
competition (itc 2021): Sports timetabling. In: MathSport International 2021, pp. 117–
122. University of Reading (2021)

82

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Column Generation Approach for Solving the
Fixed Route Dial-A-Ride Problem

Hagai Ilani1[0000−0003−3548−1572], Elad Shufan1[0000−0001−7960−5798], and Tal
Grinshpoun2[0000−0002−4106−3169]

1 Shamoon College of Engineering, Ashdod, Israel
hagai@sce.ac.il, elads@sce.ac.il

2 Ariel University, Ariel, Israel
talgr@ariel.ac.il

Abstract. The fixed route dial-a-ride problem (FRDARP) is a demand-
responsive transport solution in which passengers request to be trans-
ported at certain times between destinations that are located along a
fixed route. The aim is to operate all the requests with a given fleet of
vehicles and a bounded number of transports in a manner that minimizes
the passengers’ overall deviation from the requested times. The FRDARP
is a variant of the famous dial-a-ride problem (DARP), in which the diffi-
culty of finding the vehicle routes is neutralized by determining the route
in advance. With a fixed route, the remaining problem is of grouping cus-
tomers together and scheduling the timetable. The DARP solutions, and
in particular the FRDARP, are suitable for a variety of transportation
needs, including dedicated solutions for low-populated areas, as well as
for customers with special needs, such as children or elderly.
Recently, we have presented a polynomial algorithm to solve the FR-
DARP by a reduction to the shortest path problem. Based on the prob-
lem input, we dynamically construct a graph; a shortest weighted path in
this graph, which starts at a source node and ends at a goal node, corre-
sponds to an optimal schedule. Though the presented method for solving
the FRDARP is polynomial, its implementation involves construction
and traversal of huge graphs. Therefore, finding an optimal solution for
a large number of requests becomes a non-trivial challenge. FRDARP
can be also modeled as an integer linear programming, yet with a huge
number of variables. Here, we present a column generation approach for
solving FRDARP using an integer linear programming formulation. We
show that the sub-problem that defines the entering variable at each it-
eration is a coloring problem of an interval graph ,which is polynomially
solvable. By using column generation, we expect to appreciably reduce
the running time needed for finding an optimal solution and therefore
increase the applicability of FRDARP for large problems.

Keywords: Demand Responsive Transport · Dial-a-Ride Problem · Fixed
Route · Column Generation.

83

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Local Search Techniques for a Medical Student
Scheduling Problem

Eugenia Zanazzo1, Sara Ceschia1[0000−0003−1191−1929], Agostino
Dovier2[0000−0003−2052−8593], and Andrea Schaerf1[0000−0001−6965−0536]

1 DPIA, University of Udine, via delle Scienze 206, 33100 Udine, Italy,
{eugenia.zanazzo,sara.ceschia,andrea.schaerf}@uniud.it

2 DMIF, University of Udine, via delle Scienze 206, 33100 Udine, Italy,
agostino.dovier@uniud.it

Keywords: Medical Student Scheduling · Local Search · Simulated Annealing

1 Introduction

We consider the Medical Student Scheduling (MSS) problem in the formulation
proposed by Akbarzadeh and Maenhout [2], which is a simplified version of the
general problem previously proposed by the same authors [1].

In the MSS problem, medical students have to be assigned in subsequent
periods to a set of wards in designated hospitals, in order to complete their
training by performing internships on the disciplines carried out in the specific
wards.

This version of the problem takes into account, among other constraints and
objectives, precedences among disciplines, student preferences, waiting periods,
and hospital changes. The typical horizon considered is one year, split into either
12 periods of one month or 24 periods of two weeks.

The objective of the problem is to design a timetable that maximizes both
students’ desire and fairness among students, satisfying rules, regulations, and
requirements for the medical school and the hosting hospitals.

We developed a local search technique for the MSS problem, based on a
combination of two different neighborhood relations and guided by a Simulated
Annealing procedure.

We also implemented an instance generator that was used to create chal-
lenging instances with up to 320 students. According to Akbarzadeh and Maen-
hout [1], such number of students represents a realistic size, though much larger
than the ones in the original dataset (max 80 students). In addition, the gener-
ated instances also activate the constraint on the minimum number of students
in a ward, which is included in the model but always set to 0 in the original
instances. This constraint makes instances harder to be solved.

As customary, the generated instances are split into two sets, one used for
the parameter tuning and the other one for the validation.

Our solution method has been able to find consistently the optimal solution
value for all instances of the dataset proposed by Akbarzadeh and Maenhout [2],

84

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 E. Zanazzo et al.

in much shorter runtime, though without any optimality guarantee, than their
exact technique.

2 Solution method

For brevity, we do not report here the precise MSS formulation, which can be
found in the original work [2].

Our local search technique uses for the search space an integer-valued matrix
that assigns to each student in each period a specific ward of a specific hospital.
That is, we use a single value that encodes a pair 〈hospital, ward〉. Since in the
original data only one given discipline can be undertaken in any specific ward,
this value specifies also the discipline. The conventional value -1 is used when
the student is not assigned to any internship in the specific period.

We decided to include in our search space also solutions that may violate two
hard constraints, namely the minimum and maximum number of students per
ward per period and the precedences among disciplines. These constraints are
taken care of by the cost function along with the soft constraints. As customary,
the hard constraint violations are assigned a higher weight, in order to favor
feasibility over optimality.

We consider the following two atomic neighborhood relations:

– Change (C). The move C〈s, p, w, p′, w′〉 reassigns the student s from the pe-
riod p at ward w to a new period p′ and a new ward w′. The move has the
precondition that s is currently idle in p′, unless p = p′; in the latter case
the move represents a reassignment of the ward in the current period p. It
is also possible that w = w′, so that the student remains in the same ward,
but at different time. It is not possible that p = p′ and w = w′, which would
result in a null move.

– Swap (S). The move S〈s, p, w, p′, w′〉 swaps the assigned wards w and w′ of
student s in the two distinct periods p and p′. The precondition here is that
the student is assigned in both periods, i.e., w 6= −1 and w′ 6= −1.

As guiding metaheuristic, we use Simulated Annealing, which already turned
out quite effective in a number of timetabling problems (see, e.g., [6, 4, 3]). The
neighborhood relation employed is the set union of Change and Swap, and the
random move selection is guided by a parameter ρS (called swap rate), such that
a Swap move is drawn with probability ρS and a Change move with probability
1− ρS .

3 Experimental results

The tuning procedure was performed on training instances of various sizes, cre-
ated by our generator specifically for this purpose. We used the tool json2run [7],
which performs the F-Race procedure [5] for selecting the best configuration. The
winning configuration has swap rate ρS equal to 0.19.

85

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Local Search Techniques for a Medical Student Scheduling Problem 3

Table 1. Comparative results between different solution methods and time limits.

CPU (s) Gap (%) Opt (%)
MIP 8054 9 50
CP 2630 1 88
DP 166 0 100

SA-5 2.5 0.09 98.1
SA-10 4.9 0.07 99.3
SA-20 9.7 0.07 99.8
SA-50 24.1 0.06 99.9
SA-100 48.2 0 100

Table 1 shows the comparison between the methods presented by Akbarzadeh
and Maenhout [2, Table 8], i.e. a Mixed Integer Programming (MIP) formulation,
a Constraint Programming (CP) formulation and a Dynamic Programming (DP)
method, and our method based on Simulated Annealing with increasing number
of iterations (106k with k ∈ [5, 10, 20, 50, 100]), denoted by SA-k . The table
reports for each method the average results obtained on all original instances
in terms of computational time in seconds (CPU), final optimality gap (Gap)
and percentage of instances solved to optimality (Opt) within the time limit3.
These results show that we can obtain the optimal value already in 2.5 seconds
on average, with a confidence of 98.1%. With 9.7 seconds we reach the near
certainty given by the confidence of 99.8%.

The project is still ongoing, and the current work regards the experimentation
on larger and more challenging instances, the development of exact methods, and
the design of hybrid approaches.

Acknowledgements We thank Babak Akbarzadeh for answering all our ques-
tions about their work.

References

1. Akbarzadeh, B., Maenhout, B.: A decomposition-based heuristic procedure for the
medical student scheduling problem. European Journal of Operational Research
288(1), 63–79 (2021)

2. Akbarzadeh, B., Maenhout, B.: An exact branch-and-price approach for the medi-
cal student scheduling problem. Computers and Operations Research 129, 105209
(2021)

3. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A.: Two-stage multi-neighborhood
simulated annealing for uncapacitated examination timetabling. Computers and Op-
erations Research 132, 105300 (2021)

3 The methods by Akbarzadeh and Maenhout [2] are implemented in the ILOG-OPL
IBM environment and the time limit imposed is 5760 secs for instances with 40
students and 11520 secs for those with 80 students.

86

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 E. Zanazzo et al.

4. Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., Urli, T.: Feature-based tuning
of simulated annealing applied to the curriculum-based course timetabling problem.
Computers and Operations Research 65, 83–92 (2016)

5. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: An
overview. In: Experimental methods for the analysis of optimization algorithms, pp.
311–336. Springer, Berlin (2010)

6. Ceschia, S., Di Gaspero, L., Schaerf, A.: Design, engineering, and experimental
analysis of a simulated annealing approach to the post-enrolment course timetabling
problem. Computers and Operations Research 39, 1615–1624 (2012)

7. Urli, T.: json2run: a tool for experiment design & analysis. CoRR abs/1305.1112
(2013)

87

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Shift Scheduling in Interdependent Multi-stage
Systems with Reallocation of Workforce

Seyed Mohammad Zenouzzadeh and Raik Stolletz[0000−0003−2725−9322]

Chair of Production Management, University of Mannheim, Germany
zenouzzadeh@uni-mannheim.de

raik.stolletz@uni-mannheim.de

Abstract. Many manufacturing and logistic systems (e.g., distribution
centers) consist of serially organized stages. In each of these stages, a
process is performed on each item of the demand (e.g., picking, con-
solidation/packing, and shipping in a distribution center). The number
of items to be processed at each stage depends on the demand pattern
and the assigned capacity to the predecessor stages. Hence, the capacity
decisions for the stages are interdependent in such systems. We model
the shift scheduling problem in systems with serially organized stages.
We consider a daily planning horizon with a multi-skilled workforce who
can be reallocated multiple times during their shifts. Each reallocation
between stages results in a loss of capacity at the destination stage. The
objective is to minimize the total workforce costs. We propose a column-
generation algorithm to solve the problem. We solve various realistic
instances to test the effectiveness of the proposed algorithm. Our results
show that scheduling the shifts independently for stages will either re-
sult in suboptimal or infeasible solutions. We also show that taking into
account the interdependency among the stages helps better utilize the
reallocation flexibility.

Keywords: Shift Scheduling · Multi-skilled workforce · Worker Reallo-
cation · Multi-stage systems

88

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

Enhancing Security via Deliberate Unpredictability
of Solutions in Optimisation

Daniel Karapetyan · Andrew J. Parkes

Received: date / Accepted: date

Abstract The main aim of decision support systems is to find solutions that
satisfy user requirements. Often, this leads to predictability of those solutions,
in the sense that having the input data and the model, an adversary or enemy
can predict to a great extent the solution produced by your decision support
system. Such predictability can be undesirable, for example, in military or se-
curity timetabling, or applications that require anonymity. In this paper, we
discuss the notion of solution predictability and introduce potential mecha-
nisms to intentionally avoid it.

Keywords Unpredictability · Decision Support · Diversity of Solutions ·
Perfect Matching Problem

1 Introduction

A search algorithm, even non-deterministic, is likely to be biased to some
solutions, and hence anyone knowing the input data and the algorithm might
be able to predict much of the solution. This can be an issue if the solution
has to be kept in secret. One of many examples of this is the scheduling of
tasks in cloud computing. In this problem, computational tasks are assigned to
various servers and time slots. While respecting the constraints and efficiency
considerations, one may want to keep the schedule as unpredictable as possible
to reduce the chances of the potential intruder to guess the server and/or time
slot assigned to a specific task.

D. Karapetyan
School of Computer Science, University of Nottingham
E-mail: daniel.karapetyan@nottingham.ac.uk

A. J. Parkes
School of Computer Science, University of Nottingham
E-mail: andrew.parkes@nottingham.ac.uk

89

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Daniel Karapetyan, Andrew J. Parkes

Solution space

A B

Decision variable

Fig. 1: Example of solution space with all the feasible solutions grouped into
two clusters A and B. Cluster A contains many more solutions than cluster
B; as a result, uniform sampling from the entire set of feasible solutions will
be biased towards cluster A, hence the value of the ‘decision variable’ will be
‘predictable’.

Solution unpredictability can be understood in many ways. In our example,
one may be interested in predicting the exact server and time slot for a task,
or may be interested in predicting only the server, or even an approximate
location of the server (i.e., the specific data centre). Our aim here is not to
give a generic formulation of the problem; but to point out potential interesting
extensions of the classic decision support, and to provide some relevant results,
and so to encourage further discussion of the topic.

In particular, we discuss diversity issues in the context of the assignment
problem, or specifically of variations of Perfect Matching Problems in bipartite
graphs, which is closely related to the task assignment in cloud computing.
We want the locations/times of different tasks to be unpredictable (to make
hacking harder) and so need diverse assignments to select from.

2 Generation of Unpredictable Solutions

A straightforward approach to achieve unpredictability of solutions is to ran-
domly sample the set of feasible solutions. (A standard technique to do this
is the “rapidly mixing Markov Chains”, e.g. see [1,4]) However, to enhance
security, the sampling should not necessarily be uniform. To illustrate this, we
refer to Figure 1. in which the sets of feasible solutions form clusters, i.e. sub-
sets of similar solutions (e.g. see [3]). In the example given in Figure 1, all the
solutions are grouped into two clusters: A and B. Hence, solutions within each
cluster share similar values of the ‘decision variable’. Cluster A contains more
solutions, and hence a solution selected with uniform sampling is likely to be
from cluster A. This will make the value of the decision variable predictable;
with high probability, it will correspond to the first cluster.

90

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Enhancing Security via Deliberate Unpredictability of Solutions in Optimisation 3

To address this issue, we may want to pre-select a subset of diverse feasible
solutions and then pick one of them randomly. For example, such a subset may
be obtained by selecting 10 feasible solutions such that the total Hamming
distance between them is maximised. (In a loose sense, we are doing the exact
opposite of the work on minimal perturbations, such as [2], which aimed to
find nearby solutions, and instead are looking for “maximal perturbations”.)

This approach is likely to generate interesting optimisation challenges. Do-
ing it directly by first enumerating all solutions is generally impractical, even
for problems where finding a solution is easy. Indeed, just counting all the
feasible solutions is generally #P-hard, and the solutions sets are typically
exponential in size.

Also, there is the challenge of selecting diverse sets of solutions. This cor-
responds to a kind of “Maximum Diversity Problem” and again likely to be
NP-hard. We expect that heuristic approaches can be used to address these
complexity issues, though maybe with special cases for which efficient algo-
rithms are available.

However, in this work-in-progress paper, naturally, we do not answer these
questions. Instead we consider the relatively simple case of perfect matching
problems, or assignment problems; though these problems are of interest in
their own right. For enhanced security of systems using assignment problems,
we might well want to increase the unpredictability of such solutions. Accord-
ingly, in the next section, Section 3, we study the problem of finding diverse
solutions to the perfect matching problem, and present relevant decision and
optimisation problems, with some initial work on solution methods.

3 Diverse Solutions Sets for the Perfect Matching Problem

Firstly, a quick reminder of the base problem:

NAME: Perfect-Matching
INSTANCE: A bipartite graph G = (U, V,E) over vertices (U, V) of sizes

(n, n) and with edges E.
SOLUTION: A vertex-disjoint subset M ⊆ E of n edges, i.e. a subset of the

edges that cover every node, and that are disjoint (do not share any nodes).

Finding one solution (perfect matching) is well-known to be polynomial-
time (e.g. using the Hungarian method). However, this does not mean that all
questions about perfect matchings are necessarily easy. For example, counting
the number of solutions is #P (sharp-P); a class that is (generally assumed)
much harder than NP. In particular, we remark, that there may well be that
there are questions, relevant to diversity, about the set of solutions (perfect
matchings) that may also be harder than P (under usual assumptions, such as
P 6= NP).

Firstly, suppose that we are given one perfect matching, and to promote
diversity, we want to find another one that is “as different as possible”. For

91

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Daniel Karapetyan, Andrew J. Parkes

simplicity, we will just measure the difference or or distance between match-
ings, hence, maximising the number of edges that are different. (Since we are
looking at perfect matchings then this is also equivalent to minimising the
number of edges which are shared between matchings.) Specifically, we define
the problem

DEFINITION: Distant-Perfect-Matching
INSTANCE:

– Bipartite (unweighted) graph G, on (n, n) nodes;
– Perfect matching M1;
– Integer 0 ≤ d ≤ n.

QUESTION: Does there exist another perfect matching M2, such that M1

and M2 differ on at least d assignments? In other words, does there exist
a matching M2 such that |M1 ∩M2| ≤ n− d?

The maximum distance, d = n, is easy because it means that no edges can
be shared. Hence, we can simply solve this case by removing all the edges in
M1 from E, and then looking for a perfect matching in this reduced graph.

The problem of finding maximum d can also be solved in poly-time using
the given solution M1 to modify the weights of the edges, giving a new weighted
graph and then doing a maximum weight perfect matching on this graph.

This approach has the drawback that we need to provide the first match-
ing. Instead, generally we want to simultaneously find a pair of well-separated
perfect matchings – ones differing on at least d edges. Using the usual distinc-
tion between ”maximal” (local) and ”maximum” (global), this leads to two
problems, Firstly, the “maximal” separation:

DEFINITION: Maximal-Separated-Perfect-Matchings
INSTANCE:

– Bipartite (unweighted) graph G on (n, n) nodes;
TASK: Find a pair of matchings M1 and M2, that are maximally separated.

That is, no matching is further from M1 than M2 is, and vice versa.

This is in poly-time because we just iterate solution to Distant-Perfect-
Matching, switching between which matching is considered the fixed one.
Starting from any matching, call it M1, then find the most distant, call it M2,
then find the most distant from M2 etc, terminating when the distance no
longer increases – which must happen within O(n) iterations.

This problem is like finding local optima under the (large) move of finding
the most distant matching. The corresponding global optimum version is to
demand “maximum” separation, equivalent to the following decision problem:

DEFINITION: Maximum-Separated-Perfect-Matchings
INSTANCE:

– Bipartite (unweighted) graph G on (n, n) nodes;
– Integer 0 ≤ d ≤ n.

QUESTION: Do there exist perfect matchings M1 and M2, such that M1 and
M2 differ on at least d assignments?

92

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Enhancing Security via Deliberate Unpredictability of Solutions in Optimisation 5

A special case of this is again a maximal separation, d = n, which re-
quires a disjoint pair of perfect matchings. However, given two disjoint perfect
matchings, then each vertex has two distinct edges to it; by following these
we get disjoint cycles. So the d = n case is equivalent to finding a “Disjoint
Vertex Cycle Cover” – a set of disjoint cycles that contain all the vertices.
This is known to be polynomial time by conversion to a matching problem1.
Currently, we do not know whether the Separated-Perfect-Matchings
problem for an arbitrary d is in P, or is NP-complete (or otherwise).

4 Conclusions

In this paper, we discussed the concept of unpredictability of solutions in
automated decision support. As a motivating example, we consider a simple
assignment problem, which could easily be part of task scheduling in cloud
computing. The aim is that unpredictability of task assignments will increase
security of the system, by making it harder for malicious agents to guess
locations and time slots of tasks. The most obvious approach to achieving
unpredictability, random sampling of solutions, turns out to be computation-
ally hard and weak. Indeed, uniform sampling is both complex and would not
necessarily give us the desired diversity of solutions.

Hence, we focus on finding a few diverse solutions; then we can select one
of them randomly to achieve unpredictability. We model the task scheduling
using the bipartite matching. We gave some initial definitions that relate to
finding diverse pairs of matchings. In particular, observing that finding max-
imally separated matchings is possible in polynomial time. Though not (yet)
answering the question of finding the pairs with maximum separation. Also
whilst we found that it is easy to find a pair of non-overlapping solutions, we
do not know whether this result generalises to a higher number of solutions.

This is still work in progress and more research is needed to establish effi-
cient methods for increasing unpredictability of solutions in new and existing
decision support systems. For example, here we have discussed only issues of
selecting from ‘feasible’, but it could be that this includes quality being above
some threshold.

References

1. Guruswami, V.: Rapidly mixing markov chains: A comparison of techniques (a survey)
(2016)

2. Müller, T., Rudová, H., Barták, R.: Minimal perturbation problem in course timetabling.
In: E. Burke, M. Trick (eds.) Practice and Theory of Automated Timetabling V, pp. 126–
146. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

3. Parkes, A.J.: Clustering at the phase transition. In: Proceedings of the fourteenth national
conference on artificial intelligence and ninth conference on Innovative applications of
artificial intelligence (AAAI-97), pp. 340–345 (1997)

1 See https://en.wikipedia.org/wiki/Vertex_cycle_cover

93

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Daniel Karapetyan, Andrew J. Parkes

4. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly mixing
markov chains. Information and Computation 82(1), 93 – 133 (1989). DOI https://doi.
org/10.1016/0890-5401(89)90067-9

94

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine by combining

logic-based Benders decomposition and a

priority-based heuristic ?

Emil Lindh1, Kim Olsson1, and Elina Rönnberg1[0000−0002−2081−2888]

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
elina.ronnberg@liu.se

Abstract. Underground mining is a complex operation that requires
careful planning. The short-term scheduling, which is the scheduling of
the tasks involved in the excavation process, is an important part of
the planning process. In this paper, we propose a new method for the
short-term scheduling of cut-and-�ll mines.
Our problem formulation includes a new aspect of the problem, which
is to handle that di�erent excavation locations of the mine can have dif-
ferent priorities. The inclusion of this aspect allows the user to control
the output of the scheduling and to direct resources to the locations
where they are most needed according to the long-term plans. Our solu-
tion method consists of two components: a priority-based heuristic that
constructs a complete solution by iteratively solving partial scheduling
problems containing subsets of tasks, and a logic-based Benders decom-
position scheme for solving these partial problems.
The computational performance of the proposed method is evaluated
on industrially relevant large-scale instances generated from data pro-
vided by the mining company Boliden. Comparisons are made both
with applying a constraint programming solver instead of the logic-based
Benders decomposition scheme and with applying a constraint program-
ming solver directly on the complete problem. The results show that our
method outperforms the other two methods and yields schedules with
a shorter makespan. The used instances are made publicly available to
support further research in this area.

Keywords: Underground-mine scheduling · Cut-and-�ll mining · Logic-
based Benders decomposition · priority-based heuristic

? The collaboration with Torbjörn Viklund and Rasmus Tammia at Boliden has been
vital for this project. They have contributed to discussing the problem formulation,
constructing relevant instances, and evaluating the schedules. The work is partly
funded by the Center for Industrial Information Technology (CENIIT), Project-ID
16.05. Monolithic MIP and CP models for the studied problem were formulated and
implemented in a student project by Daniel Cederberg, Jonatan Ek, Eric Felding,
Emil Lindh, Kim Olsson, and Sam Olsson. The results from that project have been
used for this paper with permission from the students.

95

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 E. Lindh, K. Olsson and E. Rönnberg

1 Introduction

The excavation of an underground mine is a complex operation that requires
careful planning. This planning is usually done in several phases with di�erent
time horizons. For an in-depth description of the planning phases, see [11]. The
two components of the planning process that we address are the so-called extrac-

tion plans and the short-term scheduling. The extraction plans describe when a
certain amount of ore from a certain part of the ore body should be excavated.
The short-term scheduling then executes these plans by scheduling the activities
and the machines involved in the excavation process.

In this paper, a new method is proposed for solving large-scale instances of a
short-term scheduling problem for a cut-and-�ll mine. Our problem formulation
di�ers somewhat from previous work [11,13�15] as it includes a priority order be-
tween excavation locations. This extension of the formulation is proposed since,
in practice, the urgency of the di�erent excavation locations may di�er. The
reason for the di�erences can depend both on the nature of the extraction plan
and on the progress made at each location, compared to what was expected.
During excavation, activities are often postponed due to unforeseen events and
the priority can therefore change between scheduling periods and it is important
for the planners to be able to direct the resources to the locations where they
are most needed.

Our solution method combines a priority-based heuristic with Logic-based
Benders decomposition (LBBD). Computational results are provided for indus-
trially relevant large-scale instances based on data from an operational mine.
These instances have been made publicly available1. The project has been car-
ried out in collaboration with the mining company Boliden and the paper is
based on the master's thesis by the �rst two authors [6].

1.1 Problem de�nition

In cut-and-�ll mining, the process of excavating a single volume of ore involves 11
tasks: drilling, charging, blasting, ventilation, watering, loading, scaling, cleaning,
shotcreting, bolting, facescaling and facecleaning. In our problem formulation, the
ventilation task is merged with the blasting task since none of them requires a
machine; this results in having only 10 tasks to schedule. Together, these 10
tasks form an excavation cycle. A location where excavation takes place is called
a face, and a mine can have several active faces in parallel.

Each task requires a speci�c type of machine and some tasks require the
same machine type. There is a limited number of machines of each type and
all machines of the same type are assumed to be identical. The tasks must be
scheduled in the correct order at each face, and an excavation cycle cannot
begin unless the previous cycle at the same face has been completed. Each day
is divided into two work shifts, 06:30 - 14:30 and 15:30 - 00:00, and only the
interruptible tasks can be started in one shift and �nalised in the next. The

1 https://gitlab.liu.se/eliro15/underground_mining_instances

96

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://gitlab.liu.se/eliro15/underground_mining_instances

Scheduling of an underground mine 3

shotcreting task requires a four-hour afterlag for the concrete to solidify before
the next task can be performed. The blasting task can only occur during speci�c
blasting windows between the work shifts, starting at either 15:00 or 00:42 and
lasting 30 minutes. During a blasting window, the mine has to be evacuated due
to safety reasons. Some tasks can be interrupted during the blasting windows
while others cannot.

A task in a speci�c cycle that is to be scheduled at a speci�c face will hence-
forth be referred to as a task instance. Each machine type has an estimated
velocity and when moving between two task instances at di�erent faces, there is
a travel time between the faces. The scheduling considers a number of excavation
cycles at a number of faces and aims at minimising the sum of the individual
makespans for the faces, while respecting the above-introduced constraints. A
more in-depth problem description is found in [11] and [6].

1.2 Related work

The short-term scheduling problem considered in this work is not well-studied.
There is however a series of papers from a PhD thesis [11] that addresses indus-
trially relevant instances of underground mining problems. In this series of work,
the scheduling of cut-and-�ll mining is structured as a �ow shop [13] and mod-
elled by a CP formulation [14]. In [15], the problem formulation and the model
of [13] and [14] are improved to better capture the characteristics of cut-and-�ll
mining, and the authors propose heuristics based on large neighbourhood search
for solving the problem. The instances used in this series of work are unfortu-
nately not available for further research or comparisons in this paper. Instead,
we have made a re-implementation of their CP model to use for benchmarking.
In [12], their results are extended to a more general underground-mining setting.

In [9] and [7], mixed-integer programming (MIP) approaches were applied
to similar scheduling problems. In [9], the authors present a MIP model for a
makespan minimizing mobile production �eet scheduling problem for a room-
pillar mine. They solve small instances to optimality using a commercial solver
and present heuristic methods for solving instances of larger sizes. In [7], the
authors study a scheduling problem for a sublevel stoping mine, which includes
the transportation of ore, and solve it using a MIP model and CPLEX. In [10], a
scheduling support instrument is developed that schedules some of the activities
in a production cycle.

To the best of our knowledge, there is no previous work where LBBD has been
applied to this type of scheduling problem. However, LBBD has been successfully
applied to other scheduling problems [1, 2, 5, 8].

1.3 Contributions and outline

Today, the short-term scheduling of the excavation process at Boliden is done
manually. As manual scheduling is a time-consuming and complex operation
that does not guarantee consistency in production e�ciency, a more autonomous
way of scheduling can yield great improvements. Heuristic methods for solving

97

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 E. Lindh, K. Olsson and E. Rönnberg

realistic instances of this scheduling problem, with the objective to minimise
makespan, have been developed [11]. However, many questions remain with re-
spect to how to model and e�ciently solve this problem. In particular, one crucial
aspect for applicability in practice is the choice of objective function and how to
take into account how the excavation progresses over time. Our work contributes
to improved modelling of the problem and with a new strategy for solving it.
These contributions are based on the following two fundamental observations
about the problem that we have not seen addressed in previous work.

The �rst observation is that the problem has some inherent symmetries due
to the machines being identical and the excavation cycles and the durations of
tasks being the same for all faces. Even if the di�erent travel times between
faces contribute to breaking some of these symmetries, several solutions with
the same or very similar makespan are likely to exist. A practical consequence
of this property is that there is room for the decision-maker to choose between
several plans with about the same e�ciency in terms of length of makespan �
which is the most important evaluation measure for a schedule.

Through discussions with practitioners, we learned that because of how the
mining progresses and because of other aspects of the planning, the urgency of
the faces can di�er. This suggests that, in addition to the objective to minimise
makespan, it is desirable to consider that there is a priority order between the
faces. Therefore, we propose a priority-based heuristic to incorporate face priori-
ties, while keeping the original makespan objective both in the models and as an
evaluation measure for the solutions. Using this evaluation measure allows for a
comparison with previous work. By using the priority-based heuristic, we both
increase the decision-maker's control of the scheduling output and improve the
computational times thanks to the symmetry breaking e�ect. This aspect of the
model and method design is evaluated through a comparison between directly
applying a CP solver using a carefully crafted model from previous work [11],
referred to as M-CP, and applying an adaptation of this model in each iteration
of the priority-based heuristic, referred to as H-CP.

The second observation is that by slightly reformulating the makespan ob-
jective, one obtains a formulation that lends itself to LBBD with a feasibility
subproblem. This new objective was also developed in dialogue with Boliden. It
is less granular than the standard objective function that directly aims to min-
imise the makespan and, instead, the focus is on which shifts to use to e�ciently
perform the tasks. Using the new objective, we introduce a LBBD scheme and
tailored acceleration techniques to be applied in each iteration of the priority-
based heuristic. The resulting approach is referred to as H-LBBD. Since the
LBBD scheme is applied within the heuristic, its e�ciency is evaluated in a
direct comparison with approach H-CP.

The models and the heuristic are presented in Section 2 and the LBBD
scheme, along with the acceleration techniques, is introduced in Section 3. Com-
putational results are presented in Section 4. Conclusions and comments about
possible future work are given in Section 5.

98

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 5

2 Modelling and priority-based heuristic

This section presents a complete CP model of the problem and the heuristic.

2.1 Monolithic CP-model

The CP model presented here is a re-implementation of the models presented
in [11], and we refer to the previous work for a detailed motivation and descrip-
tion of the models. In previous work, the problem is described in a k-stage hybrid
�ow shop framework [13] where a job corresponds to an excavation cycle which
is passed through k stages, each stage corresponding to a certain task within
the excavation cycle. The model is adapted to the speci�c problem structure by
including travel times and by removing time periods from the schedule in which
the mine is evacuated or empty, i.e blasting windows and shift breaks. The latter
results in a problem formulation in compressed time, and the solution is later
post-processed to obtain the solution in the correct time. This compressed-time
reformulation was introduced in [15], where a detailed description is found.

The notation used in the CP model is as follows. Let the set M index the
machines, the set F index the faces, and the set T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
index the tasks. Further, let J be the maximum number of cycles to schedule
and let the set Jf ⊆ {1, . . . , J} index the cycles at face f ∈ F . A task instance
is speci�ed by a task t ∈ T at a face f ∈ F in a cycle j ∈ Jf . To simplify
notation, we introduce a mapping of the indices of such task instance (tfj) to
a single index a and let A contain all task instances. Let Fa denote the face at
which task instance a ∈ A is to be scheduled. Furthermore, let the set B index
the blasting windows b and let sb be the time when blasting window b ∈ B starts
and ends (these times coincides in the time-compressed model).

Let the set Ma ⊆ M index the machines which can execute task instance
a ∈ A and let the set Am

m index the task instances that machine m ∈ M can
perform. Also, let the sets A(un) ⊆ A, A(al) ⊆ A, and A(bl) ⊆ A index the
uninterruptible task instances, task instances that require afterlag, and blasting
task instances, respectively. For each face f ∈ F , let the ordered set Af

f index
all the task instances, except the last one, in their execution order at face f .

Denote the duration of task instance a ∈ A by Da and the duration of
blasting window b ∈ B by d(b). Let the duration of the afterlag be denoted by
d(al) and let the travel time between faces f, f ′ ∈ F , be lff ′ . For each a ∈ A
and m ∈Ma the optional interval variable

Iam = (sam, eam, Da,oam)

holds the start time sam, end time eam, and duration Da of task instance a.
Also, it indicates by oam whether machine m performs task instance a or not.

To handle the compressed time, a variable d
(al)
a is introduced to calculate the

correct afterlag. The variable nextBlastam provides the next possible blast
occasion following task instance a ∈ A executed by machine m ∈Ma. Lastly, a

99

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 E. Lindh, K. Olsson and E. Rönnberg

precedence variable for a, a′ ∈ Am
m, m ∈M is de�ned as

baa′ =

1 if task instance a precedes task instance a′ on machine m,

0 if task instance a′ precedes task instance a on machine m,

⊥ if task instance a and a′ are done by di�erent machines.

The complete CP-model is

min
∑
f∈F

max
a∈Af

f

m∈Ma

(
oam × eam

)
,

s. t.
∑

m∈Ma

oam = 1, a ∈ A, (1a)

sam ∈ {sb|b ∈ B}, a ∈ A(bl),m ∈Ma, (1b)

sam ∈
⋃
b∈B

{sb−1, . . . , sb −Da}, a ∈ A(un),m ∈Ma, (1c)

baa′ = 1 ⇐⇒
oam ∧ oa′m ∧ sam +Da + lFaFa′ < sa′m m ∈M, a, a′ ∈ Am

m, (1d)

baa′ = 0 ⇐⇒
oam ∧ oa′m ∧ sa′m +Da′ + lFa′Fa < sam, m ∈M, a, a′ ∈ Am

m, (1e)

baa′ = ⊥ ⇐⇒ ¬(otm ∧ ot′m), m ∈M, a, a′ ∈ Am
m, (1f)

nextBlastam ∈ {sb|b ∈ B}, a ∈ A(al), (1g)

d(al)
a =

d(al) if sam +Da + d(al) < nextBlastam

d(al) − d(b) if sam +Da + d(al) > nextBlastam + d(b)

d(al) −∆d(al) otherwise, a ∈ A(al),

(1h)

sam +Da + d(al)
a ≤ s(a+1)m, f ∈ F , a ∈ Af

f ∩ A(al),m ∈Ma, (1i)

sam +Da ≤ s(a+1)m, f ∈ F , a ∈ Af
f \ A(al),m ∈Ma, (1j)

where ∆d(al) = sam +Da + d(al) − nextBlastam.

2.2 Priority-based heuristic

The main principle of the heuristic is to iteratively extend and solve the problem
with more task instances and to �x a majority � but not all � of the decisions
made in each iteration. To de�ne the iterations of the heuristic, we introduce
a batching of the tasks as illustrated in Figure 1. This batching is done such
that there is a reasonable amount of decisions to be made for each batch and
so that these decisions can be made in isolation for the current batch, even if
they of course have dependencies to other decisions. Note especially that, for
this reason, a batch always ends with an uninterruptible task.

In the �rst iteration of the heuristic, two batches are scheduled and there-
after, one batch at a time is added to the problem � and each such addition

100

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 7

Fig. 1. The batching of tasks within a cycle

corresponds to one iteration of the heuristic. The order in which to add the
batches is determined by the excavation cycle number, the priority of the face,
and the batch number. Among these, the cycle number always has precedence,
which means that all batches on all faces for a certain cycle number are scheduled
before a next cycle is considered. For each cycle number, the order is primarily
determined by the face priority, and for each face, its batches are added one at
a time in accordance with the batch number.

A more formal description of the heuristic is presented through pseudo-code
in Algorithm 1. Additional notation used in this description is that we let F (prio)

be an ordered set of face indices, given in the order of decreasing face priority,
and that we let bi contain the tasks in batch i ∈ {1, 2, 3}. The scheduling within
each iteration is done either by applying a CP solver to the model introduced in
Section 2.1 (but adapted to batch-wise scheduling) or by using the LBBD scheme
to be introduced in Section 3. In Algorithm 1, such scheduling is referred to as
applying a scheduling_method.

Algorithm 1 Priority-based heuristic

1: Input: J ; Jf , f ∈ F ; F (prio); b1, b2, b3; scheduling_method
2: for j = 1, . . . , J do

3: k = 1
4: while k ≤ |F (prio)| do
5: if k = 1 and j = 1 then
6: for i ∈ {1, 2, 3} do
7: add batch bi of cycle j = 1 at faces f1, f2 ∈ F (prio)

8: apply scheduling_method
9: k = k + 2
10: else

11: for i ∈ {1, 2, 3} do
12: add batch bi of cycle j ∈ Jf at face f ∈ F (prio)

13: apply scheduling_method
14: k = k + 1

In detail, a batch is scheduled by applying a scheduling_method on a
current partial problem, which includes all of the previously scheduled batches
as well as the current batch. The scheduling_method takes the scheduling
decisions for the current batch, but the previously scheduled batches are included
since the current batch has to be scheduled in relation to the already scheduled

101

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 E. Lindh, K. Olsson and E. Rönnberg

batches, e.g to be able to respect travel times. Once the scheduling_method
has been applied, some scheduling decisions for the current batch will be �xed.
When applying the LBBD scheme, these scheduling decisions are the machine
assignments and the work shift assignments for each task instance. When apply-
ing a CP solver directly, these decisions are the machine assignments and the
start times of each task instance.

3 Logic-based Benders decomposition

This section introduces an LBBD scheme designed to be used as a schedul-
ing_method in the priority-based heuristic presented in Section 2.2. In the
monolithic CP model, the objective is to minimise the sum of makespans of the
faces, with the makespan of a face de�ned as the time when its last task instance
is completed. In dialogue with Boliden, we concluded that this commonly used
scheduling objective might not best re�ect the decision problem to be solved
in practice. Instead, we decided to focus on which shifts to schedule the task
instances in, choosing as early shifts as possible, and then minimise the total
duration of the task instances scheduled in the last shift used for a face. An
important bene�t of using this objective is that it allows for designing an LBBD
scheme where the subproblem is a feasibility problem.

The decomposition is made such that in a MIP master problem, task in-
stances are assigned to work shifts and machines are assigned to task instances.
A CP subproblem is then used to schedule the tasks within the work shifts, re-
specting the machine assignments. Both problems are formulated in compressed
time as introduced in [15]. The LBBD scheme iterates between solving the mas-
ter problem and the subproblem, and if the subproblem is infeasible, a no-good
cut or a set of no-good cuts are fed back to the master problem. These LBBD
iterations are continued until the subproblem becomes feasible and then the
master problem decisions for the current batch are �xed and returned to the
heuristic. The values of the variables in the subproblem are never �xed since it
is pro�table if these can be adjusted depending on future master problem deci-
sions. To enhance the performance of the LBBD scheme, cut-strengthening and
problem-speci�c cuts are introduced, and the master problem is formulated to
include a subproblem relaxation.

3.1 Master problem

The role of the master problem is to assign task instances to work shifts and
machines to task instances. To formulate the MIP model, the following additional
notation is used. Let the set W index all work shifts and let the set W l index
all work shifts except the �rst one. Also, let the setMt ⊆ M index the subset
of machines that can perform task t ∈ T .

To handle the batches, let the set F (ba) ⊆ F index the currently and pre-

viously scheduled faces, and let the set J (ba)
f ⊆ Jf index the currently and

102

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 9

previously scheduled cycles at face f ∈ F (ba). Also, let the set Tfj ⊆ T in-

dex the tasks in cycle j ∈ J (ba)
f at face f ∈ F (ba) that are included in the

currently and previously scheduled batches and denote the last included task
in each Tfj by t̄fj . The main decision variables of the master problem are, for

t ∈ Tfj , f ∈ F (ba), j ∈ J (ba)
f , w ∈ W and m ∈Mt,

xtfjwm =

1 if task t at face f in cycle j is assigned to work shift w and

performed by machine m,

0 otherwise.

The duration of a task t ∈ T is Dt and each work shift w ∈ W has a length
Dw = ew − sw, where ew and sw are the end and start times of the work shift,
respectively. The second longest duration of all tasks is denoted p and used as
an aid when �tting task instances into work shifts. Some constraints are speci�c
to batch 2 and the parameter Bfj is used to indicate if batch 2 has been or is

currently being scheduled in cycle j ∈ J (ba)
f at face f ∈ F (ba).

For f ∈ F (ba), j ∈ J (ba)
f , w ∈ W and m ∈ M6 and given that Bfj = 1 the

following variables are de�ned to account for afterlag in the master problem,

yfjwm =

{
1 if task 6 and task 7 are assigned to the same work shift,

0 otherwise.

The face and cycle last added to F (ba) and J (ba)
f , respectively, are denoted by

f̄ and j̄f̄ . The objective value is represented by the auxiliary variable of̄ which
is de�ned by constraint (2n) below. The master problem is

min of̄ ,

s. t.
∑

w∈W,m∈Mt

xtfjwm = 1, t ∈ Tfj , f ∈ F (ba), j ∈ J (ba)
f , (2a)

∑
w∈W,m∈Mt−1

swx(t−1)fjwm ≤
∑

w∈W,m∈Mt

swxtfjwm, t ∈ T l
fj , f ∈ F (ba), j ∈ J (ba)

f , (2b)

∑
w∈W,m∈Mt−1

ewx(t−1)fjwm ≤
∑

w∈W,m∈Mt

swxtfjwm, t ∈ T̃ c
fj , f ∈ F (ba), j ∈ J (ba)

f , (2c)

∑
w∈W,m∈M9

swx9f(j−1)wm ≤
∑

w∈W,m∈M0

swx0fjwm, f ∈ F (ba), j ∈ J (ba),l
f , (2d)

∑
m∈Mt,t∈T c

fj

Dtxtfjwm +
∑

m∈M1

(D1 + p)x1fjwm +

Bfj

(∑
m∈M7

px7fjwm +
∑

m∈M6

d(al)yfjwm

)
≤ Dw + p,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, (2e)∑

m∈Mt,t∈Tfj

Dtxtfj(w−1)m +
∑

m∈Mt,t∈T c

fj

Dtxtfjwm +
∑

m∈M1

(D1 + p)x1fjwm +

103

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 E. Lindh, K. Olsson and E. Rönnberg

Bfj

(∑
m∈M6

d(al)
(
yfj(w−1)m + yfjwm

)
+
∑

m∈M7

px7fjwm

)
≤

ew − s(w−1) + p, f ∈ F (ba), j ∈ J (ba)
f , w ∈ W l, (2f)

Bfj

∑
t∈Ts,m∈Mt

(xtfj(w−1)m + xtfjwm) ≤ 3, w ∈ W, f ∈ F (ba), j ∈ J (ba)
f , (2g)

Bfj

∑
m∈M7

(x7fjwm + x6fjwm̃ − yfjwm̃ − 1) ≤ 0,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, m̃ ∈M6, (2h)

Bfj(yfjwm − x6fjwm) ≤ 0, f ∈ F (ba), j ∈ J (ba)
f , w ∈ W,m ∈M6, (2i)

Bfj

∑
m∈M7

(x7fjwm − yfjwm̃) ≥ 0,

f ∈ F (ba), j ∈ J (ba)
f , w ∈ W, m̃ ∈M6, (2j)∑

j∈J (ba)
f ,f∈F(ba)

x7fjwm ≤ 1, w ∈ W,m ∈M7, (2k)

[no-good cuts], (2l)

[problem-speci�c cuts], (2m)∑
m∈Mt̄

swxt̄f̄ j̄wm +
∑

t∈Tf̄ j̄ ,m∈Mt

Dtxtf̄ j̄wm ≤ of̄ , w ∈ W, (2n)

where for, f ∈ F (ba) and j ∈ J (ba)
f , T c

fj = Tfj \ {2, 8}, T l
fj = Tfj \ {0} and

T̃ c
fj = Tfj ∩{2, 8}. Additionally, t̄, f̄ , and j̄ denote the last task, face, and cycle,

respectively, in the batches currently considered, and J (ba),l
f is the set of cycles

in J (ba)
f excluding the �rst cycle and Ts = {6, 7, 8, 9} ⊂ T .

The objective essentially directs the master problem to schedule each task in-
stance in the earliest possible work shift, and to leave as short total task duration
as possible for the last used shift. Constraint (2a) assigns exactly one machine
to each task instance. Constraints (2b) and (2d) make sure that consecutive
task instances are assigned to the same or to consecutive work shifts, while con-
straint (2c) prevents the pairs charging and watering, and bolting and facescaling,
respectively, to be assigned to the same work shifts since it is impossible for those
pairs of task instances to be scheduled in the same shift. Constraints (2e), (2f)
and (2g) restrict which task instances that can be placed in the same work shifts,
essentially removing some assignments that will be infeasible in the subproblem.
Constraints (2h)�(2j) de�ne the value of the afterlag variable. Constraint (2k)
bounds the number of task instances a bolting machine can be assigned to in
a work shift. Finally, the no-good cuts and the problem-speci�c cuts (to be in-
troduced in Section 3.3) generated so far in the solution process are represented

104

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 11

by (2l) and (2m), respectively. Note that constraints (2c) and (2h)�(2k) form a
subproblem relaxation that strengthens the master problem.

3.2 Subproblem

A CP solver is applied to solve the subproblem, using a model derived from the
monolithic model in Section 1. The adjustments made to account for the master
problem decisions are as follows. Let the set Acurr index the task instances that
are to be scheduled by the subproblem and let w̄a denote the work shift assigned
to task instance a ∈ Acurr. The machine assigned to task instance a ∈ Acurr

is denoted by m̄a and the set that includes the indices of the used machines
is denoted by M̄. Due to the �x machine assignments, the interval variables
are no longer optional and constraint (1a) is not needed in the subproblem
model. Furthermore, the domains of the interval variables will be restricted to
their assigned work shifts by the constraints (3a) and (3b) and for this reason,
constraint (1c) is not needed in the subproblem. Moreover, the scheduling of the
blasting tasks does not need to be handled in the subproblem, since the master
problem assignment of the charging and watering tasks imply when blasting will
occur. Hence, constraint (1b) does not need to be included in the subproblem
and the nextBlast variables are �xed, resulting in that also constraint (1g) is
redundant to include in the subproblem model. Lastly, the subproblem has no
objective function since the objective depends only on master problem decisions.
Hence, the constraints to be included in the subproblem model are

startOf(Iam̄a
) ∈ {sw̄a

, . . . , ew̄a
−Da}, a ∈ A(un) ∩ Acurr, (3a)

startOf(Iam̄a) ∈ {sw̄a , . . . , ew̄a +Da}, a /∈ A(un) ∩ Acurr, (3b)

baa′ = 1 ⇐⇒ sam̄a +Da + lFaFa′ < sa′m̄a , m ∈ M̄, a, a′ ∈ Am
m ∩ Acurr, (3c)

baa′ = 0 ⇐⇒ sa′m̄a′ +Da′ + lFa′Fa < sam̄a , m ∈ M̄, a, a′ ∈ Am
m ∩ Acurr,

(3d)

d(al)
a =

d(al) if sam̄a +Da + d(al) < nextBlastam̄a

d(al) − d(b) if sam̄a
+Da + d(al) > nextBlastam̄a

+ d(b)

d(al) −∆d(al) otherwise, a ∈ A(al) ∩ Acurr,

(3e)

sam̄a
+Da + d(al)

a ≤ s(a+1)m̄a+1
, f ∈ F , a ∈ Af

f ∩ Acurr ∩ A(al), (3f)

sam̄a
+Da ≤ s(a+1)m̄a+1

, f ∈ F , a ∈ Af
f ∩ Acurr \ A(al), (3g)

where ∆d(al) = sam +Da + d(al) − nextBlastam.

3.3 Feasibility cuts

Whenever the subproblem is infeasible, that information is fed back to the master
problem in form of a no-good cut [3, 4] on the form

1−
∑
a∈Ā

xaw̄am̄a
≥ 1,

105

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 E. Lindh, K. Olsson and E. Rönnberg

using the mapping a = (tfj) in the de�nition of the variable x and the set Ā to
index the task instances included in the cut. For a no-good cut that originates
from solving the subproblem, Ā = Acurr holds. Since such cut is not very strong,
we designed and applied the following two cut-strengthening methods.

The �rst cut-strengthening method, presented in Algorithm 2, is shift-based
and applied in the �rst iteration of the heuristic when the subproblem is still of
small size. It strengthens a no-good cut through three steps: (I) Start at work
shift 0 and add one work shift at a time to the subproblem, until it becomes
infeasible. (II) Apply a greedy cut strengthening algorithm [4] with respect to the
added work shifts, starting at shift 0. (III) Apply a deletion �lter [3, 4] on the
task instances assigned to the remaining shifts. This method gives an irreducible
cut since, in the last step, a deletion �lter is applied to a subset of task instances
that yielded an infeasible subproblem.

Algorithm 2 Shift-based method

1: let w = 0
2: while subproblem feasible do
3: add all task instances assigned to work shift w to the subproblem
4: solve subproblem
5: let w = w + 1
6: let w = 0
7: while subproblem infeasible do
8: remove all task instances assigned to work shift w from the subproblem
9: solve subproblem
10: let w = w + 1
11: apply a deletion �lter on the remaining task instances

The cuts obtained by applying Algorithm 2 are also used to derive additional
no-good cuts by creating permutations of the machine assignments, using the
fact that the machines are identical. For example, if one of the drillrigs cannot
execute two tasks instances, then neither can any of the other two drillrigs.

The second cut-strengthening method, presented in Algorithm 3, is applied
in all but the �rst iteration of the heuristic. This method is batch-based and de-
signed to e�ciently handle the addition of new batches as they are added by the
heuristic. It strengthens a cut by applying a deletion �lter on the task instances
of the current batch. Assignments from previous batches are already proven to
be feasible before the addition of the current batch, but because of dependencies
between the batches, the current one cannot be evaluated in isolation. However,
to sustain a moderate size of the subproblems to be solved during cut strength-
ening also in later iterations of the heuristic, only a few work shifts and their
task instances from previous batches are included. The risk of this is that the
strengthening can fail and the original cut needs to be used, but in practice, this
never became the case.

106

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 13

Algorithm 3 Batch-based method

1: let B(curr) contain the task instances in the current batch
2: let w̃ be the earliest work shift of a task instance in B(curr)

3: add all task instances in work shifts w̃ − 4, . . . , w̃ to the subproblem
4: add all task instances B(curr) to the subproblem
5: if subproblem infeasible then
6: apply a deletion �lter with respect to the task instances in B(curr)

Problem speci�c cuts During the computational experiments, it was discov-
ered that the master problem was particularly weak with respect to one aspect
of the assignments and that many no-good cuts were required to reach feasibility
due to this. The aspect originates from the limited number of machines to use
for the tasks in batch 2. Speci�cally, if all task instances of two batches of batch
2 are scheduled within the same work shift, it is not possible to schedule all task
instances of a next batch 2 within this shift.

During the solution process, it is possible to keep track of the work shifts
that have been assigned two complete batches of batch 2. Let the set W̄ index
such work shifts and let f̃ and j̃ be the face and cycle of the second batch that
is currently scheduled. The problem-speci�c cut∑

t∈b2

∑
m∈Mt

xtf̃ j̃wm ≤ 4, w ∈ W̄,

ensures that, for each work shift with at least two batches of batch 2 already
scheduled, at least one task instance from the currently scheduled batch 2 is
assigned to another work shift.

4 Computational results

This section presents computational results from the implementation and eval-
uation of the following three solution methods.

� M-CP: Apply a CP solver directly on a monolithic model from previous
work. The model is described in Section 2.1.

� H-CP: Apply the priority-based heuristic and, in each iteration, use a CP
solver on an adaptation of the model in Section 2.1.

� H-LBBD: Apply the priority-based heuristic and, in each iteration, use the
LBBD scheme introduced in Section 3.

The evaluation measures that we use are computational times and the sum
of the makespans for the individual faces, henceforth simply referred to as
makespan. Important to note is that the only method that actually uses makespan
as the sole objective is M-CP, while both H-CP and H-LBBD include a priority
order, not as part of the mathematical model but through the heuristic. In ad-
dition, H-LBBD uses a slightly changed objective function as part of the LBBD

107

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 E. Lindh, K. Olsson and E. Rönnberg

scheme design. This means that for H-LBBD, the makespan is computed after
the solution is returned. In our comparison, M-CP is considered as the bench-
mark method, both because the method is exact and because the objective of
the model is the same as our measure for evaluating the quality of the schedule.
Furthermore, since M-CP stems from a re-implementation of a model in previous
work, it is also the best comparison we could make in this respect.

For the evaluations, we used 6 industrially relevant instances constructed
in dialogue with Boliden. These have been made publicly available and are de-
scribed in more detail in Section 4.1 together with a description of computational
settings. To evaluate the impact of the priority-based heuristic, each instance was
solved for three di�erent priority orders, denoted P1, P2, and P3. In P1, there is
an increasing priority from the �rst to the last face, and for the other two, there
is a randomly chosen order.

The �rst set of computational results, presented in Section 4.2, provides a
comparison between H-CP and H-LBBD to evaluate the impact of applying the
LBBD scheme instead of a CP solver in each iteration of the heuristic. This
comparison is direct in terms of only evaluating the use of the LBBD scheme.
Since the results of H-LBBD are much stronger than those of H-CP, the latter is
omitted from further comparisons. The second set of computational results gives
a comparison between H-LBBD and M-CP and is presented in Section 4.3.

4.1 Instances and computational settings

All our instances are constructed for a given mine topology that de�nes the
distances between the di�erent faces and for a given machine park. Each instance
is characterised by the number of parallel excavation faces and the number of
excavation cycles at each face. They have been encoded with #F:#C, e.g an
instance with 6 parallel faces and 4 cycles at each face is encoded 6F:4C, in
line with notation used previous work [11]. Most of our instances consist of 24
cycles in total, since this gives a realistic instance size according to Boliden. An
instance with a speci�c characteristic is 18F:XC that has a total of 24 cycles,
where faces 1 to 12 have one cycle and 13 to 18 have two cycles. Since the choice
of the starting task at each face has a large impact on the objective value, we
use the same starting task, drilling, for all faces and all instances.

The number of task instances that a problem instance contains is #F ×
#C × 10. For example, 6F:4C include 6 × 4 × 10 = 240 task instances. The
machine park used in our instances consists of seven di�erent kinds of machines,
2 drillrigs, 2 chargers, 2 watering trucks, 5 loaders, 3 scalers, 2 shotcreters and
4 bolters. Note that the choice of machine for each task instance also yields
additional decisions to be made as part of the scheduling.

The CP models were solved by IBM ILOG CP Optimizer version 20.1.0.0 and
the MIP model was solved using Gurobi Optimizer version 9.1.2. All tests were
run on a PC using an Intel i7 2600k processor at 4.1 GHz and 16 GB of RAM. The
industrially relevant instances have been generated in dialogue with Boliden and
made publicly available at https://gitlab.liu.se/eliro15/underground_mining_
instances where further details are found.

108

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://gitlab.liu.se/eliro15/underground_mining_instances
https://gitlab.liu.se/eliro15/underground_mining_instances

Scheduling of an underground mine 15

4.2 Comparison between H-LBBD and H-CP

The �rst set of experiments is made to determine which scheduling_method
yields the best performance of the heuristic. Since the only di�erence between
the methods H-CP and H-LBBD is how the scheduling is done in each iteration
of the heuristic, it is possible to make an individual comparison for each pair of
instance and priority order, providing 18 such pairs to evaluate.

Initial tests revealed that it would not be possible to let the CP solver run
to optimality in each iteration of the heuristic, and for this reason we needed to
put a time limit on each iteration. Since the initial tests also indicated that the
LBBD scheme was consistent in producing reasonable schedules in each iteration,
without time limits and with a zero-valued MIP-gap in the master problem, we
decided to record the time used by H-LBBD in each iteration of the heuristic
and then give the CP solver the same amount of time in each iteration. The
results from the comparisons with these time limits are shown in Table 1.

Instance -priority Time [s] H-CP H-LBBD

6F:4C -P1 214 - 71191

-P2 418 79718 72156

-P3 221 - 71191

10F:3C -P1 1005 114291 98046

-P2 1281 112792 96375

-P3 1646 98595 97683

12F:2C -P1 1237 95777 83321

-P2 1390 91255 85279

-P3 835 93228 82722

F15:C2 -P1 2295 141988 116935

-P2 2225 118584 119523
-P3 2651 128531 119784

18F:XC -P1 1159 99879 98917

-P2 1034 103966 99829

-P3 1092 105670 104111

24F:1C -P1 2819 134634 126304

-P2 2017 132404 125704

-P3 2767 131204 127434

Table 1. The makespan (or �-� when no solution was found) for the schedules produced
by H-CP and H-LBBD, respectively, when using the same total computational time
for an instance-priority pair

The results in Table 1 show that H-LBBD yields a better makespan than
H-CP for all instances except 15F:2C with priority P2. In particular, H-LBBD
excels when the ratio of cycles to faces is high. Furthermore, when comparing the
results for di�erent priority orders for the same instance, it can be noted that

109

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 E. Lindh, K. Olsson and E. Rönnberg

the priority order has an impact on the makespan. Sometimes the di�erences
are signi�cant, especially for H-CP. For H-LBBD the results are more consis-
tent. The impact of the priority order is further discussed in Section 4.3 when
benchmarking with M-CP. Our conclusion from the �rst set of experiments is
that H-LBBD performs better than H-CP and that we therefore can omit the
latter in the further evaluations.

4.3 Comparison between H-LBBD and M-CP

The comparison between H-LBBD and M-CP is multifaceted since, even if in
both cases we are interested in �nding a solution with a short makespan quickly,
both the methods and the objectives di�er. Objective-wise, H-LBBD takes the
priority order into account, while M-CP does not. However, in the comparison,
the result is evaluated with respect to the makespan, that is, the objective used
in M-CP. This means that for one result from M-CP, we have three results from
H-LBBD to compare with and this comparison needs to include an analysis of
the impact of taking the priority order into account in H-LBBD.

Method-wise, H-LBBD is a heuristic while M-CP is an exact method. How-
ever, as will be apparent in the results, the CP solver is far from capable of
�nding an optimal solution, and for this reason it becomes more reasonable to
treat also M-CP as a heuristic in the sense that it is evaluated by the makespan
produced after a certain time limit. For this purpose, we introduce two time
limits. The �rst is LBBD max time limit, which is the maximum time spent by
H-LBBD for the priority order that required the longest computational time,
hence giving an advantage to M-CP in the evaluation. The second one, Bench-
mark time limit, is chosen to be signi�cantly longer than the �rst to, if possible,
provide a really short makespan to use as benchmark when assessing the impact
of the priority order. The results are displayed in Table 2.

We begin by comparing H-LBBD with M-CP for the LBBD max time limit.
Most striking is that for all instances, the makespans of the schedules from H-
LBBD are, irrespective of the priority order used, shorter than the makespan of
the corresponding schedule produced by M-CP. We interpret this as an e�ect of
H-LLBD being a much more e�cient solution method for the problem, and this
to a magnitude that makes the priority order irrelevant. Comparing the relative
improvement of the makespan between M-CP and H-LBBD for the priority order
with the best makespan gives a relative di�erence of 22%, 6%, 2%, 14%, and 2%,
respectively, for the instances solved by both methods.

When comparing the makespans for the LBBDmax time limit and the Bench-
mark time limit for M-CP, we note that there is an improvement when allowing
the CP solver additional computational time. For 6F:4C it makes the di�erence
between �nding a feasible solution and not, and in this case the time limit was
increased by a factor of about 9. For the other instances, the relative improve-
ments of the makespans are 5.3%, 1.8%, 0.04%, 6.7%, and 0.1%, respectively, for
the time limit being increased by a factor of 3, 3, 3, 5, and 3, respectively.

The �nal comparison is between H-LBBD and M-CP with the Benchmark
time limit. There we see that for instance 15F:2C with priority P2 and P3, the

110

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 17

Instance Eval. measure Method

M-CP H-LBBD

Benchmark LBBD max P1 P2 P3
time limit time limit

6F:4C Makespan 83004 - 71191 72156 71191

Time [s] 3600 418 214 418 221

10F:3C Makespan 117249 123795 98046 96375 97683
Time [s] 5400 1646 1005 1281 1646

12F:2C Makespan 86577 88200 83321 85279 82722

Time [s] 5400 1390 1237 1390 835

15F:2C Makespan 119351 119863 116935 119523 119784
Time [s] 7200 2651 2295 2225 2651

18F:XC Makespan 107524 115294 98917 99829 104111
Time [s] 5400 1159 1159 1034 1092

24F:1C Makespan 126924 128273 126304 125704 127434
Time [s] 7200 2819 2819 2017 2767

Table 2. The makespan (or �-� when no solution was found) for the schedules produced
by M-CP and H-LBBD, respectively, for di�erent time limits

makespan is longer in the schedules from H-LBBD than in the schedule from M-
CP. However, the relative di�erences are only about 0.1% and 0.3%, respectively,
after about 3 times more computational time. For all other instances and priority
orders, H-LBBD still provides the best makespans � despite the much longer
runtimes for M-CP. Again, this means that the e�ciency of the LBBD scheme
dominates that of the e�ect of taking the priority order into account. Further
analysis of the impact of priority orders is therefore left for future work. As a
preliminary result in this direction, Figure 2 illustrates the schedules from H-
LBBD for instance 10F:3C with priority order P1 and P2, respectively. More
illustrations of this kind are found in [6].

5 Concluding remarks

This paper addresses how to formulate and solve a short-term scheduling problem
for a cut-and-�ll mine. To enable a high degree of control on the scheduling
output, a priority-based heuristic that adapts to di�erent face priorities was
proposed. Note that since the distances between di�erent faces of a mine are
not the same, the priority order is expected to have an impact on the best
possible makespan that can be obtained. The heuristic was integrated with an
LDDB scheme to solve the partial scheduling problems in each iteration of the
heuristic. To enable an e�cient LBBD scheme, a new objective for the problem
was introduced. This objective indirectly aims for a short makespan but it uses
the shift structure of the problem instead of considering the end times of tasks.

111

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

18 E. Lindh, K. Olsson and E. Rönnberg

Fig. 2. Schedules for instance 10F:3C for the priority order P1 (order:
1,2,3,4,5,6,7,8,9,10) and P2 (order: 4,9,6,5,1,8,3,2,7,10), respectively. Colours are:
turquoise for drillrigs 1�2, red for chargers 1�2, green for watering trucks 1�2, blue
for loaders 1�5, lime green for scalers 1�3, purple for shotcreters 1�2, grey for bolters
1�4, and pink for afterlag

112

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling of an underground mine 19

The e�ect of including a priority order was evaluated by comparing with the
makespans of schedules generated without considering a priority. The results
showed that � thanks to computational e�ciency � our schedules had a shorter
makespan than that obtained when applying a CP solver on a monolithic CP
model aiming only at minimising the makespan. Note that this was almost always
the case also when the CP solver was given signi�cantly longer computational
times. The conclusion we draw from this is that applying an approach like the
one we propose shows great promise for this type of scheduling problem and that
the impact of including priorities needs to be further studied.

In other future work, it is relevant both to improve the modelling of the
problem and to continue the development of more e�cient solution methods. In
particular, the heuristic can be further developed and so can the LBBD scheme.
For the latter, there is potential to improve the master problem formulation and
the cut-strengthening procedures.

References

1. Coban, E., Hooker, J.: Single-facility scheduling by logic-based Benders decompo-
sition. Annals of Operations Research 210, 245�272 (2013)

2. Emde, S., Polten, L., Gendreau, M.: Logic-based Benders decomposition for
scheduling a batching machine. Computers & Operations Research 113, 104777
(2019)

3. Hooker, J.N.: Logic-Based Benders Decomposition for Large-Scale Optimization,
pp. 1�26. Springer International Publishing, Cham (2019)

4. Karlsson, E., Rönnberg, E.: Strengthening of feasibility cuts in logic-based Ben-
ders decomposition. In: Stuckey, P.J. (ed.) Integration of Constraint Programming,
Arti�cial Intelligence, and Operations Research. pp. 45�61. Springer International
Publishing, Cham (2021)

5. Karlsson, E., Rönnberg, E.: Logic-based Benders decomposition with a partial as-
signment acceleration technique for avionics scheduling. Computers & Operations
Research (2022). https://doi.org/10.1016/j.cor.2022.105916

6. Lindh, E., Olsson, K.: Scheduling of an underground mine by combining logic-based
Benders decomposition and a constructive heuristic. Master's thesis, Department
of Mathematics, Linköping University, Sweden (2021)

7. Nehring, M., Topal, E., Knights, P.: Dynamic short term production scheduling
and machine allocation in underground mining using mathematical programming.
Mining Technology 119(4), 212�220 (2010)

8. Roshanaei, V., Luong, C., Aleman, D.M., Urbach, D.: Propagating logic-based
Benders' decomposition approaches for distributed operating room scheduling. Eu-
ropean Journal of Operational Research 257(2), 439�455 (2017)

9. Schulze, M., Rieck, J., Sei�, C., Zimmermann, J.: Machine scheduling in under-
ground mining: an application in the potash industry. OR Spectrum 38, 365�403
(2015)

10. Song, Z., Schunnesson, H., Rinne, M., Sturgul, J.: Intelligent scheduling for under-
ground mobile mining equipment. PLOS ONE 10(6), 1�21 (2015)

11. Åstrand, M.: Short-term Underground Mine Scheduling: An Industrial Application
of Constraint Programming. No. 36, KTH, Automatic Control (2021), PhD thesis

113

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/10.1016/j.cor.2022.105916

20 E. Lindh, K. Olsson and E. Rönnberg

12. Åstrand, M., Johansson, M., Feyzmahdavian, H.R.: Short-term scheduling of pro-
duction �eets in underground mines using CP-Based LNS. In: Stuckey, P.J. (ed.)
Integration of Constraint Programming, Arti�cial Intelligence, and Operations Re-
search. pp. 365�382. Springer International Publishing, Cham (2021)

13. Åstrand, M., Johansson, M., Greberg, J.: Underground mine scheduling modelled
as a �ow shop : a review of relevant work and future challenges. The Southern
African Journal of Mining and Metallurgy 118(12), 1265�1276 (2018)

14. Åstrand, M., Johansson, M., Zanarini, A.: Fleet scheduling in underground mines
using constraint programming. In: van Hoeve, W.J. (ed.) Integration of Con-
straint Programming, Arti�cial Intelligence, and Operations Research. pp. 605�
613. Springer International Publishing, Cham (2018)

15. Åstrand, M., Johansson, M., Zanarini, A.: Underground mine scheduling of mobile
machines using constraint programming and large neighborhood search. Computers
& Operations Research 123, 105036 (2020)

114

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Solving an Industrial Oven Scheduling Problem
with a Simulated Annealing Approach

Marie-Louise Lackner, Nysret Musliu, and Felix Winter

Christian Doppler Laboratory for Artificial Intelligence and Optimization for
Planning and Scheduling, DBAI, TU Wien, Favoritenstraße 9, 1040 Vienna, Austria

marie-louise.lackner@tuwien.ac.at, nysret.musliu@tuwien.ac.at,
felix.winter@tuwien.ac.at

1 Introduction

In times of a climate crisis, reducing industrial energy consumption has become
all the more important. In this paper, we are concerned with the hardening
process of electronic components in specialised heat treatment ovens, a highly
energy-intensive task. The energy consumption of this process can be reduced
by grouping compatible jobs into batches for simultaneous processing.

Recently, we formalized this problem as the Oven Scheduling Problem (OSP),
an NP-hard parallel batch scheduling problem [4]. The key task of the OSP is to
create a feasible assignment of jobs to batches and to find an optimal schedule
of these batches on a set of ovens. The creation of batches must be done in
such a way that jobs in the same batch have the same attribute as well as
compatible minimal and maximal processing times. Moreover, the scheduling
of batches needs to respect the jobs’ earliest start times, their respective sets
of eligible ovens as well as oven capacities. Furthermore, availability times of
ovens as well as attribute-dependent setup times between batches need to be
considered. The optimization goal of the OSP is to minimize a linear combination
of three objectives: cumulative batch processing time, tardiness and setup costs.
For a more formal definition of the OSP, we refer the reader to our previous
publication [4].

A wealth of scientific papers has investigated batch scheduling problems
throughout the past three decades (see. e.g., the surveys [6, 7, 2]). The prob-
lems studied so far in the literature typically minimize objectives related to
makespan, tardiness or lateness. The OSP differs from these problems as one of
its main objectives is to minimize the cumulative batch processing time across
all ovens–which is directly related to the energy costs of running the ovens.

In our recent publications introducing the OSP [4, 5], we provided a bench-
mark set consisting of 80 instances of different sizes (up to 100 jobs), developed
CP and ILP models and performed an extensive experimental evaluation of
our proposed exact solution methods. Moreover, we developed theoretical lower
bounds on the optimum value.

To increase the practical applicability of our previously developed methods
for the OSP, two goals need to be pursued. Most of the large benchmark instances

115

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 M.-L. Lackner et al.

with 50 or 100 jobs could not be solved to optimality within the runtime limit of
one hour. Firstly, we thus need to improve the solution quality for large instances.
Secondly, in practice one often needs to obtain solutions – of not necessarily
optimal, but sufficiently good quality – in shorter time than one hour, ideally
in just a couple of minutes. In order to fulfill both of these goals, we propose
a metaheuristic local search approach based on simulated annealing which we
briefly describe in the following section. In Section 3, we then evaluate the results
of our preliminary experiments with this new solution approach for the OSP.

2 The Simulated Annealing Approach

Simulated annealing is a metaheuristic local search technique targeted at finding
an approximation of the global optimum for optimization problems with large
search spaces. The name of this technique comes from the process of annealing
in metallurgy and was introduced by Kirkpatrick, Gelatt and Vecchi [3]. Since,
simulated annealing has been successfully employed to solve a variety of real-
world optimization problems, including batch scheduling problems (see, e.g., [1]).

In the following, we briefly describe the core concept of simulated annealing
and our implementation of this technique for the Oven Scheduling Problem. The
simulated annealing algorithm starts off at an initial temperature and with an
initial solution that we obtain using the construction heuristic we presented in
our previous work [4, 5]. At every iteration step, one of four neighborhood types
is chosen uniformly at random, and a candidate solution in this neighborhood is
chosen by applying a random move to the current solution. The four neighbor-
hood moves we propose are the following: (i) Move Job to Batch: select a job
and add it to an existing batch that is compatible, (ii) Create New Batch from
Job: select a job, remove it from its current batch, create a new batch consisting
of this single job and insert this batch somewhere in the current schedule, (iii)
Move Batch: select an entire batch and insert it at a new position of the current
schedule, (iv) Swap Consecutive Batches: select two consecutive batches on the
same oven and swap them.

The candidate solution obtained in this way is accepted if its solution cost
is an improvement over the current solution. In case the candidate solution is a
deterioration of the current solution, it is also accepted if the acceptance crite-
rion is met. This acceptance criterion depends both on the current temperature
and the relative size of the deterioration; we use the metropolis criterion [3] as
acceptance function. After this step, the temperature is reduced according to a
cooling scheme. This procedure is iterated until the runtime limit is reached and
returns the best solution found.

3 Preliminary Experimental Evaluation

In order to assess the viability of the proposed local search approach using sim-
ulated annealing, we implemented a preliminary version of the algorithm. Based
on manual parameter tuning, we set the initial acceptance rate to 50% and the

116

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Solving the Oven Scheduling Problem with Simulated Annealing 3

minimum temperature to 10−10. For a given instance, the initial temperature is
chosen so that moves are accepted with probability equal to the initial accep-
tance rate at the beginning of the local search process. This is done by creating a
sample of moves from the initial solution. Moreover, instead of using a fixed cool-
ing rate, the cooling scheme is chosen adaptively for every run of the algorithm:
the cooling is done in such a way that the minimum temperature is reached at
the same time as the runtime limit. This is ensured by calculating a new, re-
duced temperature after every iteration step, based on the current average time
required per iteration. We performed a series of experiments on our benchmark
set [4] consisting of 80 randomly generated instances.1 The experiments were run
on single cores, using a computing cluster with 10 identical nodes, each having
24 cores, an Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

exact methods simulated annealing
runtime limit per run 1 hour 30 seconds 5 minutes

best results 54 56 77
provably optimal results 37 36 37

Table 1: Overview of the preliminary computational results on the benchmark
set consisting of 80 instances.

An overview of our preliminary results can be found in Table 1. In this table,
we compare the quality of solutions obtained with the exact methods presented in
our previous work [4] with those obtained with the simulated annealing approach.
Our previous experiments (presented in [4]) were run in the same computing
environment as the ones in this paper. For the exact methods, we use the overall
best (minimal) solution cost per instance obtained in [4]. To be precise, this
is the best result obtained by any of the 53 exact methods2 within a runtime
limit of one hour. For the simulated annealing approach, we chose to run our
algorithm 5 times per instance and use the best result for the comparison. This
repetition can be advantageous due to the non-deterministic nature of simulated
annealing. We considered two runtime limits: 30 seconds per run (2.5 minutes
in total) and 5 minutes per run (25 minutes in total).

The row labeled “# best results” in the table displays the number of instances
for which overall best solutions could be achieved (out of 80). The row labeled “#
provably optimal results” shows the number of obtained optimal solutions, i.e.,
solutions for which one of the exact solutions methods could prove optimality. As
one can see, running the simulated annealing approach with merely 30 seconds
1 The benchmark set is publicly available at https://cdlab-artis.dbai.tuwien.ac.at/

papers/ovenscheduling/OSPrandominstances/.
2 This number results from the combination of different models, solvers and search

strategies as well as a warm-start option.

117

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://cdlab-artis.dbai.tuwien.ac.at/papers/ovenscheduling/OSP random instances/
https://cdlab-artis.dbai.tuwien.ac.at/papers/ovenscheduling/OSP random instances/

4 M.-L. Lackner et al.

per run already allows us to obtain a similar solution quality as with the best
exact methods and a runtime limit of one hour. Increasing the runtime of the
simulated annealing approach to 5 minutes per run, leads to best results for
nearly the entirety of the benchmark set (77 of 80 instances). Furthermore,
regarding the instances for which provably optimal solutions could be found by
the exact methods, the simulated annealing approach with 5 minutes runtime
also finds optimal solutions for every one of these 37 instances; with 30 seconds
runtime, optimal solutions can be found for all except one of these instances.

We note that the compared methods were all capable of finding solutions for
the entire benchmark set (80 instances). Moreover, both the exact methods and
the simulated annealing approach were always capable of improving the (initial)
solution provided by the construction heuristic [4].

In Table 2, we take a closer look at the results obtained for the 43 instances of
the benchmark set for which none of the exact methods could prove optimality
within the runtime limit of one hour. For every one of these instances, we com-
pute the relative improvement ri in % of the simulated annealing approach over
the best exact approach. For the simulated annealing approach, we take the best
result of 5 runs each having a runtime limit of 5 minutes. In this table, we group
the instances by their number of jobs (20, 50 or 100 jobs) and by the value of the
relative improvement. Overall, the improvement ri is between -0.05% and 1%
for 32 (of 43) instances: for 15 instances, the simulated annealing approach finds
solutions of the same quality as the exact approach (ri = 0), for another 15 in-
stances, simulated annealing delivers slightly better results (ri ∈ (0, 1]), and for
2 instances slightly worse results (ri ∈ [−1, 0)). For the remaining 11 instances,
an improvement of the solution cost by more than 1% was possible, for 7 of which
the improvement was larger than 10%. Note that for none of the 43 instances,
the solution quality of the simulated annealing approach was significantly worse
than the best exact result: there are no instances with ri < −1%.

It is important to note that the size of the instance has a major impact
on the improvement made by the simulated annealing approach: for all of the
smaller instances with 20 jobs, the solution quality could not be improved; for
the instances with 50 jobs, an improvement was possible for 7 out of 17 instances;
for the instances with 100 jobs, the solution quality was improved for 19 out of
20 instances. A possible explanation is that the solutions found by the exact
methods for the smaller solutions might by optimal–even though no optimality
proof could be delivered within the runtime limit of one hour–or very close to
the global optimum.

4 Future Work

The preliminary results obtained with the proposed simulated annealing ap-
proach on our benchmark set already look promising. As a next step, we plan to
configure our algorithm by using automated parameter configuration tools for
parameters such as the probabilities of neighborhoods, initial acceptance rate

118

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Solving the Oven Scheduling Problem with Simulated Annealing 5

instances with relative improvement ri
jobs # instances [−1, 0) = 0 (0, 1] (1, 10] > 10 avg ri max ri

20 6 0 6 0 0 0 0% 0%
50 17 1 9 6 0 1 0.65% 10.45%
100 20 1 0 9 4 6 7.15% 28.01%
total 43 2 15 15 4 7 3.58% 28.01%

Table 2: Overview of the relative improvement ri (in %) achieved by the sim-
ulated annealing approach over the best exact approach. Numbers in bold font
indicate instances for which an improvement over the best exact result could be
achieved. Results are only displayed for the 43 benchmark instances for which
no exact method could deliver an optimality proof within the runtime limit of
one hour.

and final temperature. Then we plan to conduct an additional evaluation of our
simulated annealing approach, including experiments with a longer runtime.

In practice, instances can be even larger than those included in our bench-
mark set; instances consisting of up to 1500 jobs can be expected. We will there-
fore also conduct experiments on larger instances than those in our benchmark
set. Moreover, we will include the lower bounds obtained by the exact meth-
ods [4] as well as the theoretical lower bounds [5] in this evaluation in order to
provide a more precise assessment of the solution quality. The theoretical lower
bounds, which can be calculated in a few seconds, could also be integrated in a
stopping criterion for the simulated annealing approach to reduce the runtime.

Another promising line of research would be to investigate adaptive neighbor-
hood selection. In the current formulation of our simulated annealing approach,
the probability of each of the four neighborhoods is constant throughout the
solution process. It could however be advantageous to adapt these probabilities
based on the current state of the search process. Moreover, it would be interesting
to investigate domain-independent hyper-heuristic approaches.

Acknowledgments The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for Research, Technology
and Development and the Christian Doppler Research Association is gratefully
acknowledged.

119

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Bibliography

[1] Damodaran, P., Vélez-Gallego, M.C.: A simulated annealing algorithm to
minimize makespan of parallel batch processing machines with unequal job
ready times. Expert systems with Applications 39(1), 1451–1458 (2012)

[2] Fowler, J.W., Mönch, L.: A survey of scheduling with parallel batch (p-
batch) processing. European Journal of Operational Research 298(1), 1–24
(Apr 2022)

[3] Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated An-
nealing. Science 220(4598), 671–680 (May 1983). https://doi.org/10.1126/
science.220.4598.671

[4] Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Mini-
mizing Cumulative Batch Processing Time for an Industrial Oven Schedul-
ing Problem. In: 27th International Conference on Principles and Practice
of Constraint Programming (CP 2021). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 210, pp. 37:1–37:18. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, Dagstuhl, Germany (2021)

[5] Lackner, M.L., Mrkvicka, C., Musliu, N., Walkiewicz, D., Winter, F.: Exact
methods and lower bounds for the oven scheduling problem. Under review
(2022), https://arxiv.org/abs/2203.12517

[6] Mathirajan, M., Sivakumar, A.I.: A literature review, classification and sim-
ple meta-analysis on scheduling of batch processors in semiconductor. The
International Journal of Advanced Manufacturing Technology 29(9-10), 990–
1001 (2006)

[7] Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European
Journal of Operational Research 120(2), 228–249 (Jan 2000)

120

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://arxiv.org/abs/2203.12517

Scheduling Satellite Timetables using DCOP

Shai Krigman, Tal Grinshpoun[0000−0002−4106−3169], and Lihi
Dery[0000−0002−8710−3349]

Department of Industrial Engineering and Management
Ariel Cyber Innovation Center

Ariel University, Ariel 4070000, Israel
shai.krigman@msmail.ariel.ac.il, talgr@ariel.ac.il, lihid@ariel.ac.il

Abstract. Earth observation satellites (EOS) are satellites equipped
with optical sensors that orbit the Earth to take photographs of specific
areas at the request of users. With the development of space technol-
ogy, the number of satellites increases continuously. Yet still, the num-
ber of satellites cannot meet the explosive growth of applications. Thus,
scheduling solutions are required to satisfy requests and obtain a high
observation efficiency. While the literature on multi-satellite scheduling
is rich, most of the solutions are centralized algorithms. However, due
to their cost, EOS systems are often co-funded by several agents (e.g.,
countries, companies, or research institutes) and central solutions require
that these agents will share their requests for observations with others.
To date, there is no solution for EOS scheduling that protects the pri-
vate information of the interested parties. In this study, we model the
EOS scheduling problem as a distributed constraint optimization prob-
lem (DCOP). This modeling enables generating timetables for the satel-
lites in a distributed manner without a priori sharing private information
of the users with some central authority. For solving the resulting DCOP,
we use the Distributed Stochastic Algorithm (DSA), which is a simple
DCOP algorithm that is known to produce efficient solutions in a timely
manner. The modeling together with the solving of the resulting DCOP
constitute our new solution method, which we term Distributed Satel-
lite Timetable Solver (DSTS). Experimental evaluation reveals that the
DSTS method provides solutions of higher quality than a commonly-
used Greedy algorithm.

Keywords: Earth observation satellites · Satellite timetables · DCOP.

1 Introduction

Earth observation satellites (EOSs) are sensor-equipped satellites that are des-
ignated to take photographs of special areas at the request of a user [39]. The
satellites perform a cycle of orbits around the Earth over a period of several days.
Each orbit slightly changes with respect to the preceding one but its trajectory is
cyclic in the sense that the satellite recovers its initial position after a predefined
number of orbits. Furthermore, a full cycle enables the satellite to view each

121

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 S. Krigman et al.

area of the planet. Most EOSs operate at low altitudes with the orbital periods
varying from dozens of minutes to several hours. However, it takes several days
for a single EOS to complete a full cycle and view the whole area of the Earth.
During the course of one particular orbit, a satellite can take several photographs
by rotating itself between consecutive shots. After capturing the photographs,
the acquired data is stored in the on-board memory and transferred to a ground
station when the satellites are in a feasible transferring range [49].

EOSs have been extensively employed in a wide range of tasks, such as Earth
resource exploration, natural-disaster surveillance, environmental monitoring,
and defense missions [6]. The demand for EOS services has risen over time due
to some unique advantages, including an expansive coverage area, long-term
surveillance, accurate and effective information access, and unlimited airspace
borders [43].

With the development of space technology, the number of satellites contin-
uously increases [43]. Yet, the number of EOSs still cannot meet the demand
due to an explosive growth of applications that require observations. Conse-
quently, scheduling solutions are needed to satisfy more requests and obtain a
high observation efficiency. In particular, multi-satellite systems require dedi-
cated scheduling solutions [3].

Due to their cost, EOS systems are often co-funded by several agents (e.g.,
countries, companies, or research institutes). Once constructed and made oper-
ational, the common property resource must be exploited and shared between
the partners. Each party wants to fulfill its requirements for observations and
a timetable should be developed to schedule all these requirements. Such a
timetable needs to be (a) efficient in the sense that the satellites are maximally
utilized with the highest priority tasks; and (b) considered fair by all parties [2].

While the literature on multi-satellite scheduling is rich, as summarized
in [43], most of the solutions are centralized algorithms that assume all the
requests reach a central entity that creates a timetable for them. Such solutions
are prone to privacy issues since EOSs can be used for defense and security
purposes and most of the parties do not want others to be informed of the way
they are using the satellites. This raises the need for distributed scheduling solu-
tions [35]. Since a given request can sometimes be satisfied by several satellites
in more than one of their orbits, the problem is not separable by satellite nor by
orbit. Instead, the scheduling process must be performed simultaneously for all
satellites and orbits considered.

Distributed constraint optimization problem (DCOP) [15,9] is a powerful
framework for representing and solving distributed combinatorial problems. DCOPs
have been successfully applied in a variety of real-world problem domains, includ-
ing meeting scheduling [28], traffic-light synchronization [18], sensor networks [7],
and the Internet of Things [24]. Recently, Picard et al. [35] suggested the use
of DCOPs as a potential approach for dealing with EOS scheduling problems.
Following this, a DCOP-based solution has been proposed [34]. That work deals
with the problem of coordinating users having reserved exclusive orbit portions
and one central planner having several requests that may use some intervals of

122

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 3

these exclusives. Their solution enables the exclusive users to independently plan
their own tasks; however, the rest of users’ tasks are still scheduled in a central
manner.

Contributions: Our paper goes one step further. We present a novel Dis-
tributed Satellite Timetable Solver that we name DSTS. The DSTS method
works in two phases – it starts by mapping the EOS scheduling problem to a
DCOP according to our new proposed modeling, and then it solves the DCOP
using a DCOP algorithm. The DSTS method is beneficial for two main reasons.
First, the EOS scheduling problem is distributed by nature, and as such, it can
be modeled and solved in a distributed manner, such as DCOP. In particular,
users do not need to a priori share their private information with some cen-
tral authority. Second, DCOP is a well-established model that provides a wide
palette of algorithms, as well as common metrics and simulation environments.
Specifically, our method is modular as it is not limited to a specific algorithm.

The rest of the paper is organized as follows. Section 2 provides an overview
of relevant existing studies. Section 3 includes formal definitions of the EOS
scheduling problem, which is at the focus of this study. Section 4 provides the
definition of DCOP and the DCOP modeling of the EOS scheduling problem.
An experimental evaluation is presented in Section 5, followed by the conclusions
in Section 6.

2 Related Work

A number of EOS scheduling solutions have been proposed. A detailed literature
review is presented in [43]. That review classifies the algorithms into four classes:
exact methods, heuristics, meta-heuristics, and machine learning based algo-
rithms. Exact methods can provide optimal or near optimal solutions but they
are limited to relatively small scale instances. Heuristic methods are employed
when exact methods cannot be used; these are further classified into construc-
tive heuristics and time-efficient heuristics. The methods are easily implemented
and have relatively short computational time. However, they are specifically de-
signed and there is no guarantee of solution quality. Meta-heuristics are general
procedures that find, generate, or select a search algorithm that may provide
a sufficiently high-quality solution to an optimization problem. Evolutionary
algorithms and single-point search algorithms are two main examples of this
category. Machine learning methods have been recently proposed for solving the
EOS scheduling problem. These include deep reinforcement approaches [44,17]
and competitive learning strategies [26]. The downside of such methods is the
requirement for large amount of data to provide good solutions.

All of the above are static solutions in the sense that all problem inputs
are given in advance. Another research direction deals with the requirement
for dynamic scheduling [41]. Some examples in which dynamic scheduling is
necessary include incoming emergency tasks [36], impact of clouds [40,42], and
impact of transition time between observations [45,46].

123

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 S. Krigman et al.

Most of the known solutions for EOS scheduling problems are centralized
algorithms in which the assumption is that satellite constellations are shared
resources managed by a central mission control that receives all the requests
for observations and schedules them. Recently, a few distributed methods have
been proposed [25,4]. These works distribute the scheduling problem between
the satellites in attempt to provide rapid response to dynamic changes. How-
ever, such form of distribution does not deal with the privacy issue of the users.
In a pioneer work, Picard [34] investigates the use of multi-agent allocation tech-
niques for solving the EOS scheduling problem. One of the proposed techniques
is DCOP-based. It works under the assumption that some users (termed ex-
clusive users) have reserved exclusive orbit portions. A central planner collects
the requests of non-exclusive users and sends them to the exclusive users. The
exclusive users employ a distributed procedure that attempts to sequentially
schedule those requests, each time creating a DCOP instance in an attempt to
add a new request. In this case, the exclusive users retain their privacy while the
non-exclusive users still need to share their tasks with a central mission control
and thus lose their privacy. To the best of our knowledge, there are no studies
that fully distribute the problem among all users.

In order to obtain a fully distributed solution for all users, we suggest to
model the whole problem as a DCOP. A major benefit of modeling a problem
as a DCOP is that once modeled, the problem can by solved by a wide variety
of algorithmic approaches, either complete [31,32,11,48] or incomplete [50,8,20].
DCOPs are NP-hard. Therefore, the use of incomplete approaches is required
when solving medium- to large-scale problems.

3 Problem Definition

This section provides the core definitions of the problem we investigate. Consider
a set of independent users, each of which generates a set of observation requests.
Each request requires viewing a specific area for a specific duration of time, i.e., a
request for a specific latitude-longitude-altitude position (LLA) at a certain time
interval. These requests potentially yield several observation opportunities per
request. In order to define the set of opportunities for each request, the following
parameters are required: the LLA to observe, the satellite’s location (defined by
its orbit plan), and the attitude adjustment capabilities of the satellite’s camera.
A user can generate a set of observation opportunities for each of its requests
using these three parameters. Each such opportunity can be served by a specific
satellite at a specific time. The duration of an opportunity is determined by
the duration of the request with the addition of the setup time required by the
satellite. The extent of the setup time depends on the previous viewing angle
of the satellite before it attended to the opportunity at hand. Each user assigns
a certain utility, herein termed reward, to its requests. The goal is to find a
timetable in which the sum of rewards due to handled requests is maximal.
Based on the core definitions in [34], we present the following definitions.

124

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 5

Definition 1 (Earth Observation Satellite Scheduling Problem). An
Earth Observation Satellite Scheduling Problem P is defined by a tuple

P =< S,U ,R,O >

where S is a set of satellites, U is a set of users, R is a set of observation
requests, and O is a set of observation opportunities for fulfilling the requests in
R.

Definition 2 (Satellite). A satellite s ∈ S is defined as a tuple

s =< OPs, κs, STs >

where OPs is the orbit plan of the satellite. κs ∈ N+ is the satellite capacity (i.e.
the maximum number of observations during its orbit plan). The transition time
between two given observations is STs : O ×O → R.

For simplicity, we assume that the timeline is divided into discrete steps; τ
denotes the time period index, see [43].

Definition 3 (User). A user u ∈ U is defined by its set of requests Ru ⊂ R.

Definition 4 (Request). A request r ∈ R is a tuple

r =< tstartr , tendr , ∆r, ρr, pr, ur, Θr >

where the request validity time window is tstartr ∈ T and tendr ∈ T , ∆r ∈ T is the
required observation duration, ρr ∈ R is the reward obtained once the request is
fulfilled, pr is the latitude-longitude-altitude position (LLA) to observe, ur ∈ U
is the requesting user, and finally, Θr ⊆ O is the list of opportunities to fulfill
the request.

Definition 5 (Opportunity). An opportunity is defined as a tuple

o =< tstarto , ∆o, ro, ρo, so >

where tstarto ∈ T is the opportunity start time, ∆o ∈ T is the opportunity du-
ration, ro is the request to which this opportunity contributes, ρo is the reward
that this opportunity will provide (it is based on ρr with modifications according
to the observation angle, weather conditions, etc.), so is the satellite on which
this opportunity can be scheduled.

Definition 6 (Solution). A solution to a EOS scheduling problem is a feasible
subset of opportunities M = {o ∈ O}, so there is at most one observation per
request, and the overall reward (i.e., the sum of the rewards of all scheduled
observations) is maximized:

argmax
M

∑
o∈O

ρoxo

125

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 S. Krigman et al.

subject to
xo ∈ {0, 1} ∀o ∈ O (1)∑
o∈Θr

xo ≤ 1 ∀r ∈ R (2)

soi ̸= soj ∨ [intoi + STsij] ∩ [intoj + STsji] = ∅ ∀oi, oj ∈ M (3)

into := [tstarto , tstarto +∆o] (4)

where xo is the decision variable that defines whether opportunity o is included
in M or not. Equation 2 ensures at most one opportunity for each request is
included in the solution. Finally, Equations 3 and 4 avoid overlaps between op-
portunities, by verifying that the opportunities are either in different satellites
or their time intervals including transition time (into) do not overlap.

4 DCOP Modeling of the Problem

Now we model the problem as a DCOP. We first provide the formal definition
of a DCOP, followed by our proposed DCOP modeling of the EOS scheduling
problem. This modeling is the first phase of the proposed DSTS method.

4.1 DCOP Definition

A DCOP is a tuple < A,X , α,D,R >, where: A is a finite set of agents
A1, A2, ..., An; X is a finite set of variables X1, X2, ..., Xm; α : X → A maps
each variable to one agent; D is a set of domains D1, D2, ..., Dm, where each
domain Di consists of a finite set of values that can be assigned to variable Xi;
R is a set of relations (constraints), where each constraint C ∈ R is a function
C : Di1 ×Di2 × . . .×Dik → R+ that defines a non-negative cost for every pos-
sible value combination of a set of variables. A complete assignment consists of
assignments to all variables in X . An optimal solution to a DCOP is a complete
assignment of minimal cost.

The advantage of DCOP representation over the classical constraint opti-
mization problems is in the ability to solve the problem in a distributed manner.
DCOP researchers have proposed a wide variety of solution approaches, such
as search-based algorithms [10,31,48], logic programming [22], inference-based
algorithms [33], and other methods [30]. In all of these approaches, each agent
handles its own variables and exchanges messages with the other agents in order
to determine the final variable values. No centralized entity takes part in the
solving process.

In this work we used a search-based approach, specifically, the Distributed
Stochastic Algorithm (DSA) [50]. DSA is a standard incomplete DCOP algo-
rithm. This algorithm operates as follows. In each step, the state of every variable
(the current value assignment) is shared with its neighbors (the variables with
which it is constrained) by sending and receiving messages. After receiving the

126

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 7

updated states of its neighbors, each agent decides whether to change the cur-
rent state of the variable in an attempt to reduce its costs – this decision is
the most fundamental step in DSA. If the agent cannot find a new value in its
domain to improve its current state, it has no reason to change its current value.
However, in case there is such a value that improves the state, the agent may
or may not change to the new value based on a stochastic scheme that prevents
scenarios of infinite alteration loops. The probability of parallelism, p, controls
how frequently neighboring variables can change their values. The p probability
is set as a parameter of the DSA algorithm. The algorithm stops its execution
after pre-defined number of iterations.

4.2 EOS Scheduling as a DCOP model

We first provide the mapping of the EOS scheduling problem onto a DCOP
model, and then present an example that illustrates the mapping. The mapping
is performed in the following manner: A user is mapped to an agent in the
DCOP: A := {u ∈ U} Each user maps its requests to variables in the DCOP:
X := {r ∈ R}. Because X = R, we use these notations interchangeably. The α
mapping is performed according to the set of requests Ru of each user u. The
domain D of each variable is defined by the set of available opportunities Θr to
fulfill the request r with the addition of the value 0. D : = {Θr ∪ {0} | ∀r ∈ R}.
Each value represents one available opportunity for this request. The additional
0 value represents situations in which this request cannot be fulfilled.

Two types of constraints are defined for each user for each of its variables:

1. A unary constraint assigns a cost for each value of the variable based on
the reward of the corresponding opportunity. DCOPs are commonly used as
minimization problems and require non-negative constraints. Accordingly,
we define the cost of opportunity o as follows:

costo = maxCost− ρo (5)

where maxCost is greater than the reward of any opportunity:

maxCost > max
o

ρo

Specifically, the cost of 0 value is maxCost. Thus, the algorithm will assign
a 0 only when there is no possibility to assign any of the opportunities, i.e.,
the request cannot be fulfilled.

2. Binary constraints are defined between two variables if there is overlap
between the opportunities they represent. Overlap occurs when the two op-
portunities are served by the same satellite and their schedule times overlap.
The cost of each combination of values is ∞ if there is overlap between the
opportunities that these values represent; otherwise, the cost is zero. The
setup time between the opportunities, as defined in the STs table of the
satellite, is considered when computing the overlap. The cost of the 0 value
is zero for any combination with the other variable’s values.

127

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 S. Krigman et al.

(a) An EOS scheduling problem. S1 and S2 are two different
satellites, rectangles represent opportunities, and the color of
a rectangle relates to the request that the opportunity can
fulfill.

(b) The DCOP modeling of the above problem. A1, A2, and
A3 are the agents (users) and x1, . . . , x4 are the variables
(requests). The tables represent the constraints.

Fig. 1: An example of an EOS scheduling problem mapped to a DCOP.

128

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 9

An example of an EOS scheduling problem and its DCOP modeling are shown
in Figure 1. Figure 1a depicts an EOS scheduling problem with two satellites (s1
and s2) and three users (u1, u2, and u3). User u1 has two requests: r1,1 and r1,2
each of which has two opportunities: o1,1,1 and o1,1,2 for r1,1 and o1,2,1 and o1,2,2
for r1,2. The second user, u2, has a single request, r2,1 with three opportunities:
o2,1,1, o2,1,2, and o2,1,3. The third user, u3, has a single request, r3,1 with a single
opportunity o3,1,1. In the figure, the opportunities are shown with their schedules
and the rewards.

Figure 1b describes the DCOP modeling of this problem. This DCOP con-
tains three agents (A1, A2, and A3) representing the users (U1, U2, and U3).
Four variables (x1, x2, x3, and x4) correspond to the four requests and their do-
mains are defined according to the number of opportunities that can fulfill each
request. The domain of x1 consists of three values: two values (1 and 2) for the
opportunities that can fulfill it and the 0 value for the option of not scheduling
this request. For the same reasons the domain of x2 has three values, the domain
of x3 has four values, and the domain of x4 has two values. Each variable has
a unary constraint that assigns a cost to each value. The cost of the 0 value is
always maxCost (maxCost = 100 in this example). The costs of the other values
are defined by Equation 5. For example, o1,1,1 has a reward of ρo = 20, so the
cost of value 1 of x1 is 80. Binary constraints are defined between requests that
their opportunities overlap. For example, there is a constraint between x1 and x3

because o1,1,1 and o2,1,1 are scheduled at the same time and on the same satel-
lite (s1). The cost of the combination is ∞. The other combinations have zero
cost since there are no conflicts between these potential opportunities. Both con-
straint types are illustrated in the tables. The unary constraints tables contain
rows for each of the opportunities and an additional row for the 0 value. Each
row contains a single value: the unary cost of this opportunity. For example, the
unary constraint table of X1 contains three rows (two for the two opportunities
and one for the 0 value) with the value 100 in the first row for the 0 value, 80
in the second row as the cost value of o1,1,1 and 75 in the third row as the cost
value of o1,1,2. The binary constraints are illustrated by two-dimensional tables
that are linked to an arc that connects two variables. Each cell in the tables
represents the possibility of overlap between two opportunities. For example, in
the binary constraints table of x1 − x3, all the cells have zero value, except for
the cell that represents the combination of the o1,1,1 and o2,1,1 opportunities;
that cell has the ∞ value since only this combination generates an overlap.

5 Evaluation

We first describe our experimental setup (Section 5.1) and then the obtained
results (Section 5.2).

5.1 Experimental Setup

In order to evaluate DSTS, we generated EOS scheduling problems. For the first
phase of DSTS, we mapped the generated problems into DCOPs, as described

129

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 S. Krigman et al.

in Section 4.2. For the second phase of DSTS, in which the resulting DCOP
model should be solved by some DCOP algorithm, we used the DSA algorithm
(as detailed in Section 4.1). DSA is suitable for our purposes for several rea-
sons. First, DSA has a low communication and computation overhead, which is
required when dealing with problems with hundreds of variables. Second, DSA
operates simultaneously by all agents with no pre-defined ordering or structure1,
which provides some sense of fairness.

We compare our DSTS method to a greedy benchmark algorithm (denoted
Greedy), which is used by most satellite and constellation operators [5]. Greedy
sorts all opportunities in increasing order according to their start time and then
by their reward (in decreasing reward order). Then, for each opportunity in this
sorted list, if there is a free slot for it on its satellite then it is scheduled and all
other opportunities of the same request are deleted; otherwise, this opportunity
is deleted.

Following [34], we generated two sets of experiments:

1. Highly conflicting problems: small-scale problems (5 minutes planning
horizon) with 3 satellites, 8 users emitting 2 to 20 requests each (|Ru| =
2, 4, . . . , 20), and 10 observation opportunities per request. The requests va-
lidity time window varied in the range [10 : 20] and its duration was set to
τ = 5, with reward ρo = [10 : 50] meaning a reward was sampled uniformly
at random between 10 and 50. This set of problems yields many overlaps
between observation opportunities, thus it produces tight problems.

2. Realistic problems: large-scale problems in a 6-hour planning horizon. We
generated instances with 8 satellites, 6 users emitting 10 to 100 requests each
(|Ru| = 10, 20, . . . , 100), and 5 observation opportunities per request. The
requests validity time window varied in the range [40 : 60] and its duration
was set to τ = 20, with reward ρo = [10 : 50]. This set of problems has many
observation opportunities (up to 3000) but with less overlaps between them
(a sparse setting).

We generated 100 instances of each setting, which resulted in a total of 2000
generated problems. All experiments were performed on the ‘AgentZero’ simu-
lator [27].2 All experiments were run on a standard laptop (Lenovo T14 with
Intel(R) Core(TM) i7-10610U CPU running at 1.80GHz) with Win10 OS and
took a few minutes in total.

130

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 11

0

1000

2000

3000

4000

5000

6000

16 32 48 64 80 96 112 128 144 160

R
ew

ar
d

s

Number of requests

Greedy DSTS (DSA 0.5) DSTS (DSA 0.7) DSTS (DSA 0.9)

Fig. 2: Rewards of highly conflicting problems

5.2 Experimental Results

We first examined the rewards of highly conflicting problems. Figure 2 presents
a comparison of DSTS and Greedy. We used the DSA algorithm to solve
the DCOP. Specifically, we used the DSA-B version [50] with three different
p values, p = {0.5, 0.7, 0.9}, and ran it for 10 iterations. Axis x presents the
number of requests, from 16 (eight users with two requests each) to 160 (eight
users with 20 requests each). Axis y presents the sum of the rewards over all
scheduled requests.

For a low number of requests the results of the two compared methods are
similar, but for a high number of requests DSTS (using DSA with p = 0.9)
outperforms Greedy. The best results for DSTS are obtained with p = 0.9.
These findings are consistent with known results regarding the probability of
parallelism in DSA [50]; higher parallelism usually leads to higher quality solu-
tions until a ‘phase transition’ is reached, after which the solution quality drops
drastically. In particular, Zhang et al. [50] showed that for the DSA-B version
the phase transition commonly occurs when p > 0.9, in consistence with our
results.

1 Some DCOP algorithms like SyncBB [15] and AFB [11] maintain a pre-defined or-
dering of the agents, while others, such as DPOP [32] and BnB-ADOPT [48], operate
on a tree structure.

2 AgentZero is a Java-based programming framework for research and implementa-
tion of multi-agent problems, and particularly DCOPs. It enables to generate var-
ious types of multi-agent problems, test distributed algorithms, and collect various
performance statistics.

131

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 S. Krigman et al.

Table 1 shows the average number of messages exchanged during the run of
DSTS using DSA with p = 0.9; Greedy is a centralized algorithm, thus it does
not exchange messages. Table 2 compares the run-times of DSTS (using DSA
with p = 0.9) and Greedy. As can be seen, DSTS is more affected by the size
of the problem. Yet, it is still very fast (less than 100 milliseconds for the largest
problems in this set).

Requests 16 32 48 64 80 96 112 128 144 160
DSTS 327 1782 5349 11390 19758 30054 42813 56748 73287 92281

Table 1: Number of messages in highly conflicting problems

Requests 16 32 48 64 80 96 112 128 144 160
DSTS 0.33 0.92 1.8 3.92 8.6 16.3 24.2 36 52 97
Greedy 0.15 0.12 0.13 0.16 0.22 0.32 0.36 0.42 0.49 0.69

Table 2: Run-time of highly conflicting problems (milliseconds)

Next, we examined realistic problems. We used the DSA algorithm to solve
the DCOP with the same three p values as before. The results are displayed in
Figure 3. Axis x presents the number of requests, from 60 (six users with ten
requests each) to 600 (six users with 100 requests each). Again, axis y presents the
sum of the rewards over all scheduled requests. Here, all three versions of DSA
obtain similar rewards. However, these rewards are ∼ 6% better than those of
Greedy . These findings can be explained by the relative sparsity of constraints
in this set, which results in problems that are more easily solved by both Greedy
and the various DSTS versions. Still, DSTS outperforms Greedy, since even
in such sparse settings there are a few conflicts that Greedy fails to resolve due
to its simplistic and obviously greedy nature.

Table 3 shows the average number of messages exchanged during the run of
DSTS using DSA with p = 0.9 and Table 4 presents the run-time comparison
with Greedy. Here, the run-time of DSTS is only slightly higher than that of
Greedy. Note that realistic problems produce less messages and run faster than
the conflicting problems (cf. Tables 1 and 2); this further indicates that density
is an extremely important factor. Another conclusion that can be drawn from
these results is that due to their sparseness, realistic problems of much larger
sizes (in terms of numbers of requests) could be solved in practice using DSTS.

6 Conclusions

In this work we proposed DSTS, a novel method that models EOS scheduling
problems as DCOPs and solves them using standard DCOP algorithms. Our

132

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 13

0

5000

10000

15000

20000

25000

60 120 180 240 300 360 420 480 540 600

R
ew

ar
d

s

Number of requests

Greedy DSTS (DSA 0.5) DSTS (DSA 0.7) DSTS (DSA 0.9)

Fig. 3: Rewards of realistic problems

Requests 60 120 180 240 300 360 420 480 540 600
DSTS 18.6 77.7 181.5 321.4 514.6 765 1056 1393 1817 2283

Table 3: Number of messages in realistic problems

experiments reveal that DSTS fastly solves the EOS scheduling problems and
provides higher quality solutions than the Greedy benchmark algorithm cur-
rently used.

Modeling the EOS scheduling problem as a DCOP is natural since the prob-
lem is inherently distributed. Moreover, by applying an algorithm with no pre-
defined ordering or structure, such as DSA, all users “have the same starting
point” when participating in the solution process, which is considered fair [1]. It
should be noted that even though the users do not need to a priori share their
private information with some central authority, some private information may
be leaked during the DCOP solving process [29,12]. In situations where privacy
is an important issue, one may resolve to using a privacy-preserving DCOP al-
gorithm in phase two of DSTS. One may choose a complete privacy-preserving
algorithm (e.g., [23,13]) or preferably an incomplete one (e.g., [38,14]) for appli-

Requests 60 120 180 240 300 360 420 480 540 600
DSTS 0.17 0.2 0.32 0.37 0.47 0.53 0.65 0.85 0.84 1.12
Greedy 0.23 0.16 0.24 0.26 0.29 0.35 0.43 0.52 0.58 0.72

Table 4: Run-time of realistic problems (milliseconds)

133

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 S. Krigman et al.

cability reasons, as privacy preservation comes with a price tag of considerably
higher overheads.

An interesting feature of the problem at hand is that users do not know in
advance with whom they are constrained, which is considered trivial informa-
tion in other problem domains (e.g., meeting scheduling [28]). This problem can
be handled in a privacy-preserving manner by employing standard multi-party
computation methods. Basically, each pair of users has to construct a Boolean
or arithmetic circuit that represents the time intervals of the observation oppor-
tunities. That circuit can be evaluated using techniques of cryptography (e.g.,
garbled circuits [47]) to obtain mutual information of the overlaps without learn-
ing anything else. Despite the cryptographic workload, such a preprocessing stage
is performed only once by each pair of users (O(n2)) and, therefore, does not
heavily influence the overall performance. Another solution for the preprocessing
stage is to delegate these computations to a set of external mediators. Recent
studies in the DCOP field showed that such mediators may perform the compu-
tations in an oblivious manner, without gaining access neither to the problem
inputs nor to its outputs [37,21] (this is in contrast to the centralized approach
in which the central authority is exposed to the inputs and outputs). An inter-
esting direction for future work is to devise a mediation-based solution in which
the mediators can perform both the preprocessing stage and the DCOP-solving
stage.

In this work we do not assume that the satellites have limited capacity; how-
ever, some real-world satellites do have such limitation. Applying this limitation
to our model is not trivial since it requires adding global constraints, which are
known to impair the performance. Nonetheless, a solution to a similar problem
has been successfully applied recently, including the development of new vari-
ation of DSA that focuses on problems with limited capacity [19]. Therefore,
employing a similar solution in DSTS is another prospect for future work. Yet
another issue is that of dynamic changes; satellites are often affected by environ-
mental changes (e.g., clouds) or may receive emergency requests. We, therefore,
plan to follow recent advances on dynamic DCOPs [16] to enable dynamic mod-
ifications of the timetables.

Acknowledgments This work was partially supported by the Ariel Cyber In-
novation Center in conjunction with the Israel National Cyber Directorate in
the Prime Minister’s Office.

References

1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from
random endowments in house allocation problems. Econometrica 66(3), 689–701
(1998)

2. Bataille, N., Lemaitre, M., Verfaillie, G.: Efficiency and fairness when sharing the
use of a satellite. In: Artificial Intelligence, Robotics and Automation in Space.
vol. 440, p. 465 (1999)

134

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Scheduling Satellite Timetables using DCOP 15

3. Bianchessi, N., Cordeau, J.F., Desrosiers, J., Laporte, G., Raymond, V.: A heuristic
for the multi-satellite, multi-orbit and multi-user management of earth observation
satellites. European Journal of Operational Research 177(2), 750–762 (2007)

4. Braquet, M., Bakolas, E.: Greedy decentralized auction-based task allocation for
multi-agent systems. IFAC-PapersOnLine 54(20), 675–680 (2021)

5. Cho, D.H., Kim, J.H., Choi, H.L., Ahn, J.: Optimization-based scheduling method
for agile earth-observing satellite constellation. Journal of Aerospace Information
Systems 15(11), 611–626 (2018)

6. Denis, G., Claverie, A., Pasco, X., Darnis, J.P., de Maupeou, B., Lafaye, M., Morel,
E.: Towards disruptions in earth observation? new earth observation systems and
markets evolution: Possible scenarios and impacts. Acta Astronautica 137, 415–433
(2017)

7. Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: AAMAS. pp. 639–646 (2008)

8. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of
low-power embedded devices using the max-sum algorithm. In: Proceedings of the
7th international joint conference on Autonomous agents and multiagent systems-
Volume 2. pp. 639–646 (2008)

9. Fioretto, F., Pontelli, E., Yeoh, W.: Distributed constraint optimization problems
and applications: A survey. Journal of Artificial Intelligence Research 61, 623–698
(2018)

10. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for dis-
tributed constraints optimization. In: Proc. ECAI-06. pp. 103–107. Lago di Garda
(August 2006)

11. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding. Journal of
Artificial Intelligence Research 34, 25–46 (2009)

12. Greenstadt, R., Pearce, J.P., Tambe, M.: Analysis of privacy loss in distributed
constraint optimization. In: AAAI. vol. 6, pp. 647–653 (2006)

13. Grinshpoun, T., Tassa, T.: P-SyncBB: A privacy preserving branch and bound
DCOP algorithm. Journal of Artificial Intelligence Research 57, 621–660 (2016)

14. Grinshpoun, T., Tassa, T., Levit, V., Zivan, R.: Privacy preserving region optimal
algorithms for symmetric and asymmetric DCOPs. Artificial Intelligence 266, 27–
50 (2019)

15. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In:
CP. pp. 222–236 (1997)

16. Hoang, K.D., Hou, P., Fioretto, F., Yeoh, W., Zivan, R., Yokoo, M.: Infinite-horizon
proactive dynamic DCOPs. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems. pp. 212–220 (2017)

17. Huang, Y., Mu, Z., Wu, S., Cui, B., Duan, Y.: Revising the observation satellite
scheduling problem based on deep reinforcement learning. Remote Sensing 13(12),
2377 (2021)

18. Junges, R., Bazzan, A.L.: Evaluating the performance of DCOP algorithms in a real
world, dynamic problem. In: Proceedings of the 7th international joint conference
on Autonomous agents and multiagent systems-Volume 2. pp. 599–606 (2008)

19. Khakhiashvili, I., Grinshpoun, T., Dery, L.: Course allocation with friend-
ships as an asymmetric distributed constraint optimization problem. In: 2021
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology (WI-IAT). IEEE (2021)

20. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In: AAMAS.
vol. 10, pp. 133–140 (2010)

135

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 S. Krigman et al.

21. Kogan, P., Tassa, T., Grinshpoun, T.: Privacy preserving DCOP solving by medi-
ation. In: International Symposium on Cyber Security Cryptography and Machine
Learning. Springer (2022)

22. Le, T., Son, T.C., Pontelli, E., Yeoh, W.: Solving distributed constraint optimiza-
tion problems using logic programming. Theory and Practice of Logic Program-
ming 17(4), 634–683 (2017)

23. Léauté, T., Faltings, B.: Protecting privacy through distributed computation in
multi-agent decision making. Journal of Artificial Intelligence Research 47, 649–
695 (2013)

24. Lezama, F., Palominos, J., Rodríguez-González, A.Y., Farinelli, A., Munoz de Cote,
E.: Agent-based microgrid scheduling: An ict perspective. Mobile Networks and
Applications 24(5), 1682–1698 (2019)

25. Liu, L., Dong, Z., Su, H., Yu, D.: A study of distributed earth observation satellites
mission scheduling method based on game-negotiation mechanism. Sensors 21(19),
6660 (2021)

26. Liu, Y., Chen, Q., Li, C., Wang, F.: Mission planning for earth observation satellite
with competitive learning strategy. Aerospace Science and Technology 118, 107047
(2021)

27. Lutati, B., Gontmakher, I., Lando, M., Netzer, A., Meisels, A., Grubshtein, A.:
AgentZero: A framework for simulating and evaluating multi-agent algorithms.
Agent-Oriented Software Engineering: Reflections on Architectures, Methodolo-
gies, Languages, and Frameworks pp. 309–327 (2014)

28. Maheswaran, R.T., Tambe, M., Bowring, E., Pearce, J.P., Varakantham, P.: Taking
DCOP to the real world: Efficient complete solutions for distributed multi-event
scheduling. In: AAMAS. pp. 310–317. New York, NY, USA (2004)

29. Maheswaran, R.T., Pearce, J.P., Bowring, E., Varakantham, P., Tambe, M.: Pri-
vacy loss in distributed constraint reasoning: A quantitative framework for analysis
and its applications. Autonomous Agents and Multi-Agent Systems 13(1), 27–60
(2006)

30. Mailler, R., Lesser, V.: Asynchronous Partial Overlay: A New Algorithm for Solv-
ing Distributed Constraint Satisfaction Problems. Journal of Artificial Intelligence
Research 25, 529–576 (April 2006), http://mas.cs.umass.edu/paper/397

31. Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed
constraints optimization with quality guarantees. Artificial Intelligence 161(1-2),
149–180 (2005)

32. Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization.
In: IJCAI. pp. 266–271. Edinburgh, Scotland, UK (2005)

33. Petcu, A., Faltings, B.: ODPOP: An algorithm for open/distributed constraint
optimization. In: AAAI. pp. 703–708. Boston, MA, USA (2006)

34. Picard, G.: Auction-based and distributed optimization approaches for scheduling
observations in satellite constellations with exclusive orbit portions. arXiv preprint
arXiv:2106.03548 (2021)

35. Picard, G., Caron, C., Farges, J.L., Guerra, J., Pralet, C., Roussel, S.: Autonomous
agents and multiagent systems challenges in earth observation satellite constella-
tions. In: International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021). pp. 39–44 (2021)

36. Sun, H., Xia, W., Wang, Z., Hu, X.: Agile earth observation satellite scheduling
algorithm for emergency tasks based on multiple strategies. Journal of Systems
Science and Systems Engineering 30(5), 626–646 (2021)

37. Tassa, T., Grinshpoun, T., Yanai, A.: PC-SyncBB: a privacy preserving collusion
secure DCOP algorithm. Artificial Intelligence 297, 103501 (2021)

136

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://mas.cs.umass.edu/paper/397

Scheduling Satellite Timetables using DCOP 17

38. Tassa, T., Grinshpoun, T., Zivan, R.: Privacy preserving implementation of the
Max-Sum algorithm and its variants. Journal of Artificial Intelligence Research
59, 311–349 (2017)

39. Walker, J.G.: Satellite constellations. Journal of the British Interplanetary Society
37, 559 (1984)

40. Wang, J., Demeulemeester, E., Hu, X., Wu, G.: Expectation and saa models and
algorithms for scheduling of multiple earth observation satellites under the impact
of clouds. IEEE Systems Journal 14(4), 5451–5462 (2020)

41. Wang, J., Zhu, X., Yang, L.T., Zhu, J., Ma, M.: Towards dynamic real-time schedul-
ing for multiple earth observation satellites. Journal of Computer and System Sci-
ences 81(1), 110–124 (2015)

42. Wang, X., Gu, Y., Wu, G., Woodward, J.R.: Robust scheduling for multiple agile
earth observation satellites under cloud coverage uncertainty. Computers & Indus-
trial Engineering 156, 107292 (2021)

43. Wang, X., Wu, G., Xing, L., Pedrycz, W.: Agile earth observation satellite schedul-
ing over 20 years: Formulations, methods, and future directions. IEEE Systems
Journal 15(3), 3881–3892 (2020)

44. Wei, L., Chen, Y., Chen, M., Chen, Y.: Deep reinforcement learning and parameter
transfer based approach for the multi-objective agile earth observation satellite
scheduling problem. Applied Soft Computing 110, 107607 (2021)

45. Wei, L., Xing, L., Wan, Q., Song, Y., Chen, Y.: A multi-objective memetic approach
for time-dependent agile earth observation satellite scheduling problem. Computers
& Industrial Engineering 159, 107530 (2021)

46. Xiang, S., Xing, L., Wang, L., Zhou, Y., Peng, G.: Enhanced pigeon inspired op-
timisation approach for agile earth observation satellite scheduling. International
Journal of Bio-Inspired Computation 17(3), 131–141 (2021)

47. Yao, A.C.: Protocols for secure computation. In: FOCS. pp. 160–164 (1982)
48. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-and-

bound DCOP algorithm. Journal of Artificial Intelligence Research 38, 85–133
(2010)

49. Yifang, B., Gong, P., Gini, C.: Global land cover mapping using earth observation
satellite data: Recent progresses and challenges. ISPRS journal of photogrammetry
and remote sensing (Print) 103(1), 1–6 (2015)

50. Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intelligence 161(1-2), 55–87
(2005)

137

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

A Constraint Language For University Timetabling
Problems

Vincent Barichard · Corentin Behuet ·
David Genest · Marc Legeay · David
Lesaint

Received: date / Accepted: date

Abstract We present a domain-specific modeling language for a class of uni-
versity timetabling problems (UTP) that involve course scheduling, resource
allocation and student sectioning. The UTP language combines a formal do-
main model and a rules formalism to state constraints. The model is based
on a multi-scale schedule horizon (i.e., weeks, weekdays and daily slots), a hi-
erarchical course structure (i.e., course parts, part classes and class sessions),
and an extended set of resources (i.e., rooms, lecturers, students and student
groups). Student groups must be formed to populate classes and class sessions
are to be scheduled individually and allocated single or multiple rooms and
lecturers. The model encodes sectioning constraints on classes, core schedul-
ing constraints on sessions as well as compatibility, capacity and cardinality
constraints on resource allocation. Rules allow to state conjunctions of con-
straints on selected sets of entities and sessions using a catalog of timetabling
predicates and a syntax to group, filter and bind entities and sessions. As for
implementation, the UTP language is based on XML and comes with a tool chain
that flattens rules into constraints and converts instances to solver-compatible
formats. We present here the abstract syntax of the UTP language and alterna-
tive constraint programming models developed in MiniZinc and CHR together
with preliminary experiments on a real case study.

Keywords University Timetabling · Domain-Specific Modeling Language ·
Constraint Programming · Resource Scheduling

This work has been funded by a research grant from Université d’Angers.

Vincent Barichard, Corentin Behuet, David Genest, Marc Legeay, David Lesaint
Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
Tel.: +33 241-735-420
E-mail: vincent.barichard@univ-angers.fr
E-mail: corentin.behuet@univ-angers.fr
E-mail: david.genest@univ-angers.fr
E-mail: marc.legeay@univ-angers.fr
E-mail: david.lesaint@univ-angers.fr

138

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 V. Barichard et al.

1 Introduction

Course and exam organization in universities involves strategic, tactical and
operational decisions relating to curriculum design, student sectioning, course
staffing, room planning, class scheduling and resource allocation [28]. These
computational tasks and their overall coordination vary between countries and
educational institutions as does the level of process automation and decision
tool support [35]. In French universities for instance (see Figure 1), curricula
are conventionally revisited every 5 years and students enroll in courses prior
to each teaching period in the course of the academic year. Demand is matched
by sectioning courses into classes, partitioning students into fixed groups, and
populating classes with groups. Eligible groups, lecturers, rooms and equip-
ment are then identified for each course before class sessions get scheduled
and allocated the necessary resources. Each stage involves different stakehold-
ers with their own requirements (faculty departments, administrative units,
course owners, lecturers, tutors, etc.) and the workflow naturally allows for
deviations and contingencies (marginal amendments to curricula on a yearly
basis, late student registrations, staff absences, etc.).

Fig. 1 Conventional workflow for course organization in French universities.

Various problem formulations together with data formats and algorithms
have been proposed in the literature to tackle specific aspects of university
timetabling including curriculum balancing [15,17,33], student sectioning [31,
34], examination timetabling [13,8,29], curriculum-based or post-enrolment-
based course timetabling [29,10,27,12,22,16], tutor allocation [14], and mini-
mal timetabling perturbation [28,26]. Modeling languages have also been de-
veloped, notably the XML language used in the 2019 international timetabling
competition [30,24] (which we refer to as the ITC-2019 language) which pro-

139

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 3

vides a catalog of constraints and supports model variability. We adopt a
similar approach in this paper and introduce a class of university timetabling
problems called UTP that involve course scheduling, resource allocation and
student sectioning. We present a domain-specific language to model UTP in-
stances (UTP language) which is designed around a formal domain model and a
rules language to state constraints. Each instance is decomposed into a model
of entities, a rule set and a solution component. Rules express collections of
timetabling constraints on model entities and the solution component lists as-
signment decisions. The latter may be void, partial or inconsistent to accom-
modate different contexts (e.g., a solution for student sectioning to turn into
a complete timetable, an outdated solution that must be revised or repaired).

Similarly to the ITC-2019 language, the UTP language adopts a multi-
scale schedule horizon (i.e., weeks, weekdays and daily slots), a mixed set of
resources (i.e., students, student groups, rooms and lecturers), and a hierar-
chical course structure (i.e., course parts, part classes and class sessions). In
our approach however, class sessions (a.k.a., class meetings) are considered
as first-class objects that must be scheduled individually alongside resources.
The model supports single-resource sessions (e.g., single lecturer) as well as
multi-resource sessions (e.g., hybrid teaching), and encodes core constraints
relating to student sectioning, session scheduling and resource allocation. All
resources are assumed cumulative (i.e., rooms, lecturers and students may host,
teach and attend overlapping sessions) but this policy may be overridden with
disjunctive scheduling rules. The rules language effectively allows to enforce
additional constraints on selected sets of sessions and entities (i.e., resources
and course elements). Rules are expressed using a catalog of timetabling pred-
icates and a comprehension syntax to group, filter and bind sessions and en-
tities. Specifically, each rule denotes a conjunction of UTP constraints sharing
the same predicate (e.g., periodicity of all lecture classes of a course) and
constraints are technically generated through a rule flattening process.

Note that all constraints are handled as hard constraints and each UTP in-
stance is reduced to a hard constraint satisfaction problem (CSP). The ability
to model preferences and multi-criteria objectives by the means of soft con-
straints is paramount in course timetabling and will be the subject of future
extensions. Likewise, the catalog of UTP predicates still lacks important con-
straints (e.g., gap, distribution and pattern constraints - see e.g. [6,16]) which
will be gradually added in future versions.

As for implementation, the UTP language is based on XML and embedded
in two constraint modeling languages, namely, MiniZinc [32,3] and CHR [18].
We developed a tool chain consisting of a XML parser, a rule processor to
flatten rules into constraints, and an encoder to convert the resulting in-
stances to solver-compatible formats (see Figure 2). Beyond MiniZinc and
CHR, constraint-based UTP instances may be used as inputs to any solver im-
plementing the model and predicates of the UTP language. We do not discuss
here the XML syntax of the language (the reader is referred to [1] which pro-
vides access to the detailed specification, the MiniZinc and CHR models, the

140

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 V. Barichard et al.

Fig. 2 The UTP toolchain.

tool suite, and a benchmark of instances). Rather, we present the abstract
syntax of the UTP language and provide semantics for the key components.

The remainder of the paper is organized as follows. Section 2 introduces the
UTP language and draws a comparison with the ITC-2019 schema. Section 3
presents a generic constraint-based UTP model. Section 4 discusses its imple-
mentation using MiniZinc and CHR and the cross-validation of the models on
a real instance. Section 5 concludes and discusses extensions of this work.

2 University Timetabling Problem

A UTP instance is defined by an entity model and a rules set. A solution to a UTP
instance is a list of choices made for all the decisions at stake that satisfies the
core constraints of the entity model and the constraints expressed by the rules.
We provide in this section an informal description and set-theoretic semantics
for the UTP language components, namely the entity model (Section 2.1), con-
straints (Section 2.2), rules (Section 2.3) and solution (Section 2.4). Section 2.5
draws a comparison between the UTP language and the ITC-2019 schema.

2.1 Entity model

The entity model of a UTP instance defines its schedule horizon, course struc-
ture and resources, as well as properties of entities and relational maps (see
Figure 3 for a sketch of the meta-model and Figure 4 for a toy example). First,
the entity model uses a time grid that decomposes into weeks, weekdays and
daily slots. Weeks share the same weekdays and weekdays the same daily slots.
The latter make up 24 hours and have the same duration. Note that neither

141

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 5

successive weeks nor successive weekdays are assumed to be consecutive. The
schedule horizon is implicitly defined by the series of time slots mapping to
week, weekday and daily slot combinations. Slots hence serve as time points
to represent start and end times of course sessions and to measure session
duration, travel time and any gap between sessions.

Courses have a tree-structure wherein each course (e.g., Algorithms) de-
composes into parts (e.g., Lecture and Lab), parts into classes (e.g., lecture
classes A and B), and classes into sessions (e.g., sessions 1 to 10 for each lec-
ture class). Class sessions are the elementary tasks to schedule when solving
a UTP instance and the model fixes their number, duration and sequencing.
First, the classes of a course part are decomposed into an identical number of
sessions of equal duration, both constants being part-specific. Although this
approach forbids classes using different session durations in a course part, it is
paramount to capture requirements that rely on clear-cut sessions (e.g., start-
ing lab classes after 2 lecture sessions, synchronizing the 5th sessions of the
lab classes for a joint examination). Second, the sessions of a class are ranked
in the model and must be sequenced accordingly in any solution (session 1
before session 2 . . .). Note that sessions are considered uninterruptible and, in
particular, may not overlap two days.

Fig. 3 Entity meta-model.

UTP resources fall into 4 types, namely, rooms, lecturers, students and (stu-
dent) groups. All the resources of an instance, except groups (see Section 2.4),
are declared and typed in the entity model. In practice, upstream processes
and decisions determine the suitable rooms, eligible lecturers, candidate stu-
dents and allowed times for the different courses (e.g., faculties prescribing
degree-specific time grids, departments implementing room pooling policies
and naming lecturers for courses, students registering to courses). These com-
patibility constraints are modeled by associating sets of possible start times,
rooms and lecturers to each course part and a set of registered students to
each course. Each session then inherits the sets of allowed resources from the
course part and the course it belongs to.

142

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 V. Barichard et al.

The entity model also encodes flow constraints that govern the distribution
of resources over courses based on student registrations and capacity planning
decisions (e.g., workload distribution between lecturers). First, each lecturer is
allocated a fixed number of sessions in each course part he is eligible for, leaving
lecturer-to-session assignment decisions to solvers. Second, each room allowed
in a course part may be freely allocated to any session of the part (possibly
none) but the model provides the flexibility to mark a room as mandatory in
which case it will host or co-host all the sessions. As for students, the sectioning
policy is implicit and complies with the course structure, i.e., each student
must be assigned to a single class in each part of a course he has registered to
and attend all sessions of these classes. In addition, the model supports group
nesting constraints between classes to implement course-specific policies (e.g.,
aggregating student groups bottom-up from labs to lectures) or cross-course
sectioning (e.g., imposing the same groups between classes of different courses
of a curriculum).

Resource utilization is naturally subject to demand and capacity con-
straints. Since modalities differ from one environment to the next, the lan-
guage supports disjunctive and cumulative resources. The default policy is to
consider all students, groups, lecturers and rooms as cumulative resources, i.e.,
they can attend, teach or host simultaneous sessions. Note though that rules
may be stated to make some resources fully disjunctive or to prevent specific
sessions from overlapping. Support for cumulative resources is paramount to
address flexible attendance requirements (e.g., students assigned optional tu-
toring sessions that may overlap with compulsory courses) or to handle multi-
class events (e.g., rooms hosting several classes for an exam or a conference).
The model imposes no limits on the number of parallel sessions lecturers and
students may attend. Rooms however may only host class sessions whose cu-
mulated headcount is within their capacity. Upper bounds on room capacity
and class size are encoded for all rooms and classes and the model also allows
uncapacitated rooms to cater for the case of virtual rooms.

The language also supports sessions using multiple resources of the same
type. The need for multiple rooms or lecturers arises in practical situations
(e.g., multi-room sessions for hybrid teaching, joint supervision of practical
work sessions, exams requiring several monitors). To this end, the model as-
sociates to each course part the number of lecturers required per session and
indicates whether the sessions are single- or multi-rooms. Note that sessions
without lecturers or rooms are allowed (e.g., unsupervised student project ses-
sions). The model enforces specific constraints to handle multi-room sessions
which override the default room allocation policy. Specifically, students attend-
ing the session may be freely dispatched in rooms irrespectively of the group
structure, the cumulated capacity of the allocated rooms is taken into account
for hosting, uncapacitated rooms cannot be allocated, and the allocated rooms
are considered disjunctive for the time of the session.

Note finally that the language provides users with the ability to label re-
sources and course elements to define their own classes of entities (e.g., teams

143

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 7

of lecturers, blocks of rooms). Labels together with built-in entity types and
identifiers are used to filter entities and to scope rules appropriately.

We formalize below the entity model and introduce notations that will be
used thereafter. Let E denote the set of entities and S the set of sessions. E is
partitioned into a set of courses C, a set of course parts P , a set of classes K, a
set of students U , a set of lecturers L, a set of rooms R, and the singleton do-
main of courses C∗ (C∗ = {C}). Let E = {C∗, C, P,K,U, L,R} denote the set
of entity types (E = ∪X∈EX) and ≺ = {(C∗, C), (C,P), (P,K), (K,S), (U,C),
(L,P), (R,P)} denote the relation over E ∪ {S} that models the course hier-
archy and the distribution of resource types over course components.

≺∗ denotes the transitive closure of ≺ over E ∪ {S} and dX,Y : X → 2Y

denotes the function mapping each element of X to its set of compatible ele-
ments in Y for each pair X≺∗Y . For instance, dR,P represents the distribution
of rooms over course parts, dP,K the decomposition of course parts into classes,
dK,S the decomposition of classes into sessions, and dR,S the inferred distribu-
tion of rooms over sessions. The functions corresponding to the pairs of ≺ are
directly encoded in the entity model and the remaining functions are defined
inductively using recursive aggregation.

We shall denote by dX,Y
i the image of entity i of typeX over 2Y and by dY,X

the inverse of dX,Y . Equation (1) below models the hierarchical decomposition
of course elements1, Equation (2) is the closure rule over ≺∗, and Equation
(3) models inverse maps.

∀(X,Y) ∈ {(C∗, C), (C,P), (P,K), (K,S)} : Y = ⊔i∈XdX,Y
i (1)

∀X,Y, Z ∈ E ∪ {S} : X ⪯∗ Y ⪯∗ Z ⇒ (∀i ∈ X : dX,Z
i = ⊔j∈dX,Y

i
dY,Zj) (2)

∀X,Y ∈ E : X ⪯∗ Y ⇒ (∀i ∈ X, j ∈ Y : j ∈ dX,Y
i ⇔ i ∈ dY,Xj) (3)

Table 1 provides the full list of constants, sets, properties and relational
maps encoded in the entity model.2

2.2 Predicates and constraints

UTP constraints apply to pairs, called e-maps, which associate an entity with a
non-empty subset of its compatible sessions. Constraints are built with predi-
cates whose signature includes e-map variables, the number of which is referred
to as the arity of the predicate. Note that some predicates may also accept
parameters. Let F = ∪X∈E{(e, S′) | e ∈ X,S′ ⊆ dX,S

e ∧S′ ̸= ∅} denote the set

1 ⊔ denotes the disjoint union operation, i.e. set union over pairwise disjoint sets.
2 The following rules apply. H = {i.d.m + j.m + k | 0 ≤ i < w, 0 ≤ j < d, 1 ≤ k ≤ m}.

For each class k in part p, {rankSs | s ∈ dK,S
k } = {1, . . . , |dK,S

k |}, and parentsK,K
k ̸⊂ dP,K

p .

For each pair of sessions s, s′, (s, s′) ∈ O iff dS,Ks = dS,K
s′ and rankS

s′ = rankSs +1. For each

course part p, teamP
p .|dP,S

p | =
∑

l∈d
P,L
p

serviceL×P
l,p .

144

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 V. Barichard et al.

(w, d,m) the number of weeks w, weekdays d and daily slots m
H the time slots
E the entities

C∗ ⊆ E the course domain
C ⊆ E the courses
P ⊆ E the course parts
K ⊆ E the classes
R ⊆ E the rooms
L ⊆ E the lecturers
U ⊆ E the students

dX,Y
i ⊆ Y the entities of type Y associated with entity i of type X

L ⊆ 2E the labels

G ⊆ 2U the groups of students
S the sessions

dX,S
i ⊆ S the sessions compatible with entity i of type X

dS,Xs ⊆ X the entities of type X compatible with session s

dS,Hs ⊆ H the start times allowed for session s
lengthS

s ∈ H the duration of session s
rankSs ∈ N∗ the rank of session s in its class
O ⊆ S × S the pairs of sessions with consecutive ranks in a class

parentsK,K
k ⊆ K the parent classes of class k if any

maxsizeKk ∈ N the maximum size of class k

capacityRr ∈ N the capacity of room r
virtualRr ∈ B whether room r is virtual or not

V ⊆ R the virtual rooms

multiPp ∈ B whether course part p is multi-room or not
M ⊆ P the multi-room parts

mandatoryPp ⊆ R the mandatory rooms of part p

teamP
p ∈ N the number of lecturers required by every session of part p

serviceL×P
l,p ∈ N the number of sessions required by lecturer l in part p

Table 1 Entity model: constants, sets, maps and relations.

of e-maps, a UTP constraint has the form

c((e1, S1), . . . , (em, Sm), p1, . . . , pn) (4)

where c is a predicate symbol of arity m, (e1, S1), . . . , (em, Sm) are e-maps
((ei, Si) ∈ F , i = 1 . . .m) and p1, . . . , pn are values for the parameters of c
(n ≥ 0). Three constraints (C1, C2, C3) are illustrated in Figure 4.

Every predicate may be used indistinctly with e-maps defined on course
elements or on resources. E-maps defined on resources are interpreted as con-
ditional session-to-resource assignments when checking constraints whereas
e-maps defined on course elements are unconditional assignments since they
model constitutive sessions. In other words, a constraint is only evaluated on
the sessions for which its e-map arguments and the considered solution propose
the same entity assignment.3

3 Formally, let xE,S
e be the variable denoting the set of sessions assigned to entity e

and S′
1, . . . , S

′
m be sets of sessions, the conditionality of a constraint c is stated as follows:

(xE,S
e1 = S′

1 ∧ . . . ∧ xE,S
em = S′

m) ⇒ (c((e1, S1), . . . , (em, Sm), p1, . . . , pn) ⇔ c((e1, S1 ∩
S′
1), . . . , (em, Sm ∩ S′

m), p1, . . . , pn)).

145

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 9

It follows that a constraint is evaluated on every session that is mapped
to a course element by one of its e-map arguments. Constraints that apply
exclusively to course elements are therefore unconditional. Note also that the
use of e-maps that model the whole set of sessions compatible with an entity
will necessarily constrain any session that may be assigned to this entity.

Name Arity Parametric Semantics
same daily slot 1 no Sessions start on the same daily slot
same weekday 1 no Sessions start on the same weekday
same weekly slot 1 no Sessions start on the same weekly slot
same week 1 no Sessions start the same week
same day 1 no Sessions start the same day
same slot 1 no Sessions start at the same time
forbidden period 1 yes Sessions cannot start in the given time period
at most daily 1 yes The number of sessions scheduled in the daily period is upper-bounded
at most weekly 1 yes The number of sessions scheduled in the weekly period is upper-bounded
sequenced ≥ 2 no Sessions are sequenced
weekly 1 no Sessions are weekly
no overlap 1 no Sessions cannot overlap
travel 1 yes Travel time is factored in if sessions hosted in the given rooms
same rooms 1 no Sessions are hosted in the same room(s)
same students 1 no Sessions are attended by the same student(s)
same lecturers 1 no Sessions are taught by the same lecturer(s)
adjacent rooms 1 yes Sessions are hosted in the given adjacent rooms
lecturer distribution ≥ 2 yes Distributes lecturer workload over classes

Table 2 Catalog of UTP predicates.

Table 2 lists the predicates of the language and indicates which are vari-
adic or parametric. The first predicates same daily slot, . . . , same slot en-
force common restrictions on the start times of the targeted sessions (e.g.,
sessions starting the same day). Additionally, any start time interval may
be forbidden by passing its start and end points as parameters to predicate
forbidden period. Predicates at most daily and at most weekly upper-
bound the number of sessions scheduled daily or weekly within the given
time interval. sequenced is a n-ary predicate (n ≥ 2) which constrains the
latest session of the i-th e-map to end before the earliest session of i + 1-
th e-map (i = 1..n − 1). Predicate weekly ensures sessions are scheduled
weekly without presuming any particular sequencing. Predicate no overlap

ensures sessions do not overlap in time and is typically used to model disjunc-
tive resources. Predicate travel factors in any travel time incurred between
consecutive sessions hosted in distant rooms. The travel time matrix is a pa-
rameter of the predicate. same rooms, same students and same lecturers

require that sessions be assigned to the same set of rooms, students or lec-
turers. Predicate adjacent rooms require that sessions be hosted in adjacent
rooms based on an adjacency graph passed as a parameter. Lastly, predicate
lecturer distribution distributes the volumes of sessions represented by
the different e-map arguments among different lecturers. Lecturers and ses-
sion volumes are parameters of the predicate.

146

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 V. Barichard et al.

2.3 Rules

Rules are used to state conjunctions of constraints and in particular single
constraints. Each rule is defined by a universally quantified formula which
bounds the domains of the e-map variables of a given predicate. The collection
of constraints hence represented is derived by instantiating the predicate with
each tuple of e-maps belonging to the cross-product of the prescribed domains.
E-map domains are not given in extension but represented using a language
of selectors allowing to generate and filter e-maps. Let F denote the language
of e-map domain selectors, a UTP rule has the form

c(F1, . . . , Fm, p1, . . . , pn) (5)

and is interpreted by the formula

∀(e1, S1) ∈ JF1K, . . . , (em, Sm) ∈ JFmK : c((e1, S1), . . . , (em, Sm), p1, . . . , pn)
(6)

where c is a predicate symbol of arity m, F1, . . . , Fm are selectors (Fi ∈ F ,
i = 1 . . .m), JFiK denotes the domain of e-maps represented by selector Fi ∈ F ,
and p1, . . . pn are values for the parameters of c (n ≥ 0), .

The language of selectors allows to target entities based on type, label or
identifier and to filter their sets of sessions based on session rank and mutual
compatibility with other entities. It is complete in the sense that it allows
to construct any domain of e-maps whose entities share the same type. For
instance, one may construct the e-maps which associate any of the rooms la-
beled Building-A with the compatible sessions of rank 2 or 4 that are also
constitutive of course course-1 or class class-3. A selector combines a gener-
ator and an optional list of filters. Generators and filters are triples (Ti, Li, Oi)
consisting of an entity type Ti, an entity label or identifier Li and a subset of
session ranks Oi (a.k.a., session mask), the latter two elements being optional.
A selector matches any e-map whose entity satisfies the type, label and iden-
tifier constraints of the generator and whose image includes any compatible
session satisfying the mask of the generator and one of the filters. Note that
rules featuring null selectors are discarded during the flattening stage.

Let O denote the range of session ranks, dO,S : O → 2S the rank-based par-
titioning of sessions (s ∈ dO,S

o iff rankSs = o), and L∗ = L∪{E}∪{{e} | e ∈ E}
the set of labels completed with the whole set of entities to mock label op-
tionality and singleton entities to support identity-based selection, the lan-
guage of selectors is the set F = ∪n≥1(E × L∗ × 2O)n. Each selector d =
((T1, L1, O1), . . . , (Tk, Lk, Ok)) decomposes into a generator (T1, L1, O1) and
a possibly empty list of filters ((T2, L2, O2), . . . , (Tk, Lk, Ok)). d matches any
e-map whose entity has type T1 and label L1 and whose image includes any
compatible session satisfying mask O1 and any of the filters. The set of e-maps

147

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 11

JdK matched by d is defined by

JdK =
⋃

e∈T1∩L1

{
(e, S′) | S′ = dT1,S

e

⋂ ⋃
i=2...k

(
dTi,S [Li]

⋂
dO,S [O1 ∩Oi]

)
∧ S′ ̸= ∅

}
where dX,Y [X ′] =

⋃
i∈X′

dX,Y
i with X ′ ⊆ X .

forbidden period((<(L,lecturer2,)>,9120,9240) (R1)

sequenced(<(K, ,{3}),(P,algoLec,)>, <(K, ,{1}),(P,algoLab,)>) (R2)

forbidden period((lecturer2,{algoLab1:1,algoLab1:2,algoLab2:1,algoLab2:2}),
9120,9240) (C1)

sequenced((algoLec1,{algoLec1:3}), (algoLab1,{algoLab1:1})) (C2)

sequenced((algoLec1,{algoLec1:3}), (algoLab2,{algoLab2:1}) (C3)

Fig. 4 Rules flattening and corresponding constraints on a toy example.

Figure 4 illustrates the rules flattening process on a toy example. Course
algorithms is split into a lecture part algoLec and a lab part algoLab. The
lecture part has a single class of 4 sessions taught by lecturer1 and the
lab part has 2 classes of 2 sessions each taught by lecturer1 or lecturer2.
Rule R1 requires that lecturer2 has no session between slots 9120 and 9240,
corresponding for instance to 8am and 10am on Tuesday of week 2. The selec-
tor includes no mask and no filter hence matches with all possible sessions of
lecturer2 as indicated with diamonds on Figure 4. The resulting domain of
e-maps is the singleton {(lecturer2, dL,S

lecturer2)} and the rule is flattened into a
single forbidden period constraint (C1). Rule R2 requires that the first ses-
sions of the labs start after the third lecture. The two selectors include a filter.
The first selector matches with all class sessions of rank 3 in part algoLec,
and the second matches with all class sessions of rank 1 in part algoLab as
indicated with stars on the figure. The rule is flattened into 2 sequenced con-
straints (C2 and C3) corresponding to the cross product of the e-map domains

148

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 V. Barichard et al.

{(algoLec1, {s ∈ S | rankSs = 3}∩dP,S
algoLec)} and {(algoLab1, {s ∈ S | rankSs =

1} ∩ dP,S
algoLab), (algoLab2, {s ∈ S | rankSs = 1} ∩ dP,S

algoLab)}.

2.4 Solution

The solution component includes assignment decisions relating to the choice
of slots and resources for sessions, the placement of students in groups and
the assignment of groups to classes. The solution hence represented may be
partial, even empty, and does not have to be consistent with the constraints
built in the entity model or entailed by the rules. The support for partial
solutions allows to tackle subproblems using separate UTP instances and solu-
tion seeds. For instance, a scheduling instance may be defined on the basis of
partial and consistent solutions pre-generated for the student sectioning and
resource allocation subproblems. Likewise, the support for inconsistent solu-
tions is paramount to repair solutions that have become inconsistent due to
unforeseen changes.

Student groups are considered a by-product of student sectioning. For this
reason, groups may only be listed in the solution component, not in the entity
model, and defined both by the students they include and the classes they are
assigned to. This sectioning process is subject to different constraints. First,
students are partitionned into groups and students are inextricably bound to
their group. Second, a group may only include students with identical course
registrations. Third, group-to-class assignments must comply with any sub-
group inclusion constraint stated in the entity model.

2.5 Related work

We highlight here the main differences between the UTP language and the
ITC-2019 language (ITC-2019 for short).

A first difference between the two frameworks lies in the representation
of the possible times a class can meet. In UTP, a class is defined by a single
sequence of sessions of equal duration and the problem is to schedule each
session. In ITC-2019, a class is given alternative fixed session schedules (times
elements in the XML schema) and the problem is to choose one of the schedules
for the class. A schedule is the repetition over a set of weeks of one or more
sessions that have the same duration and start on specific days of the week
at the same predefined time (daily slot). The two representations are not
reducible to one another. For instance, alternative schedules using different
session durations cannot be modeled in UTP. Conversely, class schedules where
sessions do not necessarily start on the same daily slot cannot be modeled
in ITC-2019. Nevertheless, basic class schedules may be represented in either
approach by stating ITC-2019 constraints or UTP rules on classes. For instance,
a class meeting every week on the same day and the same daily slot, both
being subject to time restrictions, may be modeled using same daily slot,

149

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 13

weekly and forbidden period constraints. The implementation of a more
comprehensive reduction method will be the subject of future work.

Second, ITC-2019 represents alternative course configurations by introduc-
ing an intermediate layer in the course hierarchy that sits between courses
and parts. The configurations of a course typically differ in their number
of (sub)parts and are mutually exclusive from a student sectioning stand-
point, that is, a registered student must be assigned a single configuration
and attend all of its parts. This feature is not currently supported in UTP. As
for resources, UTP explicitly represents lecturers on par with rooms whereas
ITC-2019 only models rooms. UTP also provides the flexibility to allocate dif-
ferent resources within a class (and specify lecturer workload in particular)
whereas the same room must be allocated in ITC-2019. Additionally, UTP sup-
ports multi-resource sessions whereas ITC-2019 is restricted to single-room
sessions.

Lastly, the two constraint languages present important differences. While
ITC-2019 constraint predicates apply to classes, UTP predicates apply to any
set(s) of sessions and may be used in particular on individual sessions, hence
granting finer-grained control. Besides, UTP rules and the selector language
allows to constrain any class of resources or course elements in a concise way.

Lastly, the ITC-2019 schema addresses the timetabling problem as a com-
binatorial optimization problem. It includes a cost function weighting 4 criteria
which respectively penalize the choice of sessions and rooms for the classes,
the violations of constraints and the overlapping of sessions per student. In its
current version, the UTP language addresses the problem as a hard constraint
satisfaction problem. The integration of soft constraints and the possibility
of aggregating penalties or preferences, either in solution generation or repair
contexts, is under investigation.

3 A Constraint-Based Model for UTP

We introduce in this section a constraint-based model for UTP instances. The
model of an instance combines the constraints associated to the entity model
and the constraints resulting from the flattening of the rules, if any. The for-
mer are decomposed into 4 fragments relating to student sectioning, resource
distribution, session scheduling and resource allocation. We present each frag-
ment in turn by reusing notations of Table 1, illustrate the modeling of some
predicates before discussing opportunities for model reformulations on a per-
instance basis. Note that some constraints are given a naive formulation to
clarify semantics and more efficient implementations using MiniZinc and CHR

will be discussed in Section 4.

Table 3 lists the decision variables of the model. All, except time slot
variables, are set variables.

150

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 V. Barichard et al.

xG,U
g ⊆ U the set of students assigned to group g

xK,G
k ⊆ G the set of groups assigned to class k

xS,R
s ⊆ R the set of rooms assigned to session s

xS,L
s ⊆ L the set of lecturers assigned to session s

xR,S
r ⊆ S the set of sessions assigned to room r

xS,H
s ∈ H the start slot assigned to session s

Table 3 The decision variables.

3.1 Student Sectioning

The sectioning constraints partition students into groups and assign groups
to classes while satisfying sectioning rules and class size upper-bounds. Con-
straint (1) ensures the groups partition the set of students. Constraint (2) pre-
vents the clustering of students who register to different courses. Constraint (3)
ensures that classes of a course part have no shared groups and Constraint (4)
that the group of a student attends each part of a course he is registered
to. Constraint (5) implements the parent relationships between classes. Con-
straint (6) ensures maximum class size is never exceeded by the number of

students in its groups. Note that expressions (g ∈ xK,G
k) in this contraint de-

note pseudo-boolean variables. The same notation is used for convenience in
other constraints.

U =
⊔
g∈G

xG,U
g (1)

∀u, u′ ∈ U, dU,C
u ̸= dU,C

u′ , g ∈ G : {u, u′} ⊈ xG,U
g (2)

∀p ∈ P, k, k′ ∈ dP,K
p , k ̸= k′ : xK,G

k

⋂
xK,G
k′ = ∅ (3)

∀u ∈ U, g ∈ G : (u ∈ xG,U
g) →

∧
p∈dU,P

u

∨
k∈dP,K

p

(g ∈ xK,G
k) (4)

∀k ∈ K, k′ ∈ parentsK,K
k : xK,G

k ⊆ xK,G
k′ (5)

∀k ∈ K : maxsizeKk ≥
∑
g∈G

|xG,U
g |.(g ∈ xK,G

k) (6)

3.2 Resource Distribution

Resource distribution involves domain, cardinality and basic summation con-
straints. Constraint (7) defines the allowed rooms and allowed lecturers per
session. Constraint (8) models single-room sessions and Constraint (9) models
mandatory rooms of course parts. Constraint (10) ensures sessions get assigned
the right number of lecturers (possibly none) as defined in each course part
and Constraint (11) ensures each lecturer is assigned the expected number of
sessions.

151

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 15

∀W ∈ {R,L}, s ∈ S : xS,W
s ⊆ dS,Ws (7)

∀p ∈ P \M, s ∈ dP,S
p : |xS,R

s | = 1 (8)

∀p ∈ P, s ∈ dP,S
p : mandatoryPp ⊆ xS,R

s (9)

∀p ∈ P, s ∈ dP,S
p : teamP

p = |xS,L
s | (10)

∀l ∈ L, p ∈ P : serviceL×P
l,p =

∑
s∈dP,S

p

(l ∈ xS,L
s) (11)

3.3 Session Scheduling and Resource Allocation

Session scheduling and resource allocation involve positioning, sequencing,
non-overlapping and capacity constraints. Constraint (12) defines the allowed
slots per session and Constraint (13) ensures sessions do not span over two
days. Constraint (14) sequences sessions if they are ranked consecutively in a
class. Constraint (15) models multi-room class sessions and enforces exclusive
access to their rooms. This constraint is formulated using auxiliary predicate
split(w, S1, S2) (18) which ensures no session of S1 overlaps with a session of
S2 if both are assigned to resource w. We provide a naive decomposition of
this predicate using Predicate (19). Constraints (16) and (17) model room uti-
lization and capacity limits and use auxiliary variables yr,k,s,h. yr,k,s,h models
the number of students attending session s of class k in room r at time h
and is defined using auxiliary constraint (20). Constraint (16) is the default
cumulative constraint which applies to non-virtual rooms when allocated to
single-room sessions. Constraint (17) handles the specific case of multi-room
sessions and ensures the cumulated capacity of the rooms used by a multi-
room session exceeds the number of students attending the session. Note that
the constraint is purely quantitative and allows each individual group to be
distributed over different rooms.

∀s ∈ S : xS,H
s ∈ dS,Hs (12)

∀s ∈ S : xS,H
s /m = (xS,H

s + lengthS
s)/m (13)

∀(s, s′) ∈ O : xS,H
s + lengthS

s ≤ xS,H
s′ (14)

∀k ∈ dP,K [M] :
∧

r∈dK,R
k

split(r, dK,S
k , dR,S

r \ dK,S
k) (15)

∀r ∈ R \ V :
∧
h∈H

capacityRr ≥
∑

p∈dR,P
r \M

k∈dP,K
p

s∈dK,S
k

yr,k,s,h (16)

∀p ∈ M :
∧
h∈H

k∈dP,K
p

s∈dK,S
k

∑
r∈dP,R

p

(r ∈ xS,R
s).capacityRr ≥ max

r∈dP,R
p

yr,k,s,h (17)

152

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 V. Barichard et al.

Let W ∈ {R,L,U}, w ∈ W,S1, S2 ⊆ S :

split(w, S1, S2) ↔
∧

s1∈S1,s2∈S2
s1 ̸=s2

(w ∈ xS,W
s1 ∩ xS,W

s2 → split(s1, s2)) (18)

Let s, s′ ∈ S :

split(s, s′) ↔ (xS,H
s + lengthS

s ≤ xS,H
s′ ∨ xS,H

s′ + lengthS
s′ ≤ xS,H

s) (19)

Let r ∈ R, k ∈ K, s ∈ S, h ∈ H :

yr,k,s,h = (r ∈ xS,R
s).(xS,H

s ≤ h ∧ h ≤ xS,H
s + lengthS

s)

.
∑
g∈G

|xG,U
g |.(g ∈ xK,G

k) (20)

3.4 UTP Predicates

We present a subset of UTP constraint predicates, namely, forbidden period (21),
same weekday (22), same rooms (23), no overlap (24) and sequenced (25).
Note that forbidden period accepts start and end point parameters. Predi-
cate no overlap uses auxiliary predicate split for resources (18) and a variant
for course elements (26).
Let X ∈ E , e ∈ X,S′ ⊆ dX,S

e , h, h′ ∈ H (h < h′).

forbidden period((e, S′), h, h′)

↔
∧
s∈S′

(xS,H
s + lengthS

s ≤ h ∨ h′ < xS,H
s) (21)

same weekday((e, S′)) ↔
∧
s∈S′

xS,H
s /d = (xS,H

s + lengthS
s)/d (22)

same rooms((e, S′)) ↔
∧

s,s′∈S′

(xS,R
s = xS,R

s′) (23)

no overlap((e, S′)) ↔ split(e, S′, S′) (24)

Let i ∈ {1, . . . , n}, Xi ∈ E , ei ∈ Xi, Si ⊆ dXi,S
ei :

sequenced((e1, S1), . . ., (en, Sn))

↔
∧

j=1...n−1

max
s∈Sj

(xS,H
s + lengthS

s) ≤ min
s∈Sj+1

xS,H
s

(25)

Let X ∈ {C∗, C, P,K}, e ∈ X,S1, S2 ⊆ S :

split(e, S1, S2) ↔
∧

s1∈S1,s2∈S2
s1 ̸=s2

(e ∈ dS,Xs1 ∩ dS,Xs2 → split(s1, s2)) (26)

153

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 17

3.5 Reformulation

The model presented above is generic and may be adapted on a per instance
basis depending on the features and rules at stake. We discuss here a few vari-
ants of the UTP problem which provide opportunities for model reformulation.

When instances only involve single-room sessions (M = ∅), one may adopt
integer or enumerated room allocation variables instead of set variables xS,R

s

and rewrite constraints accordingly. In the same way, lecturer assignment vari-
ables and constraints may be adapted when a single lecturer is required per
session. Note that hybrid models mixing single or multi-resource session vari-
ables may be considered too. The temporal model may also be simplified when
the time grid is coarse-grain and guarantees no session can span over consec-
utive start times (∀s ∈ S, lengthS

s ≤ min({h′ − h | h, h′ ∈ dP,H [P] ∧ h < h′}).
This situation occurs in institutions that impose a common time grid to
ensure sessions (with any travel time incurred) necessarily fit in each time
slot. If so, sessions may be handled as time points rather than time inter-
vals and temporal predicates and constraints may be adapted. Capacity con-
straints may also be simplified for disjunctive rooms. A room is disjunctive if
a no overlap constraint is stated on the whole set of its compatible sessions
(r ∈ D ↔ no overlap(r, dR,S

r) where D ⊆ R denotes the set of disjunctive
rooms). If so, the default cumulative constraint (16) may be overridden by
Constraint (27).

∀r ∈ D :
∧
h∈H

k∈dR,K
r

capacityRr ≥ max
s∈dK,S

k

yr,k,s,h (27)

4 Constraint Programming Implementation

In this section, we present two constraint-based models for UTP instances devel-
oped in MiniZinc and CHR. The two models use the same arrays, functions and
constants for representing input data. We do not list them here but they are
easily understandable such as part sessions which gives the set of sessions
constitutive of a part, session rooms which gives the set of allowed rooms for
a session, week which gives the week of a slot, and nr weekly slots which is
the number of slots in a week.

4.1 MiniZinc model

MiniZinc is a high-level language to model constrained optimization prob-
lems [32,3]. MiniZinc models are translated into Flatzinc [4] which allows
to interface different types of solvers including solvers on finite domain CSPs
such as Gecode [2]. The MiniZinc model for UTP is presented in Table 5 and
based on the decisions variables listed in Table 4. The model uses some of the

154

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

18 V. Barichard et al.

global constraints supported in MiniZinc which are dedicated to scheduling
problems.

array[U] of var G: x group group assigned to a student
array[K] of var set of G: x groups set of groups assigned to a class
array[S] of var set of R: x rooms set of rooms allocated to a session
array[S] of var set of L: x lecturers set of lecturers allocated to a session
array[S] of var H: x slot starting slot of a session

Table 4 Decision variables (MiniZinc).

Sectioning constraints partition students into groups and assign each group
to a class according to sectioning rules and class size thresholds. Constraint (1)
allows students to be part of the same group only if they are registered to the
same courses. (2) imposes that every student attends all the part of the courses
to which he is registered. (3) ensures that classes from the same part do not
have any common group. (4) implements the parent-child relation between
classes. Lastly, (5) checks that the groups fit in the class they have been as-
signed to.

Resource distribution relies on domain, cardinality and sum constraints.
Constraints (6) and (7) define available rooms and lecturers for each session.
(8) forces the number of rooms allocated to a session according to the specific
requirements of the course part (i.e., no room, single-room or multi-room). (9)
allocates the required number of lecturers to a session and (10) checks that
every lecturer has the right number of sessions in a part.

Session scheduling and resource allocation involves positioning, sequenc-
ing, non-overlaping and capacity constraints. Constraint (11) defines the al-
lowed slots for each session. (12) forbids a session to be on two days. (13)
sequences the sessions of a class according to their rank. Constraints (14) and
(15) model multi-room sessions and the exclusive access to their rooms. (14)
makes disjunctive any resource that is allocated to a multi-room session while
it is hosting the session. (15) ensures that the number of students attending
a multi-room session do not exceed the cumulated capacity of the allocated
rooms. (16) models the mandatory rooms to be allocated. (17) models the de-
fault cumulative capacity constraint controlling the allocation of non-virtual
rooms to single-room sessions. This constraint uses the cumulative global con-
straint of MiniZinc (see [9] for the Gecode implementation) which MiniZinc

also reuses to rewrite the global disjunctive constraint.

Table 5 also presents some UTP predicates when the targeted resources are
rooms. (18) implements the forbidden period predicate that takes the start
and end time slots of the period as parameters. (19), (20) and (21) model
same weekday, same rooms and sequenced predicates, respectively. (22) im-
plements the no overlap predicate that relies on the disjunctive global con-
straint.

155

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 19

forall(u, v in U where u<v)
(student courses[u]!=student courses[v] -> x group[u]!=x group[v]) (1)

forall(u in U, p in student parts[u])
(exists(k in part classes[p])(x group[u] in x groups[k])) (2)

forall(p in P, k1, k2 in part classes[p] where k1<k2)
(x groups[k1] intersect x groups[k2] = {}) (3)

forall(k1 in K, k2 in class parents(k1))(x groups[k1] subset x groups[k2]) (4)
forall(k in K)(maxsize[k]<=sum(g in G)

(bool2int(g in x groups[k]) ∗ sum(u in U)(bool2int(x group[u] = g))) (5)
forall(s in S)(x rooms[s] subset part rooms[session part[s]]) (6)
forall(s in S)(x lecturers[s] subset part lecturers[session part[s]]) (7)
forall(s in S, p in P where p = session part[s])(

(part room use[p] = none -> x rooms[s] = {})
/\ (part room use[p] = single -> card(x rooms[s]) = 1)
/\ (part room use[p] = multiple -> card(x rooms[s])>=1)) (8)

forall(s in S)(card(x lecturers[s]) = team[session part[s]]) (9)
forall(p in P, l in part lecturers[p])

(sum(s in part sessions(p))(bool2int(l in x lecturers[s]) = service[l, p])) (10)
forall(p in P, s in part sessions(p))

(week(x slot[s]) in weeks[p]
/\ weekday(x slot[s]) in weekdays[p]
/\ dailyslot(x slot[s]) in dailyslots[p]) (11)

forall(s in S)
((x slot[s]− 1) div nr slots per day =
(x slot[s] + length[s]− 1) div nr slots per day) (12)

forall(k in K, s1, s2 in class sessions[k] where rank(s1)<rank(s2))
(x slot[s1] + length[s]>=x slot[s2]) (13)

forall(p in P, s1 in part sessions[p], r in part rooms[p], s2 in room sessions[r]
where is multi rooms[p] /\ s1!=s2)
(disjunctive([x slot[s1], x slot[s2]],
[bool2int(r in x rooms[s1]) ∗ length[s1], bool2int(r in x rooms[s2]) ∗

length[s2]]))
(14)

forall(p in P, s in part sessions[p] where is multi rooms[p])
(sum(r in part rooms[p])(bool2int(r in x rooms[s]) ∗ capacity[r])
<=sum(g in class groups[session class[s]])(card(group students[g]))) (15)

forall(p in P, s in part sessions[p])(mandatory rooms[p] subset x rooms[s]) (16)
forall(r in R where not(virtual[r]))(

let {set of S: RS= room sessions[r] intersect single room sessions;} in
(cumulative([x slot[s]|s in RS],
[bool2int(r in x rooms[s]) ∗ length[s]|s in RS],
[sum(g in G)(bool2int(g in x groups[session class[s]])) ∗ sum(u in U)(

bool2int(g = x group[u]))|s in RS], capacity[r])) (17)
forbidden period((r, S′), h1, h2) = forall(i in S′)(

r in x rooms[i] -> (x slot[i] + length[i]<=h1 \/x slot[i]>h2)) (18)
same weekday((r, S′)) = forall(i, j in S′ where i<j)(

(r in x rooms[i] intersect x rooms[j]) ->

(x slot[i] div nr weekly slots = x slot[j] div nr weekly slots)) (19)
same rooms((r, S′)) = forall(i, j in S′ where i<j)((

r in x rooms[i] intersect x rooms[j]) -> x rooms[i] = x rooms[j]) (20)
sequenced((r1, S1), (r2, S2)) = forall(i in S1, j in S2)(

(r1 in x rooms[i] /\ r2 in x rooms[j]) -> x slot[i]+length[i]<=x slot[j]) (21)
no overlap((r, S′)) =

disjunctive([x slot[i]|i in S′], [length[i]∗bool2int(r in x rooms[i])|i in S′]) (22)

Table 5 Constraints and predicates of the MiniZinc model.

156

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

20 V. Barichard et al.

4.2 CHR model

CHR (for Constraint Handling Rules) [18,21,19,20] are a committed-choice lan-
guage consisting of multiple-heads guarded rules that replace constraints by
more simple constraints until they are solved. CHR are a special-purpose lan-
guage concerned with defining declarative constraints in the sense of Con-
straint logic programming [23,25]. CHR are a language extension that allows to
introduce user-defined constraints, i.e. first-order predicates, into a given host
language as Prolog, Lisp, Java, or C/C++. CHR have been extended to CHR∨

[5] that introduces the don’t know nondeterminism in CHR [11]. This nonde-
terminism is freely offered when the host language is Prolog and allows to
specify easily problems from the NP complexity class.

To model and solve UTP instances with the CHR language, we use the CHR++
solver [7] (for Constraint Handling Rules in C++), which is an efficient integra-
tion of CHR in the programming language C++.

The full model for CHR++ is too long to be detailed here4. We give in Ta-
ble 7 the list of constraints taken into account by the solver. The decision
variables to be instantiated are given in Table 6. They are similar to those of
the MiniZinc model, only the end-of-session variables are added.

∀s ∈ S : x rooms[s] ⊆ R set of rooms allocated to a session
∀s ∈ S : x lecturers[s] ⊆ L set of lecturers allocated to a session
∀s ∈ S : x slot start[s] ∈ H starting slot allocated to a session
∀s ∈ S : x slot end[s] ∈ H ending slot allocated to a session

Table 6 Decision variables (CHR).

To simplify its implementation, the model is partly non-cumulative and
some resources such as lecturers cannot be shared. It also considers that the
sectioning and allocation of students to groups is done beforehand. Thus, com-
puting a solution amounts to finding a consistent resource allocation while
placing the schedules for all sessions.

Several constraints can be set at the instance analysis stage. This is the
case for constraints (1) to (9) of Table 7. Constraints (2), (3) and (4) filter the
domains by removing the rooms, lecturers or time slots which are impossible
by construction of the instance. Constraint (5) ensures that a session starts
and ends on the same day by removing from the domain values that contradict
it.

Other constraints are set and managed by rules which monitor modifica-
tions to the domains of variables. This is the case for Constraint (1) which
ensures the integrity of the start and end of session variables. The same is
true for (6) which ensures that the number of lecturers teaching a session is

4 The interested reader can download the sources of the model [1].

157

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 21

Integrity constraint :
∀s ∈ S : x slot end[s] = x slot start[s] + length(s) (1)

Static constraints (instance input filtering)) :
∀s ∈ S : x rooms[s] ⊆ part rooms[session part(s)] (2)
∀s ∈ S : x lecturers[s] ⊆ part lecturers[session part(s)] (3)
∀p ∈ P,∀s ∈ part sessions(p) :(

week(x slot start[s]) ∈ weeks[p]
)

∧
(
weekday(x slot start[s]) ∈ days[p]

)
∧
(
dailyslot(x slot start[s]) ∈ dailyslots[p]

)
(4)

∀s ∈ S : x slot start[s]/nr slots per day = x slot end[s]/nr slots per day (5)
∀s ∈ S : card(x lecturers[s]) = team[session part[s]] (6)
∀k ∈ K,∀s ∈ class sessions[k] :

If
(
part room use[class part(k)] = none

)
then card(x rooms[s]) = 0

If
(
part room use[class part(k)] = single

)
then card(x rooms[s]) = 1

If
(
part room use[class part(k)] = multiple

)
then card(x rooms[s]) ≥ 1 (7)

∀k ∈ K,∀s, s′ ∈ class sessions[k], s.t. rank(s) < rank(s′) : before(s, s′) (8)
∀k1, k2 ∈ K, s.t. ∃g1 ∈ class groups[k1], ∃g2 ∈ class groups[k2], avec g1 = g2 :

∀s1 ∈ class sessions(k1), s2 ∈ class sessions(k2) : disjunct(s1, s2) (9)
Static predicates :

forbidden period((e, S′), h, h′) = ∀i ∈ S′ : (x slot start[i] + length(i) ≤ h) ∨
(x slot start[i] > h′)

(10)

sequenced((e1, S1), (e2, S2)) = ∀i1 ∈ S1, ∀i2 ∈ S2 : before(i1, i2) (11)
same rooms((e, S′)) = ∀s1, s2 ∈ S′, s.t. s1 < s2 : x rooms[s1] ∼ x rooms[s2] (12)

Dynamic constraints :
∀p ∈ P, ∀l ∈ part lecturers[p] :

∣∣∣∣{x | x ∈ part sessions(p), l ∈
x lecturers[x]}

∣∣∣∣ = service[l, p]

(13)

∀s ∈ S,∀r ∈ session rooms(s) :∑
{group students[g] | g ∈ session room group(s, r), r ∈ x rooms[s]} ≤

capacity[r]
(14)

∀s ∈ S, s.t. has mandatory room(s) : session mandatory[s] ⊆ x rooms[s] (15)
Dynamic predicate :

same weekday((e, S′)) =
∀s1, s2 ∈ S′, s.t. s1 < s2 : x slot start[s1]/nr weekly slots =

x slot start[s2]/nr weekly slots
(16)

Introspective constraints :
∀k1, k2 ∈ K,∀s1 ∈ class sessions[k1], ∀s2 ∈ class sessions[k2], s.t. s1 ̸= s2 :

x lecturers[s1] ∩ x lecturers[s2] ̸= ∅ ⇒ disjunct(s1, s2) (17)
∀k1, k2 ∈ K,∀s1 ∈ class sessions[k1], ∀s2 ∈ class sessions[k2] s.t. s1 ̸= s2 :

x rooms[s1] ∩ x rooms[s2] ̸= ∅ ⇒ disjunct(s1, s2) (18)

Table 7 Constraints and predicates of the CHR model.

valid and (7) which checks that the number of rooms allocated to a session
corresponds to what is required in the instance.

We give as an example the CHR++ rule which checks the integrity of the
variables of beginning and end of session. The rule uses a plus propagator to
ensure consistency of the constraint. This is triggered as soon as a domain of
a variable is updated:

session_slot(_, S_Start, S_End, S_Length)
=>> CP::Int::plus(S_Start, (*S_Length)-1, S_End);;

We use CHR++ which allows us to manipulate values associated with logical
variables and to wake up the corresponding rules as soon as a modification
of the value occurs. This mechanism combined with the forward chaining of

158

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

22 V. Barichard et al.

CHR allows us to implement an efficient rule wake-up and domain propagation
mechanism in the manner of a CSP solver.

Constraints (8) and (9) add new CHR constraints to the model. Indeed,
constraints before and disjunct are constraints ensuring the precedence and
non-overlapping of two sessions. They are accompanied by rules verifying the
coherence of the disjunctive graph created implicitly by the addition of all
these constraints. The static predicates correspond to those read from the
instance. They are processed and some new constraints (filtering constraints,
CHR constraints or unification of variables) are added.

Dynamic constraints ranging from (13) to (18) are only triggered under
certain conditions. CHR guarded rules are used for this purpose. (13) checks that
a lecturer teaches the expected number of sessions in each course part. (14)
ensures that the capacity of the rooms is respected and (15) verifies that the
rooms marked as mandatory are indeed found in the solution. Predicate (16)
ensures that sessions subject to the same constraint same weekday are set on
the same day of the week.

Constraints (17) and (18) add constraints when certain conditions are veri-
fied. Thus, (17) adds a disjunct between two sessions when the same lecturer
participates. (18) adds a constraint between two sessions if they take place in
the same room. These constraints enrich the disjunctive graph representing
the sequencing of all the sessions.

It should be noted that the CHR model performs domain filtering but also
analyses the disjunctive graph in order to eliminate non-solutions. The edges of
the disjunctive graph are oriented as the resolution progresses and the decision
variables are instantiated.

4.3 Experimentations

We carried out preliminary experiments on a real-life instance modeling the
second semester of the last year of Bachelor in Computer Sciences at Université
d’Angers (available at [1]). The main objective was to validate the solvers and
assess their ability to generate solutions in a reasonable time.

The instance contains 5 mandatory courses and 2 courses to choose among
4 additional courses. The instance thus consists of 9 courses decomposed into
24 parts, 45 classes and 241 sessions. Courses are taught during 12 weeks, 5
days a week (Monday to Friday), where each day is divided into 1440 slots.
At the Faculty of Sciences of Université d’Angers, course sessions last 1h and
20 minutes or 2 hours and start at regular intervals every 90 minutes starting
at 8h00 and finishing at 19h50. The 90 minutes interval includes a 10 minutes
break allowing students and lecturers to change rooms.

The instance contains 8 rooms, 12 lecturers and 67 students. In our case,
student sectioning was performed in advance and prepartitioned the students
into 4 groups. Lecturers are either course owners involved in all the parts of a
course (lecture, tutorial and lab) or tutors that are involved in labs of different
courses. There are 47 rules defined in the instance: 13 weekly, 17 sequenced,

159

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 23

2 same slot, 5 same week, 5 same rooms and 5 same lecturers. The 47 rules
were flattened into 216 constraints and the order of 1000 decision variables.

The MiniZinc and CHR solvers presented in Section 3 were used to solve
the instance with an Intel Core i7-10875H 2.30GHz. Both solvers generate
a valid solution in less than 5 seconds. The solutions are different due to
the two resolution strategies but compliant with each solver which shows the
convergence of both models and solvers.

5 Conclusion and Perspectives

We introduced in this paper a domain-specific language for university course
timetabling. The language allows to model a wide variety of course timetabling
problems such as those encountered in French universities. It provides support
for typical timetabling entities (students, sessions, lecturers, rooms, groups)
and features (student sectioning, resource distribution, session scheduling, re-
source allocation) and includes a rules language to easily express constraints
(sequencing, periodicity, etc.). Rules allow to target any subset of domain en-
tities and sessions and enforce timetabling-specific predicates.

We used the language to encode a real instance (Bachelor courses of a
French university) and implemented a tool chain to convert the XML instance
files into solver-compatible formats. In order to validate our approach, we
implemented a CSP model in MiniZinc and CHR and produced solutions for
the considered instance.

We are currently working on different extensions of the language and the
back-end solvers. First, we intend to represent preferences and priorities in
order to support timetable optimization and repair tasks. Second, the current
CP models may be improved using dedicated scheduling constraints, search
strategies and heuristics and take advantage of model simplication and refor-
mulation techniques. Another objective is to improve scalability by testing our
solvers on large-scale instances aggregating different curriculae or converted
from academic benchmarks. Lastly, we intend to investigate the revision of
timetables to manage unexpected events (e.g. unavailability of a lecturer, late
registration of students) or to support incremental solution construction.

References

1. University Service Planning. URL https://ua-usp.github.io/timetabling/
2. Generic Constraint Development Environment (2022). URL https://www.gecode.org/
3. Minizinc (2022). URL https://www.minizinc.org/
4. Specification of Flatzinc. Version 1.6 (2022). URL

https://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
5. Abdennadher, S., Schütz, H.: CHR: A Flexible Query Language. In: Proceedings of the

3rd International Conference on Flexible Query Answering Systems, pp. 1–14 (1998)
6. Aziz, N.L.A., Aizam, N.A.H.: University course timetabling and the require-

ments: Survey in several universities in the east-coast of Malaysia. p.
040013. Kuala Terengganu, Malaysia (2017). DOI 10.1063/1.4995845. URL
http://aip.scitation.org/doi/abs/10.1063/1.4995845

160

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

24 V. Barichard et al.

7. Barichard, V., Stéphan, I.: Quantified constraint handling rules. In: ICLP 2019, vol. 306,
pp. 210–223. Las Cruces (2019). DOI 10.4204/EPTCS.306.25. URL http://okina.univ-
angers.fr/publications/ua20272

8. Battistutta, M., Ceschia, S., De Cesco, F., Di Gaspero, L., Schaerf, A., Topan, E.: Local
search and constraint programming for a real-world examination timetabling problem.
In: E. Hebrard, N. Musliu (eds.) Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research, pp. 69–81. Springer International Publishing, Cham
(2020)

9. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative
heights. In: CP 2002, pp. 63–79 (2002)

10. Bettinelli, A., Cacchiani, V., Roberti, R., toth, P.: An overview of curriculum-based
course timetabling. TOP 23, 313–349 (2015). DOI https://doi.org/10.1007/s11750-
015-0366-z

11. Betz, H., Frühwirth, T.: Linear-logic based analysis of constraint handling rules with
disjunction. ACM Transactions on Computational Logic 14(1) (2013)

12. Cambazard, H., Hebrard, E., O’Sullivan, B., Papadopoulos, A.: Local search and con-
straint programming for the post enrolment-based course timetabling problem. Ann.
Oper. Res. 194(1), 111–135 (2012). DOI 10.1007/s10479-010-0737-7

13. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: Algorithmic strategies
and applications. The Journal of the Operational Research Society 47(3), 373–383
(1996). URL http://www.jstor.org/stable/3010580

14. Caselli, G., Delorme, M., Iori, M.: Integer linear programming for the tutor alloca-
tion problem: A practical case in a british university. Expert Systems with Appli-
cations 187, 115967 (2022). DOI https://doi.org/10.1016/j.eswa.2021.115967. URL
https://www.sciencedirect.com/science/article/pii/S095741742101318X

15. Castro, C., Manzano, S.: Variable and Value Ordering When Solving Balanced Academic
Curriculum Problems. ARXIV (2001)

16. Chen, M., Sze, S., Goh, S.L., Sabar, N., Kendall, G.: A Survey of University Course
Timetabling Problem: Perspectives, Trends and Opportunities. IEEE Access PP, 1–1
(2021). DOI 10.1109/ACCESS.2021.3100613

17. Chiarandini, M., Di Gaspero, L., Gualandi, S., Schaerf, A.: The balanced academic
curriculum problem revisited. Journal of Heuristics 18(1), 119–148 (2012). DOI
10.1007/s10732-011-9158-2. URL https://doi.org/10.1007/s10732-011-9158-2

18. Frühwirth, T.: Constraint Handling Rules. In: Constraint Programming: Basics and
Trends, pp. 90–107 (1994)

19. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
20. Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execution,

and Analysis. Cambridge University Press (2011)
21. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic Pro-

gramming 37(1-3), 95–138 (1998)
22. Goh, S.L., Kendall, G., Sabar, N.R.: Improved local search approaches to solve the

post enrolment course timetabling problem. European Journal of Operational Re-
search 261(1), 17–29 (2017). DOI https://doi.org/10.1016/j.ejor.2017.01.040. URL
https://www.sciencedirect.com/science/article/pii/S0377221717300759

23. Hentenryck, P.V.: Constraint logic programming. Knowledge Engineering Review 6(3),
151–194 (1991)

24. ITC19: International Timetabling Competition (2019). URL https://www.itc2019.org/
25. Jaffar, J., Maher, M.: Constraint logic programming: A survey. Journal of Logic Pro-

gramming 19/20, 503–581 (1994)
26. Lemos, A., Monteiro, P., Lynce, I.: Disruptions in timetables: A case study at universi-

dade de lisboa. Journal of Scheduling (2021). DOI 10.1007/s10951-020-00666-3
27. Lewis, R., Paechter, B., Mccollum, B.: Post enrolment based course timetabling: A de-

scription of the problem model used for track two of the second international timetabling
competition. Cardiff University, Cardiff Business School, Accounting and Finance Sec-
tion, Cardiff Accounting and Finance Working Papers (2007)

28. Lindahl, M., Stidsen, T., Sørensen, M.: Quality recovering of univer-
sity timetables. European Journal of Operational Research 276(2), 422
– 435 (2019). DOI https://doi.org/10.1016/j.ejor.2019.01.026. URL
http://www.sciencedirect.com/science/article/pii/S0377221719300451

161

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Constraint Language For University Timetabling 25

29. Mccollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., Di Gaspero, L., Parkes,
A., Qu, R., Burke, E.: Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing 22, 120–130
(2010). DOI 10.1287/ijoc.1090.0320

30. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and International
Timetabling Competition 2019. In: E.K. Burke, L. Di Gaspero, B. McCollum, N. Musliu,
E. Özcan (eds.) Proceedings of the 12th International Conference on the Practice and
Theory of Automated Timetabling (PATAT-2018), pp. 5–31 (2018)

31. Müller, T., Murray, K.: Comprehensive approach to student sectioning. Annals of Op-
erations Research 181, 249–269 (2010). DOI 10.1007/s10479-010-0735-9

32. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard cp modelling language. In: C. Bessière (ed.) Principles and Practice
of Constraint Programming – CP 2007, pp. 529–543. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

33. Rubio, J.M., Palma, W., Rodriguez, N., Soto, R., Crawford, B., Paredes, F., Cabr-
era, G.: Solving the Balanced Academic Curriculum Problem Using the ACO Meta-
heuristic. Mathematical Problems in Engineering 2013, e793671 (2013). DOI
10.1155/2013/793671. URL https://www.hindawi.com/journals/mpe/2013/793671/.
Publisher: Hindawi

34. Schindl, D.: Optimal student sectioning on mandatory courses with various sections
numbers. Annals of Operations Research 275 (2019). DOI 10.1007/s10479-017-2621-1

35. Vrielink, R.A.O., Jansen, E.A., Hans, E.W., van Hillegersberg, J.: Practices in
timetabling in higher education institutions: a systematic review. Ann. Oper. Res.
275(1), 145–160 (2019). DOI 10.1007/s10479-017-2688-8

162

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course
Timetabling with Student Assignment

Elmar Steiner1, Ulrich Pferschy1, and Andrea Schaerf2

1 Department of Operations and Information Systems, University of Graz, Austria
{elmar.steiner, ulrich.pferschy}@uni-graz.at

2 Dipartimento Politecnico di Ingegneria e Architettura, University of Udine, Italy
andrea.schaerf@uniud.it

Abstract. We consider a complex university timetabling problem aris-
ing in a four-year study program of teacher education where every stu-
dent has to choose two subjects. Since any combination of two subjects is
feasible, the goal of designing a collision-free timetable for every student
seems to be unreachable. However, the task becomes more tractable be-
cause for most courses several parallel groups are offered, i.e. sectioning of
students is possible. Further difficulties arise from the highly individual
progress of students who often follow neither the prescribed term of each
course nor the prescribed ordering of courses. Under these and other con-
ditions an optimized timetable should be determined and adjusted to the
estimated student numbers and their past achievements. After moving
main lectures into a regular time grid with minimal changes concerning
the previously existing plan, the task of finding a timetable for all lectures
with parallel groups is modeled as an integer linear program (ILP). Later,
students with their actual demands are allocated a non-overlapping set
of courses that is relevant and feasible for their individual study situa-
tion. This part can be handled by an assignment-type model followed by
a round-robin allocation of remaining capacities.

Keywords: Course Timetabling · Student Sectioning · ILP Model

1 Introduction

A timetabling problem generally consists of assigning a set of activities to re-
sources such that a set of complex constraints is fulfilled, which varies depending
on the given problem. Whereas these constraints are usually considered to be
hard, desirable characteristics of the timetable are introduced as soft constraints
into the objective function. The goal is to find a feasible assignment while min-
imizing the weighted sum of the penalties representing these violations.
There is a wide range of real-world applications, including university timetabling,
where different categories of specific problems are distinguished: Examination
timetabling (ETT), post-enrollment course timetabling (PE-CTT) and curriculum-
based course timetabling (CB-CTT). Both of the latter two deal with the assign-
ment of courses to time periods and usually rooms, however, there are certain

163

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 E. Steiner et.al.

differences. In PE-CTT the timetable is established after the enrolment of stu-
dents, thus taking into account that students are enrolled in various combina-
tions of events and somehow incorporating these selections. CB-CTT determines
a timetable based on a curriculum of study programs, that is, a list of courses to
be taken by a group of students. A recent survey on all the available formulations
of educational timetabling is provided by Ceschia et al. [4].
These timetabling problems form only one side of the issues that operations re-
search has to address in education, see Johnes [8] for an overview. Real-world
educational planning scenarios often simultaneously comprise components of var-
ious problems, depending on the stage of planning and area of application (such
as elementary or tertiary education). Therefore the correct choice of methods de-
pends on the planning characteristics (such as information availability or choice
of planning entities) and combined approaches seem appropriate.
One of the additional issues is the group of student sectioning problems (see
e.g. [12]), where students are assigned to particular sections of a course satisfy-
ing constraints such as room or section capacity and avoiding conflicts in stu-
dents’ timetables due to overlaps. Quite often this is considered a sub-problem
of course timetabling. That is, after deriving an adequate timetable, one seeks
an optimal assignment of students to classes avoiding conflicts and taking into
account students’ needs/requests and other soft constraints such as preferences
or daily workload.
The timetabling problem we are dealing with is a complex scenario involving
several non-standard properties. Its main decision problem can be categorized
as a variant of a sectioning problem.

After giving a general description of the problem in Section 2 we point to some
related literature in Section 3. The mathematical models introduced for solving
our timetabling problem will be presented in Section 4. Our approach consists
of three phases: Phase 1 shifts important “main lectures” from their historical
starting times into the regular time grid which serves as a basis of all our plans.
In Phase 2 a complex ILP model is set up which determines in one optimization
step the time periods of all courses (many of them consisting of several parallel
groups) and also assigns individual sets of relevant courses in collision-free time
periods to groups of students with identical properties. Since this step has to
be carried out many months before the start of an academic year, these groups
of students are only estimations of future student demand. The final course
assignment of students is done at a later time in Phase 3 by matching actual
students to estimated groups. Both Phases 1 and 3 employ generalizations of the
linear assignment problem with additional conflict constraints. Computational
experiments in Section 5 illustrate the potential and limitations of the large ILP
model.

2 Problem description

We were asked by the central administration of the University of Graz, Aus-
tria, to develop an automated solution approach for a complex timetabling task

164

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 3

arising in the teacher education study program which involves roughly 4,200 stu-
dents. From an educational planning perspective, it can be considered a multi-
phase scheduling problem. More precisely it consists primarily of a timetabling
step producing as output the day of the week and starting time of every course
(which stays constant over the whole term). This step consists of two phases:
In Phase 1, starting times of courses with a larger audience (and no parallel
groups) are moved from their historical starting times into the regular time
grid prescribed by the university. Since these moves cause major disturbances
and negative side effects, their total time deviation will be minimized under
non-collision constraints. In the second phase the starting times for all courses
with parallel groups are computed from scratch (also obeying the regular time
grid). To assure feasible timetables for individual students this phase is coupled
with the sectioning of projected students. Later, in the third phase, the planning
problem asks for an assignment of pre-registered actual students which assigns
to each student a set of courses that are feasible, relevant, and non-overlapping
for the respective student.
The reason for the coupling of methods as well as separation into distinct phases
is the structure of the given planning process at our university. This procedure
essentially covers the capacity planning of the number of sections and the es-
tablishment of yearly timetables for the teacher education study program. The
study program of teacher education requires the choice of two subjects (such as
English and chemistry), thus the planning entails the coordination of all involved
departments and those of their provided courses, which are part of the program’s
curriculum.
While the definition of the number of sections is based on enrollment predictions
and the establishment of the timetable (first and second phase) needs to be
carried out in March for the two terms of the academic year to come (starting in
October), the actual enrollments (required for the third phase) only come to be
known in September (for the winter term) resp. February (for the summer term),
when an adaption and especially a re-scheduling of courses is not permitted
anymore. So there is a crucial temporal delay between planning and information
receipt. Moreover, since departments currently schedule courses autonomously
and only distinctive overlapping time conflicts (e.g. of prominent courses) are
resolved bilaterally, the majority of students of any combination of subjects will
face time conflicts in their weekly timetable. Nevertheless, the final schedule has
been ascertained to be of major influence in regards to the study conditions and
therefore students’ performance in completing their studies.
To improve the situation of studying, we seek to support both planning processes
by deriving models to optimize the weekly timetable using the respective infor-
mation given during phases, resulting - opposed to conventional approaches - in a
combination of sectioning and timetabling. While the true target is being free of
conflicts, we also seek a compact timetable for the individual student and didac-
tic practicability. The target groups for facilitation are especially those students
who exhibit non-standard study progresses, such that courses are not completed
in the term that is recommended in the curriculum. For that reason and as

165

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 E. Steiner et.al.

opposed to many curriculum-based models the method needs to comprise the
capability to avoid time conflicts between courses that are not nominally taken in
the same year. The resulting term-overlapping constraints are determined from
given historical data that describes to which extent courses are completed earlier
or (more likely) later than recommended. Courses that are prone to be taken
later than in the prescribed term will be called displaced courses.
The input structure of the problem primarily consists of a set of courses. These
consist on one hand of so-called main courses (lectures) Cm, which usually
cater to a larger audience and do not have parallel groups. However, many of
them have a historically established starting time, possibly outside the regular
time grid. Then there are standard courses (exercise classes, seminars, etc.) C,
where each course c ∈ C has a limited capacity cap(c) and therefore a certain
number of sections (parallel groups) are offered. As stated the number of these
groups is determined by a separate planning process (involving also financial
considerations) and is provided as an input to the timetabling task. For each
course resp. parallel-group a lecturer is given. Equivalently, for each lecturer
l ∈ L, its set of courses C(l) is known. Following the most common teaching
mode, we assume that each course or group is given by exactly one lecturer,
although team teaching or shared courses may well occur in practice. However,
our model could be easily extended to accommodate more than one lecturer per
course.
Each course is part of the curriculum of exactly one subject and is prescribed for
exactly one term. Besides that, there are also some general main courses which
are part of every curriculum (any combination of subjects) and have to be taken
by all students.
Note that – different from many existing timetabling applications – rooms are
not considered in our planning task. This is because rooms are shared with
the programs of the other ca. 30,000 students of the university. Therefore, an
automated allocation of rooms would have far-reaching consequences for the
decentral planning process of the whole university. However, rooms currently
do not pose a major problem to the planers because the majority of courses
have either very specific requirements with regards to rooms (such as chemistry
labs) or none at all. While the former use a room that is tightly coupled to
the department and usually shared in a limited and well-practiced manner, the
former can use any room on the campus.

3 Related work

In the literature, there exist several strategies of section management, depend-
ing on the concrete problem where they are applied. The problem has been
tackled either as a separate problem or integrated into the timetabling proce-
dure. Aubin and Ferland [1] for example iteratively adjusted both timetable and
section assignment given an initial timetable. Banks et al. [3] propose a rather
simultaneous approach, where they assign sections of courses to time periods

166

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 5

and iteratively add constraints, each representing a student course selection, to
satisfy as many choices as possible.
A very comprehensive approach is the one by Müller and Murray [12], who
propose a multi-phase sectioning strategy, considering various information stages
in educational planning and using different (heuristic) algorithms for each phase.
In detail, they identify three different approaches to sectioning that they call
Initial sectioning, Batch sectioning, and Online sectioning, which differ based on
the time when it takes place and the information available at that time. The
same approach has been further extended and specifically applied to a Faculty
of Education by Müller and Rudová [13].
An integrated timetabling and sectioning problem has been recently proposed
for the fourth International Timetabling Competition (ITC-2019) [14]. The ITC-
2019 problem consists of sectioning students into classes based on course enroll-
ments and then assigning classes to available periods and rooms. Courses may
have a complex structure of classes, with one or more configurations, further di-
vided into subparts and the parent-child relationship between classes. The other
remarkable feature is that the timetable may differ from week to week, instead
of replicating the same weekly timetable for the whole semester.
It is worth mentioning that for such a complex timetabling/sectioning problem
as the ITC-2019 one, the solution techniques based on MIP solvers turned out
to be very competitive. Indeed, the MIP formulation by Holm et al. [7] won the
competition and produced the best solution for the majority of the instances.
Most of the remaining best solutions have been obtained by a local search ap-
proach, which did not enter the competition as it was proposed by one of the
organizers (i.e., Müller [11]).
Other successful applications of MIP models to timetabling problems are the
works by Lach and Lübbecke [10] and by Bagger et al. [2], that worked on the CB-
CTT problem obtaining both good solutions and tight lower bounds. Another
complex, real-world sectioning problem has been proposed by Esmaeilbeigi et
al. [6] for a military school. In their problem, a lesson has a multiphase structure,
such that each phase may require different resources and is taken by different
students.
Finally, complexity analysis of the student sectioning problem has been carried
out by Dostert et al. [5] and Schindt [15], identifying the cases in which the
problem is polynomial and those in which the problem is NP-hard.

4 The Mathematical Models

As pointed out in Section 2 our planning problem consists of three separate
phases. In the following, we describe our solution approach for each of them.
The aim of Phases 1 and 2 is a complete timetable for all courses.
Each course a ∈ Cm ∪ C belongs to exactly one subject f(a) and is prescribed
for a certain term n(a) with n(a) ∈ {1, 2, . . . , 8}, corresponding to winter and
summer semesters of a four year program. As an exception, there is a small subset
of main courses which is prescribed for all subjects (educational theory, etc.).

167

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 E. Steiner et.al.

Furthermore, each regular course a ∈ C comprises g(a) ≥ 1 sections (parallel
groups). Thus, the timetable consists of a starting time for each main course
a ∈ Cm and for each section of every course a ∈ C.

4.1 Phase 1: Alignment of main lectures

The feasible time periods of the timetable consist of a day of the week and a
starting time. The latter is set by university rules to a fixed time grid starting at
8:15 and continuing with a sequence of 90 minutes of lecture time and 15 minutes
breaks. This allows for seven time slots per day, i.e. a set P consisting of 35 time
periods per week as shown below. We only assign lectures of 90 minutes and
exclude from consideration the small number of lectures with deviating duration.

start Mon Tue Wed Thu Fri
08:15
10:00
11:45
13:30
15:15
17:00
18:45

In Phase 1 the main lectures Cm (which do not have parallel sections) will be
aligned to the given time grid. A majority of main lectures already follow this
prescribed time frame, but a non-negligible minority deviates from the time grid.
Since the main lectures in general hardly change their time and room over the
years and some of them are also part of other curricula outside our planning task,
it makes sense to change their starting times as little as possible. Therefore, we
set their starting times by solving a version of the linear assignment problem with
additional conflict constraints. Thereby we match main lectures to time periods
p ∈ P of the given time grid with the additional restrictions that main courses
belonging to the same term t ∈ T must not overlap. This non-collision condition
is imposed independently from the subject since it should be possible to study
any combination of subjects without overlaps in the main courses as there exists
no alternative for them. The special main courses which are prescribed for all
subjects cannot overlap with any other main course of the same term. Function
Cm(t) returns the set of courses that belong to term t ∈ T . Additionally, lecturers
l ∈ L cannot be assigned to more than one course at the same time, both in the
winter and the summer semester. Function Cm(l) then returns the set of courses
that are given by lecturer l. The single binary decision variable ycp = 1 if main
course c is assigned to time period p, and 0 otherwise.
As a linear objective function, we consider the distance ∆(c, p) between the
current time slot of course c (i.e. as in the previous year) and the new time period
p ∈ P . If both times are on the same day,∆(c, p) describes the absolute difference
in minutes between the current starting time and the beginning of period p.
Otherwise, i.e. if the course is moved to a different day, we assume a penalty

168

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 7

value ρ equal to three times the maximum intra-day distance (independently
from the new day). The resulting assignment-type integer linear program is as
follows:

min
y

∑
c∈Cm

∑
p∈P

ycp ·∆(c, p) (1a)

s.t.
∑
p∈P

ycp = 1, ∀c ∈ Cm, (1b)

∑
c∈Cm(t)

ycp ≤ 1, ∀p ∈ P, t ∈ T, (1c)

∑
c∈Cm(l)

ycp ≤ 1, ∀p ∈ P, l ∈ L, (1d)

ycp ∈ {0, 1} (1e)

The results are listed in Table 1, together with the computation time. It turned
out that in the winter and summer semester 69% and 47.4%, respectively, of all
main lectures had to be adjusted. The assignment of the remaining courses in
Cm already followed the time grid and was not changed. Notably, the solutions
do not comprise any alignment to another working day. Furthermore, the amount
of rescheduled lectures varies substantially for different terms, such that earlier
terms show more displacements.

Table 1: Results of main lecture adjustments.

semester |Cm| adjusted courses av. adj. max. adj.
winter 71 49 1h48m 7h
summer 38 18 2h51m 7h

It should be noted that Phase 1 is relevant mostly for the introductory year
of the new planning tool, or when additional subjects are integrated into the
planning process. Once all main courses are aligned with the time grid, Phase 1
will be used only for assigning new main courses and for handling exceptions
such as enforced changes.

4.2 Phase 2: Timetabling-Sectioning

Phase 2 is the most complex part. It considers the computation of starting times
for all freely assignable courses, many of them being offered with parallel groups,
which necessitates the sectioning of the estimated student cohorts.
The demand structure of the planning task is captured by sets of students each
of them enrolled in two subjects {f1, f2} (of equal importance), where each fi is
chosen arbitrarily from a set F of 28 offered subjects. In our Central European

169

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 E. Steiner et.al.

setting the progress of a student does not follow a strict yearly pattern, e.g. a
student cannot be immediately identified as a third-year student, which is quite
different from many international university systems. To place a student s in a
certain term, we count the sum ECTSs of ECTS credits reached and assign the
student to term ts = dECTSs

30 e, since 30 ECTS are the usual workload assigned
for one term. Our experience tells us that most students proceed equally fast in
their two subjects. Thus, we do not distinguish the progress in the two subjects.
To scale the optimization problem of Phase 2 to a more tractable size, we combine
sets of ∆ (e.g. ∆ = 5) identical students, i.e. students with the same pair of
subjects and in the same assumed term, to a so-called student quantum. The set
of all quanta is denoted by I. Each quantum i ∈ I is placed in the same term ti
as the corresponding students. Although the ∆ students represented by a single
quantum may well differ in the precise set of courses they have passed already,
this simplification should be acceptable because the students will have another
one or two terms to increase their credits before the next assignment phase.
Thus, even students with a currently identical track record may well differ in
their state at the beginning of the next term. For this reason, it is also pointless
to include a full precedence check in the selection of courses for a quantum.

In the following, we describe the generation of the courses Ci assigned to each
quantum i ∈ I. All courses prescribed for term t will be denoted as regu-
lar courses Cr(t). As stated, some of these regular courses shall be assigned
to conflict-free time slots with courses of previous terms - so-called displaced
courses. As described further below we will rate courses as displaced according
to historical exam data. Depending on the proportion of students taking such
a course cr ∈ Cr(t) late, the sections of cr will be split in two parts: One part
remains in cr to be done in term t. The remaining sections comprise a newly
generated displaced course cd ∈ Cd(t + 2) to be assigned with delay for term
t+ 2. The quantum capacity of a regular or displaced course c denoted by qc is
given by the number of sections times the capacity of a section (parallel-group)
cap(c) scaled by the quantum size ∆.
To connect the course supply with demand, every quantum i ∈ I with term ti is
assigned a set of courses Ci taken from the relevant courses C̄i ⊂ (Cr(ti)∪Cd(ti))
that are required to be completed in the upcoming term. This set C̄i consists
of all courses, which - given quantum i assumed term ti and combination of
subjects - need to be completed according to the curriculum.
The generation of the quanta’s course sets is described in Algorithm 1. Starting
with the highest term t (i.e. t = 8) for each student quantum i at first and
as long as the quantum capacity of the course is not met, all displaced courses
cd ∈ Cd(t) are assigned to Ci. Secondly, regular courses cr ∈ Cr(t) of term t are
assigned, however only if Ci does not contain any displaced predecessor course of
cr. In both cases, the algorithm stops as soon as at least 20 ECTS are reached.
Note that the prescribed workload for a student in a term amounts to 30 ECTS.
The chosen discrepancy serves as slack for the matching of real enrolled students
in the second phase when a difference between quanta’s course lists and the ac-
tual requirements of real students seems inevitable. This also helps to reach

170

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 9

Algorithm 1 Generation of courses Ci for quantum i ∈ I
1: n terms
2: displaced courses Cd(t), regular courses Cr(t), relevant courses C̄i, Ci = {} ∀i ∈ I,
3: course capacities qc, quantum size ∆
4: term t = n
5: while t ≥ 1 do
6: for i ∈ I do
7: for cd ∈ Cd(t) ∩ C̄i do
8: if qc ≥ ∆ then
9: Ci ← Ci ∪ {cd}
10: qc ← qc −∆
11: if ECTS(Ci) ≥ 20 then
12: break
13: end if
14: end if
15: end for
16: for cr ∈ Cr(t) ∩ C̄i do
17: if ECTS(Ci) ≥ 20 then
18: break
19: end if
20: if Ci does not contain precedence of cr then
21: Ci ← Ci ∪ {cr}
22: end if
23: end for
24: end for
25: t← t− 1
26: end while

feasibility. Moreover, the university administration would like to keep some de-
gree of freedom for the students to select additional courses on their own thus
making it easier to accept a centralized course assignment regime.
From a different angle, this slack also reflects the special situation of main courses
Cm which are not considered in Ci. These main courses are seen as crucial
parts of each subject and therefore should be available for every student without
collisions in the respective term. Thus, we will not consider their ECTS in the
workload of the current term.
As mentioned above, the definition of the number of displaced sections is based
on historical examination data. The examination data provides the set of stu-
dents S(a) that have completed this course and for each s ∈ S(a) we are given
the term p(a, s) in which student s has passed the course a. Note that under the
flexible rules of our university p(a, s) may well differ from the prescribed term
n(a).
Based on this data we compute a lateness value L(a, s) which represents the
delay of student s in passing course a relative to other courses. Therefore, we
count the courses (weighted by their ECTS) prescribed for later terms which
s has taken in the same term or earlier than a, and the course prescribed for

171

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 E. Steiner et.al.

the same term as a but taken in an earlier term than a. The total number of
these “preponed” courses serves as a lateness value L(a, s) and is compared to a
predefined threshold T to label course a as passed late by student s. Formally,
we have:

L1(a, s) :=
∑
b∈C

ECTS(b) with n(b) > n(a) and p(b, s) ≤ p(a, s)

L2(a, s) :=
∑
b∈C

ECTS(b) with n(b) = n(a) and p(b, s) < p(a, s)

L(a, s) := L1(a, s) + L2(a, s)

Note that this definition also yields meaningful values for “slowly progressing”
students which pass all their courses later than prescribed. If L(a, s) > T then
a is passed late by s. Computing the lateness over all students s ∈ S(a), we
determine the delay factor of course a as

del(a) =
|{s ∈ S(a) | L(a, s) > T}|

|S(a)|
.

To align the timetable with the actual progress of students we split the g(a)
sections of the regular course a as follows. Defining g1(a) := bg(a) · del(a)c, we
introduce a new “auxiliary” course a′ with g1(a) sections and prescribed for the
successive year, i.e. for term n(a′) := n(a) + 2. The original course a remains at
term n(a) but its sections are reduced to g(a) := g(a)− g1(a). In this way, some
course sections are offered in line with the study schedule of slower progressing
students.

The ILP-Model The optimization step in essence seeks to assign sections
g ∈ G(c) of all courses c ∈ C to time periods p ∈ P of a recurring working week.
As is the case for many timetabling problems, the main goal of the planning
task is reaching a feasible solution, while the actual objective function is of sec-
ondary importance. In our planning problem, the university administration did
not specify a particular goal or quality criterion for the timetable. However, our
discussions with student representatives and teachers exhibited clear preferences
not dissimilar from goals observed in classical university timetabling tasks. Our
objective function consists of two parts: The first part aims at avoiding pairs of
lectures with long breaks in between for a student quantum. Considering travel
times and missing facilities for spending free time this represents the desire of
having courses in a single time block. The second part takes into account ped-
agogical as well as group dynamic aspects. It considers each session of a course
and aims at minimizing the number of different secondary subjects followed by
the student quanta of this session. Indeed, it would often be preferred to have a
more homogeneous student body in a lecture, possibly all enrolled in the same
or only two different other subjects (besides the subject of the course).
The main decision variable ycgp = 1 if section g of course c is assigned to p ∈ P ,
and 0 otherwise. Likewise a student quantum i ∈ I is assigned to a section g

172

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 11

of one of it’s compulsory courses c ∈ Ci if variable xicg = 1, analogously for
c ∈ Cm with G(c) = 1. In addition, we will introduce auxiliary variables vip for
every quantum i ∈ I and time period p ∈ P expressing continuity of assigned
time slots for quantum i, and dcgf to measure the heterogeneity of the quanta
assigned to a section g of course c ∈ C.
The model’s input technically comprises:

– a set of student quanta I and quantum size ∆ (students per quantum),
– overall available time periods P ,
– first and last time periods of a day FP, LP ⊂ P ,
– courses c ∈ C with capacities cap(c) and number of parallel sections G(c),
– main courses Cm and for every cm ∈ Cm the time period p(cm)
– for each quantum i ∈ I the two subjects f1(i), f2(i), and the required courses
Ci ⊆ C and Cm(i) ⊆ Cm 3

– set of lecturers L and the courses C(l) ⊂ C ∪ Cm taught by each lecturer
l ∈ L

– subjects F , subject q(c) ∈ F of course c
– threshold Π limiting the number of sections taking place at the same period

The model is defined as follows:

min
d, v

α ·
∑
p∈P

∑
i∈I

vip + β ·
∑
f∈F

∑
c∈C

G(c)∑
g=1

dcgf (2a)

s.t.

G(c)∑
g=1

xicg = 1, ∀i ∈ I, c ∈ Ci ∪ Cm(i), (2b)

∑
p∈P

ycgp ≤ 1, ∀c ∈ C ∪ Cm, g ∈ {1, . . . , G(c)}, (2c)

ycm1p(cm) = 1, ∀cm ∈ Cm, (2d)∑
c∈C(l)

G(c)∑
g=1

ycgp ≤ 1, ∀l ∈ L, p ∈ P, (2e)

∑
i∈I

xicg ·∆ ≤ cap(c), ∀c ∈ C, g ∈ {1, . . . , G(c)}, (2f)

xic′g1 + xic′′g2 + yc′g1p + yc′′g2p ≤ 3 ∀i ∈ I, c′ 6= c′′ ∈ Ci ∪ Cm(i)

p ∈ P, g1 ∈ {1, . . . , G(c′)}, g2 ∈ {1, . . . , G(c′′)}
,

(2g)
G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p−1) − ycg(p+1)) ≤ vip ∀i ∈ I
p ∈ P − {FP ∪ LP}

, (2h)

3 More precisely, Cm(i) contains the main lectures that belong to the term that student
quantum i is assumed to be enrolled in according to her/his accomplished ECTS (for
the two subjects chosen by i).

173

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 E. Steiner et.al.

G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p+1)) ≤ vip ∀i ∈ I, p ∈ FP, (2i)

G(c)∑
g=1

∑
c∈Ci∪Cm(i)

(ycgp − ycg(p−1)) ≤ vip ∀i ∈ I, p ∈ LP, (2j)

G(c)∑
g=1

ycgp ≤ Π ∀p ∈ P, c ∈ C ∪ Cm, (2k)

∑
{i ∈ I :

f1(i)=f ∨f2(i)=f }

xicg ≤ dcgf
⌈
cap(c)

∆

⌉
∀c ∈ C, g ∈ {1, . . . , G(c)}

f ∈ F \ {q(c)}
, (2l)

xicg, ycgp ∈ {0, 1}, (2m)
vip, dcgf ∈ N (2n)

As described above the objective 2a is twofold: (A) minimizing individual timetable
compactness via minimizing auxiliary variable vip, which counts the number of
free periods in-between assigned lectures for each student quantum. (B) The aux-
iliary variable dcgf represents the overall number of second subjects (curricula)
in a section of a compulsory course c. Minimizing this variable results in a higher
homogeneity of student quanta per section and is hoped to be didactically advan-
tageous, since course contents can be brought into line with the second subject.
The coefficients α and β allow a linear combination of the two parts and should
be chosen in collaboration with the decision-makers. Constraint 2b ensures that
student quantum i is assigned exactly once to a section of a mandatory course.
The set of required courses for a student i, however, comprises some of the main
courses Cm - that were assigned to periods in Phase 1 - and some smaller ones,
such as labs or seminars C - therefore Ci∪Cm(i). Via constraint 2c sections can
take place at most once (if the planning of the number of sections is fairly reli-
ably, 2c can be written with equality). However, some slots are already taken by
the main courses (with one section, g = 1) as assigned in the preceding Phase 1
(2d). Constraint 2e avoids that a section g of course c in the set of all courses
C(l) that a teacher l is giving is assigned to the same period. Given the quantum
size ∆, constraint 2f ensures that the capacities of the regular courses C are not
exceeded. Constraint 2g essentially avoids collisions: Whenever a student quan-
tum i is assigned both to a section 1 and 2, these cannot take place in the same
time period. If they do, the student cannot be assigned to both of them.
Constraint 2h is used to activate the auxiliary variable vip: For all time periods,
except those at the beginning and the end of each working day (sets FP and
LP), it is verified whether the preceding and following time slot is also taken
by a section that student quantum i has to follow. If not, then there exists an
isolated lecture for student i at time period p and vip is set to one. Constraints 2i
and 2j account for isolated lectures at the end and the beginning of the day. Con-
straint 2k bounds by a threshold Π the number of sections that may take place
at the same time period p. Although the collision avoidance can be expected to

174

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 13

imply a certain spread of sections over the weekly time grid, it appears necessary
to impose an explicit threshold, since rooms are not explicitly considered in the
model. The more evenly sections are distributed over the week, the easier it will
be to find rooms, whose number of naturally restricted. Constraint 2l finally
adjusts the auxiliary variable dcgf , which is used in the objective function to
reduce the number of different second subjects of quanta in the same section.
For all sections, the enrolled subjects of assigned students are compared to all
curricula (except the one the course belongs to) and counted.

4.3 Phase 3: Student assignment

Phase 3 takes place several months after Phases 1 and 2, shortly before the
beginning of a new term. In this phase actual, enrolled students s ∈ S with
their updated records of courses passed are matched to quanta i (multiples of
students) resulting from Phase 2. Although a student’s s required or relevant
courses Cs depend on her/his study record and curriculum-related prerequisites
- that is, completion of specific courses to enroll in others - the course lists of
quanta Ci are estimated based on ECTS of students one or two terms in the
past. Consequently, discrepancies between the required courses of a student and
the course list of the quantum the student is assigned to will be inevitable.

max
∑
s∈S

∑
i∈I

wsixsi (3a)

s.t.
∑
i∈I

xsi = 1, ∀s ∈ S, (3b)∑
s∈S

xsi ≤ ∆, ∀i ∈ I, (3c)

xsi ≥ 0 (3d)

As formulated above we seek a maximum weight perfect matching on a complete
bipartite graph by solving a variant of the classical linear assignment problem.
Associated to each ’assignment’ is a variable xsi such that xsi = 1 iff student s is
assigned to quantum i, and 0 otherwise. The weight wsi in the objective function
3a represents the degree of fit and is defined as the cardinality of the intersection
of the quanta’s and the actual students’ course set, wsi := |Cs ∩ Ci|. Naturally,
students will be only allocated the courses in Cs∩Ci. Constraint 3b ensures that
each student s is assigned to exactly one quantum i. Via constraint 3c at most
∆ students can be assigned to one quantum. It is well known that the above
mathematical program can be solved as a linear program and the integrality of
xsi is given by default.
For ease of computation, we will apply the optimization model repeatedly on
smaller parts of the data, since only matching of students and quanta that be-
long to the same subject combination appears purposeful. Therefore input data
S{f1,f2} and I{f1,f2} is divided accordingly as well as corresponding weight ma-
trices W{f1,f2}.

175

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 E. Steiner et.al.

Allocating residual course places Recalling that the courses Ci assigned to a
quantum i are usually just above 20 ECTS and that possibly not all these courses
are relevant for a student s matched to quantum i, it can be expected that a
sizable number of course places remain free after the above assignment phase.
These places will be allocated by a Round Robin procedure to any students left
with less than 20 ECTS assigned courses.
Students are sorted as follows: To facilitate timely graduation, at first, all stu-
dents requiring at most 30 ECTS for completing their program (not counting the
courses allocated in the assignment phase) are selected and sorted in increasing
order of missing ECTS. All other students are appended to this sequence and
sorted in increasing order of ECTS received in the above assignment phase, which
reflects a max-min fairness criterion.
Considering students in this sequence, we take the first student and assign
her/him a section of a course that is not fully booked, is feasible for the stu-
dent w.r.t. the study program, and that does not overlap with any previously
allocated courses. Among these, a course is randomly selected from those which
are prescribed for the earliest term. If no allocation is possible, the student is
removed from the sequence, otherwise, the student is reinserted according to the
sorting criteria. One can also choose to remove students (except those close to
graduation) from the sequence once their workload exceeds 20 ECTS or another
bound set by the university administration.

5 Computational Insights

5.1 Data from Graz University

We applied our model to a subset of the courses at the University of Graz, specif-
ically those which form the curriculum of the teacher education study program.
As stated, the curriculum requires the choice of two out of 28 possible different
subjects (e.g. English and German). Notice that the choice of subject pairs is
not at all evenly distributed as depicted in Figure 1b. On the contrary, all com-
binations of the most prominent eight subjects account for more than 50% of
the students, which have therefore been the focus of the study.

Table 2: Scope of the study.
Subjects 8
Courses 767
Sections 1,454
Students 2,240
Quantum size ∆ 5
Quanta 454

As summarized in Table 2, the supply side consists of 1454 different sections
belonging to 767 courses and we seek to assign 454 quanta to them. The courses

176

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 15

belong to one of 8 subjects (English, German, History, Geography, Chemistry,
Physics, Mathematics, Biology), constituting more than half of all students en-
rolled in teacher education. The quanta are established using historical anonymized
examination data of all students enrolled in the study program, whereas courses
and number of sections are taken from a different source representing the cur-
ricula.
The examination data further serves as the basis for the derivation of the delay
factor of a course (as outlined in Section 4.2). As depicted in Figure 1a based
on ECTS (not weekly hours) over 40% of the courses are passed late using a
threshold of T = 30 and 79 courses are preponed entirely. Consequently, taking
into account delayed courses Cd reflects actual student behavior in reality. The
surprisingly high fraction of delayed courses indicates that (i) overlaps of courses
may indeed be a reason for slowed-down progress (as often claimed by students,
but sometimes questioned but other involved persons) and (ii) an optimized
timetable should take the delay of courses into account for increasing study
performance.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

n u
m
be

r
of

co
ur
se
s

(a) Histogram of delay values.

0

100

200

300

{f1, f2}

St
ud

en
ts

en
ro
lle

d
in
{f

1
,f

2
}

(b) Distribution of chosen subject pairs.

Fig. 1: Information derived from examination data.

5.2 Preliminary Results

We conducted our tests on a PC with processor Intel Core i5-9500 with 3.00GHz
and 32GB RAM. The data processing and preparatory computation steps as
well as the mathematical models have been implemented in Python and solved
using the Gurobi solver (version 9.0.0). The weighting factors α and β are both
set to 1, though this setting will be the subject of further discussions with all
stakeholders.
Initially, a feasibility check concerning the overall section capacities is carried out.
Based on the provided data we compare for each course the number of available
places with the required places resulting from the given number of students for

177

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

16 E. Steiner et.al.

each term and subject combination. In case of a shortfall, additional sections are
introduced such that at least a general coverage is possible, without considering
conflict freeness.
At the time being, we can give results for Phase 1 and 2, while Phase 3 could
not be carried out yet due to a lack of data. However, the first two phases are
considered to be the essential part, since the final output, and the timetable’s
applicability respectively is largely based on the quality reached in Phase 2,
building upon the output of Phase 1. Moreover, from a computational point of
view, Phase 2 poses the major obstacle, while Phases 1 and 3 will not be a hurdle
for practical solvability. Within the given scope we solve the current test case
yielding 537,330 ILP variables (where 469,743 are binary) and reach preliminary
results as follows.

Table 3: Results of the first two phases.

subjects Π time[s] obj. part 1 obj. part 2 gap[%]
8 20 8.5 632 2,307 0.00
8 15 9.4 573 2,611 0.00
8 10 10.0 651 2,778 0.00
8 5 16.8 733 2,941 0.00

Examining the results of the case and analyzing different parameter settings we
can make the following observations:

– The test case concerning the scope in Table 2 can be solved to optimality
in a surprisingly short running time despite the considerable size of the ILP
model.

– Reducing the parameter Π, which is limiting the number of sections at the
same time period, results in decreasing solution quality and at some point,
the instance is not feasible anymore (e.g. Π = 4 for the combinations of 8
subjects). Table 3 shows for different Π the number of integer and binary
variables the ILP-model of the test case comprises, the objective function
value, and the elapsed computation time (in seconds).

– Extending the scope, however, to a larger set of subject combinations may
result in infeasibility of the problem - even with the addition of just one single
subject (i.e. with all the associated pairs of subjects). If the problem remains
feasible, different numbers of variables are generated for different added sub-
jects. Also, the new solution values vary a lot as well as the computation
times (see examples in Table 4).
An obvious reason for this behavior is that the amount of enrolled students
and the course structure is subject-related. A thorough examination of this
relationship is subject to further investigation.

– In general it is a surprise, that computation time is not an issue, while
feasibility is.

178

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 17

Table 4

added subject time[s] obj. gap[%] int. variables (binary)
Informatics 9.0 4,003 0.00 589,515 (485,538)

French 34.85 3,924 0.00 580,658 (477,011)
Nutrition 51.81 3,978 0.00 581,493 (477,696)
Sports - infeasible - 635,892 (530,025)

For the practical application of our solution approach to the full planning prob-
lem with 28 subjects we currently see five measures for dealing with the inherent
infeasibility issue:

(i) Increase the number of options by adding more sections.
(ii) Increase the capacity cap(c) of each section of course c.
(iii) Restrict the optimization model to a subset of the most frequently chosen

subjects (up to 10 or 12) and add less popular subjects by a manual process
(basically as it is done now).

(iv) Omit pairs of subjects from consideration which are chosen by a very small
number of students.

(v) Reduce the number of ECTS for which collision-free courses are provided by
the planning system for every student.

While measures (iii) and (iv) will be unavoidable and easily accepted, there is
an interesting cost/quality trade-off involved in the decision for (i) and (ii): The
former causes additional costs (assuming that external teachers are available)
whereas the latter comes for free but diminishes teaching quality. Thus, it will
be very interesting for the decision-makers to be informed about the effect of
employing certain levels of measures (i) and (ii). In particular, it will be inter-
esting to identify a suitable subset of crucial courses for which these measures
should be applied to reach feasibility. Measure (v) is easy to implement and does
not incur any direct cost, but it compromises the original goal of this project.

6 Conclusions

In this paper, we developed a solution approach for a complex university timetabling
task arising at the University of Graz, Austria. The main features which make
our problem different from standard university timetabling instances are the
following:

1. Each student is enrolled in two different subjects selected arbitrarily from a
wide range of available subjects.

2. Student’s progress does not follow a strict term pattern but may exhibit
highly irregular behavior, including gaps and deviations from the prescribed
ordering of courses.

179

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

18 E. Steiner et.al.

3. Timetable planning is done at an early stage when the data of actual stu-
dent numbers and their progress status, as it is required for finally assigning
courses to students, is still subject to major changes.

4. Most courses are offered in several parallel groups, which requires the section-
ing of students to reach a conflict-free timetable for a highly heterogeneous
set of students.

Our solution approach consists of three phases. Two of them solve variants of the
linear assignment problem, extended by conflict constraints. The main planning
task (Phase 2) is performed by an intricate integer linear program (ILP). In this
way, we managed to determine feasible timetables offering conflict-free course
allocations for the projected student body. The data for the final allocation of
individual students are still missing, but the handling of the main computational
hurdle, namely the solution of a complex ILP, can be illustrated by our com-
putational results. These reveal in particular that the choice of subjects given
their course structure and amount of enrolled students per term has a non-trivial
impact on solvability, computation time, and solution quality and is of interest
for further investigation.
We expect to employ the full solution approach in practice for the planning task
in the next year. It will also be interesting to investigate additional options for
the objective function since different stakeholders have different ideas about the
appropriate quality measure of a timetable.
In the future, we could also try to rate the difficulty of the problem according
to the ’Complexity’ as introduced in [9].

Acknowledgments This study was partially funded by the University of Graz
under the Field of Excellence “COLIBRI”.

References

1. Aubin, J., Ferland, J.A.: A large scale timetabling problem. Computers & Opera-
tions Research 16(1), 67–77 (1989)

2. Bagger, N.C.F., Sørensen, M., Stidsen, T.R.: Dantzig–Wolfe decomposition of the
daily course pattern formulation for curriculum-based course timetabling. Euro-
pean Journal of Operational Research 272(2), 430–446 (2019)

3. Banks, D., van Beek, P., Meisels, A.: A heuristic incremental modeling approach to
course timetabling. In: Carbonell, J.G., Siekmann, J., Goos, G., Hartmanis, J., van
Leeuwen, J., Mercer, R.E., Neufeld, E. (eds.) Advances in Artificial Intelligence,
Lecture Notes in Computer Science, vol. 1418, pp. 16–29. Springer (1998)

4. Ceschia, S., Di Gaspero, L., Schaerf, A.: Educational timetabling: Problems, bench-
marks, and state-of-the-art results. arXiv preprint arXiv:2201.07525 (2022)

5. Dostert, M., Politz, A., Schmitz, H.: A complexity analysis and an algorithmic
approach to student sectioning in existing timetables. Journal of Scheduling 19(3),
285–293 (2016)

6. Esmaeilbeigi, R., Mak-Hau, V., Yearwood, J., Nguyen, V.: The multiphase course
timetabling problem. European Journal of Operational Research 300(3), 1098–
1119 (2021)

180

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Three-phase Curriculum-Based University Course Timetabling 19

7. Holm, D.S., Mikkelsen, R.Ø., Sørensen, M., Stidsen, T.J.: A graph-based MIP for-
mulation of the international timetabling competition 2019. Journal of Scheduling
pp. 1–24 (2022)

8. Johnes, J.: Operational research in education. European Journal of Operational
Research 243(3), 683–696 (2015)

9. de La Rosa-Rivera, F., Nunez-Varela, J.I., Puente-Montejano, C.A., Nava-Muñoz,
S.E.: Measuring the complexity of university timetabling instances. Journal of
Scheduling 24(1), 103–121 (2021)

10. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: new solutions
to Udine benchmark instances. Annals of Operations Research 194(1), 255–272
(2012)

11. Müller, T.: ITC 2019: Preliminary results using the UniTime solver. In: Proceedings
of the 13th International Conference on the Practice and Theory of Automated
Timetabling (PATAT), Volume III (2022)

12. Müller, T., Murray, K.: Comprehensive approach to student sectioning. Annals of
Operations Research 181(1), 249–269 (2010)

13. Müller, T., Rudová, H.: Real-life curriculum-based timetabling with elective
courses and course sections. Annals of Operations Research 239(1), 153–170 (2016)

14. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and Inter-
national Timetabling Competition 2019. In: Proceedings of the 12th International
Conference on the Practice and Theory of Automated Timetabling (PATAT-2018).
pp. 5–31 (2018)

15. Schindl, D.: Optimal student sectioning on mandatory courses with various sections
numbers. Annals of Operations Research 275(1), 209–221 (2019)

181

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Planning for high-speed railways
in the Czech Republic

Pavel Dostál1, Hana Rudová1, and Vilém Pařil2

1 Faculty of Informatics, Masaryk University
Brno, Czech Republic
hanka@fi.muni.cz

2 Institute for Transport Economics, Geography and Policy
Faculty of Economics and Administration

Brno, Czech Republic
vilem@mail.muni.cz

1 Introduction

Strategic capacity planning [9,1] for trains in high-speed railways introduces an
important problem that is of high interest for the planning of future railway
infrastructure in the Czech Republic. We are working on optimization meth-
ods [3,4,2] for the planning of train capacities to assess and discuss additional
connection sites between large cities and to devise suitable train timetables based
on a fixed clock timetabling. We propose an integer linear programming for-
mulation based on an arc-based multi-commodity network flow model and a
space-time graph [12].

The demand of passengers represents the crucial input part of our model. The
future demand will allow us to compute future supply for train capacities well.
Prediction of the correct demand is one of the critical components in transport
planning [10], which is essential for the efficiency of transport infrastructures [13].
To handle this problem, we are using new big data from mobile operators in the
Czech Republic [5], which were collected to study the behavior of passengers
along with the planned high-speed infrastructure (Praha-Brno-Ostrava). Con-
sideration of data from mobile operators is a relatively new phenomen [6]. We
are not aware that mobile operators’ big data was applied for long-term capacity
planning in high-speed railways. Given that mobile operators provided us with
the data with a rich set of characteristics, we have applied them for the ini-
tial demand estimate to be included in our mathematical programming models.
Currently, our approach uses the data provided by mobile operators directly. It
has various drawbacks, such as insufficient data coverage at border connections3,
multimodal transportation at some edges4, or missing considerations of future
demand changes. To get more accurate demand prediction, we plan to combine

3 The data from mobile operators were required to include passenger trips containing
one of the edges Praha-Brno, Brno-Ostrava, or Praha-Ostrava only.

4 Train track and highway are too close at the edge between Brno and Ostrava, which
results in inaccurate data by mobile operators.

182

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

big data from mobile operators with the small data from questionnaires and
statistics and device models of future passenger demands.

Our proposed model concentrates on rolling stock management and alloca-
tion while considering preliminary timetables and demands available from mobile
operators’ big data. This ongoing work will discuss the results of our current ap-
proach implemented in CPLEX Optimization Studio, which allows us to compute
the optimal solution to the problem.

2 Problem description

Let us discuss the problem we are considering in our current work. We want
to decide proper types and the number of trainsets, which is the typical rolling
stock management [3] task. So, the first rolling stock management part of our
problem lies in computing two types of trainsets used for the entire network and
their number. Two trainset types are required to achieve a better investment
cost due to a larger number of pieces of each type given by its capacity.

To decide so, we must know how much this particular set would cost if we run
high-speed transportation with chosen trainset types. Therefore, we will consider
rolling stock allocation [7] as well. Our rolling stock allocation problem consists
of assigning trainsets to connections based on predefined train timetables.

Terminology The route connecting two terminal stations is called a line. The
line is divided into several segments, which are defined as the route between two
adjacent stations. An example may be the line Wien → Prague, divided into
segments Wien → Břeclav, Břeclav → Brno and Brno → Prague. Each line is
periodically served with a specific frequency, usually a day or a week-long. One
instance of the line at a given time is called connection. For example, for the
line Berlin → Wien, we may have 16 connections per day, the first connection
starting at 5:10 in Berlin and arriving at Wien at 10:00. A segment served by a
particular rolling stock piece at a particular time is called a subconnection, e.g.,
Břeclav → Wien at 9:15. An individual trainset can serve a connection, or more
trainsets can be jointed to increase the overall capacity. There are trainsets of
different type, which are currently distinguished by their capacities.

Objective The current problem is to minimize the total cost that transportation
companies would have to pay to purchase and run high-speed transportation
taking into account costs linked only to trainsets. The total cost is defined by in-
vestment cost including modernization, the variable cost depending on the trav-
eled kilometers of each used trainset, and gain from operating trainsets abroad
for each seat and each kilometer run abroad.

Constraints Based on our specification, the constraint relating to rolling stock
management is only one, specifying that it is possible to choose only two trainset
types.

On the other hand, several constraints are related to rolling stock allocation.
First and foremost, passenger demand is considered a hard constraint, with each

183

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

subconnection having predefined passenger demand (minimal capacity). Each
subconnection must be served by at least one trainset, even if there would not
be any predefined passengers from a dataset.

Maximally two trainsets can be joined into one high-speed train with an
overall capacity not exceeding 1,000 seats. Trainsets may be joined and disjoined
only in certain stations specified in the dataset. For each station at the end
of each considered period, there must be the same number of trainsets at the
beginning of the same period. Additional constraints are related to passenger
comfort.

3 Model in example

We propose to use a multi-commodity network flow model where each trainset
type appears as a separate commodity. The model is based on the paper by
Schrijver et al. [11] where they used a multi-commodity network flow graph to
minimize the total number of rolling stock units used. They did not consider any
price calculation or restriction on trains’ capacity or length.

We will use Figure 1 for demonstration of the multi-commodity network
graph and our model. Each node is represented by a station in a given time.
Blue and red edges represent two connections. Labels of each edge refer to the
number of trainsets of each type (we have two types in our example). The source
represents the beginning of the scheduling interval where all trainsets start, and
the sink is the opposite as a terminal node for all trainsets.

There are two types of variables. The integer variable is defined for each edge
and trainset type and specifies the number of trainsets. The boolean variable for
each trainset type defines if a particular trainset type is used. We have proposed a
linear integer programming model based on described multi-commodity network
flow and implemented it using CPLEX Optimization Studio 12.8 [8]. In the full
version of this paper, we will discuss all constraints and the objective with their
integer linear programming model.

1,1

0,0

0,0
1,0 1,01,0

1,11,1

0,00,0

1,1

1,1 1,10,1
Source Sink

Prague
10:20

Ostrava
9:50

Ostrava
8:00

Brno
9:05

Brno
9:00

Brno
8:50

Brno
8:45

Prague
7:30

1,0

Fig. 1. Simple example of multi-commodity network flow.

184

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Fig. 2. Number of passengers for backbone (top) and border (bottom) connections
during the day.

4 Data set and preliminary experiments

We have demand data available from mobile operators and preliminary train
timetables provided by the Czech national railway company České dráhy, a.s..
We consider 15 stations in our problem. It includes terminal stations and stations
where the exchange of trainsets can happen. There are 12 lines, 344 connections,
and 721 edges between stations in time. Currently, we compute a solution for
one day only. Figure 2 demonstrates the number of passengers in backbone
and border connections5 based on the data from mobile operators. We can see

5 Backbone connections represent the critical railway infrastructure for high-speed
trains, and border connections represent part of the infrastructure in border regions.

185

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

that the backbone data have reasonable demands. Still, it would be desirable
to enhance them for border connections where data from mobile operators are
insufficient because the passenger data were collected when including backbone
connections only.

In Table 1, we can see characteristics of the optimal solution, which can be
computed in approximately 1 minute. We would use 87 trainsets with 200 seats
and 31 trainsets with 500 seats. We need to say that the rolling stock part of
the problem is not very demanding because trainsets of the smallest capacity
are necessary to cover border connections, and trainsets with 500 seats cover the
maximal allowed capacity of 1,000 passengers.

We experimented with two other models based on boolean variables for
each trainset type, individual trainset and subconnections, and a path-based
model [12] with integer variables for each path and trainset type. First, we have
used a toy network with two lines. The first model could not find any solution
within 90 minutes, while our model provided a solution within 0.14 seconds. The
path-based model succeeded in finding an optimal solution within 1.98 seconds.
For the complete network, it was impossible to run the path-based model be-
cause the number of paths increased drastically in preprocessing, and it did not
fit into the memory. To conclude, both other models were shown insufficient.

5 Conclusion

In this study, we aimed to solve resource stock management and allocation prob-
lems for high-speed railways in the Czech Republic based on the big data avail-
able from mobile operators. Our current results demonstrated to the Czech na-
tional railway company attained their high interest. However, it is necessary to
enrich the current data with additional inputs corresponding with corrections of
missing demand data that have weak parts, especially at border connections. For
instance, we have now additional data about the sold tickets at particular bor-
der connections and moreover corresponding data from Transport Yearbooks on
domestic connections. Also, we need to incorporate a forecast of future diverted
and induced demand. Certainly, our current model would deserve extensions, for
example, in terms of one-week cycles rather than the current one-day. A more

Table 1. Preliminary results.

Possible trainset capacities 200, 300, 350, 400, 450, 500, 700
Selected trainset capacities 200 500
#trainsets 87 31
#served edges 607 175
Avg. distance in Czech Rep. (km) 1,036 590
Avg. distance abroad (km) 370 679
Avg. occupations (%) 21.4 47.6
#passengers 27,444 46,651
#trainset exchanges 109

186

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

complex extension would be introduced by including the investment cost due
to the high-speed line constructions. Finally, a full body of experiments will be
presented in the final version of the paper.

Acknowledgements Data from mobile operators are provided with the support
of the Ministry of Education, Youth, and Sports of the Czech Republic in the
Operational Programme „Research, Development, and Education”, grant New
mobility – high-speed transport systems and transport behavior of the popula-
tion ID muni 1312/2017, ID CZ.02.1.01/0.0/0.0/16_026/0008430.

References

1. Abril, M., Barber, F., Ingolotti, L., Salido, M., Tormos, P., Lova, A.: An assessment
of railway capacity. Transportation Research Part E: Logistics and Transportation
Review 44(5), 774–806 (2008)

2. Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., Schlechte, T.:
Recent success stories on integrated optimization of railway systems. Transporta-
tion Research Part C: Emerging Technologies 74, 196–211 (2017)

3. Caprara, A., Kroon, L., Monaci, M., Peeters, M., Toth, P.: Passenger railway opti-
mization. In: Barnhart, C., Laporte, G. (eds.) Transportation, Handbooks in Op-
erations Research and Management Science, vol. 14, pp. 129–187. Elsevier (2007)

4. Cats, O., Haverkamp, J.: Optimal infrastructure capacity of automated on-demand
rail-bound transit systems. Transportation Research Part B: Methodological 117,
378–392 (2018)

5. Ficek, M.: Handover documentation of big data public procerement within new
mobility. In: Ministry of Education, Youth, and Sports of the Czech Republic in
the Operational Programme "Research, Development and Education", grant New
mobility – high-speed transport systems and transport behaviour of the population,
ID CZ.02.1.01/0.0/0.0/16_026/0008430. Praha:CE Traffic (2020)

6. Gundlegård, D., Rydergren, C., Breyer, N., Rajna, B.: Travel demand estimation
and network assignment based on cellular network data. Computer Communica-
tions 95, 29–42 (2016), mobile Traffic Analytics

7. Huisman, D., Kroon, L.G., Lentink, R.M., Vromans, M.J.: Operations research in
passenger railway transportation. Statistica Neerlandica 59(4), 467–497 (2005)

8. IBM ILOG CPLEX Optimization Studio, CPLEX Language User’s Manual 12.8
(2017)

9. Jensen, L.W., Landex, A., Nielsen, O.A., Kroon, L.G., Schmidt, M.: Strategic
assessment of capacity consumption in railway networks: Framework and model.
Transportation Research Part C: Emerging Technologies 74, 126–149 (2017)

10. Lundqvist, L., Mattsson, L.G. (eds.): National transport models: Recent develop-
ments and prospects. New York: Springer (2001)

11. Schrijver, A.: Minimum circulation of railway stock. Cwi Quarterly 6(3), 205–217
(1993)

12. Thorlacius, P., Larsen, J., Laumanns, M.: An integrated rolling stock planning
model for the copenhagen suburban passenger railway. Journal of Rail Transport
Planning & Management 5(4), 240–262 (2015)

13. Viturka, M., Pařil, V.: Regional assessment of the effectiveness of road infrastruc-
ture projects. International journal of transport economics 42(4), 507–528 (2015)

187

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

An Iterative Approach for the Mobile Workforce
Tactical Scheduling Problem with Frequency
Constraints

Anne-Laurence Thoux · Stéphane
Dauzère-Pérès · Chloé Desdouits ·
Dominique Feillet

Received: date / Accepted: date

Abstract Keywords Workforce scheduling and routing · Frequency
constraints · Iterative approach

1 Introduction

Workforce planning and scheduling problems mainly focus on designing teams
or on creating daily plans. However, recent studies have highlighted that ma-
nagement aspects should not be left out, and that models should better con-
sider the complexity of real-life objectives and constraints, see e.g. the reviews
[3], [5] and [7]. Those reviews raise a need for a broader view when building the
daily schedules of employees, for example when different resources are required
to perform some tasks. This, for instance, is the case for surgery operations,
where balancing the workload among resources is required (for instance the
amount of work or the type of the tasks assigned) and resources must be co-
ordinated (see e.g. [6]). Scheduling the tasks to perform in bidding order, or
depending on their deadline, is no longer enough to ensure that the resulting
plan is optimal, or that every required task is performed on time. In such cases,
studying personnel scheduling problems on a longer horizon than several days
becomes mandatory. This need is reinforced in some contexts such as health-
care, where the number of beneficiaries is continuously increasing. Optimizing
the distribution of the resources is there an opportunity to reduce the costs
and the frenetic working pace, while still providing high-quality services (see
e.g. [6]).

Anne-Laurence Thoux · Stéphane Dauzère-Pérès · Dominique Feillet
Mines Saint-Etienne, Univ. Clermont Auvergne, CNRS, UMR 6158 LIMOS
CMP, Department of Manufacturing Sciences and Logistics, Gardanne, France
E-mail: anne-laurence.thoux@emse.fr

Anne-Laurence Thoux · Chloé Desdouits
DecisionBrain, Paris, France
E-mail: anne-laurence.thoux@emse.fr

188

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Anne-Laurence Thoux et al.

In the light of the above, we believe that studying an optimization problem
at the tactical level to plan the tasks to be performed by a team of employees
on several weeks helps to handle more complexity and to find even better
solutions. By decoupling the decisions depending on the temporal horizon
they impact, more realistic workforce planning and scheduling problems should
become solvable.

In our problem, which comes from industry, we focus on the scheduling of
tasks with frequency constraints for a mobile workforce. Scheduling and rout-
ing optimization problems under frequency constraints have not been studied
much in the literature, and usually with restrictions since the assignment of
the tasks to the employees is generally given as an input (see [2] and [8]).

In the context of a mobile workforce, where employees travel from one
client to the next to perform cleaning tasks, we call our problem the Mobile
Workforce Tactical Scheduling Problem with Frequency Constraints. The goal
is to determine a plan on several weeks which defines who will perform which
task in which day. All the required tasks must be scheduled and a trade-off
must be ensured between the clients’ and the company’s interests. Tasks must
be distributed over the horizon according to frequency constraints and the
total working cost must be minimized. As the workforce is mobile, the tactical
plan is the basis on which the daily routes of the employees are optimized at
the operational level. The tactical plan has thus to take traveling distances into
account to be consistent. To ensure this consistency, we adapt the two-phase
iterative heuristics of [4] for the integrated production planning and scheduling
problem and of [1] for the production routing problem.

2 Solution Approach and Results

Absi et al. [1] developed a two-stage heuristic, that iterates between a lot-
sizing phase and a routing phase, to solve a production routing problem. The
lot-sizing phase decides which vehicle will deliver which client in which day,
and the routing phase optimizes the routes in each day. Depending on the
quality of the routes determined in this second phase, some metrics are raised
as a feedback to improve the lot-sizing plan in the following iteration.

We propose to adapt this iterative method by replacing the lot-sizing phase
by the construction of the tactical plan with frequent tasks and each vehicle by
an employee of the team. The tactical plan is optimized by solving an integer
programming model with a standard solver. The routes are determined for
each employee and each day by an assignment heuristic and improved by local
search when needed. The routing heuristics were developed by DecisionBrain
(www.decisionbrain.com).

Our industrial instances include up to 30 employees and 2100 tasks to per-
form each month. In order to decrease the size of those instances and be able
to plan on several months, we propose to pre-process the data in a clustering
step. Using a gaussian mixture model, we determine groups of employees that
are assumed to be equivalent and use these groups in the heuristic. Further-

189

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Mobile Workforce Tactical Scheduling with Frequency Constraints 3

more, this approach improves the construction of the operational routes, since
several routes can simultaneously be designed and improved in one cluster.

We compare the results obtained with our algorithm for real-size instances
to the results of the current DecisionBrain’s algorithms and of a one-shot
integer programming model, which estimates the distances while solving the
tactical problem. It appears that our iterative method allows the required tasks
to be performed with a good respect of the required frequencies. By varying the
value of the penalties induced by not respecting the frequency constraints, we
can observe the trade-off between the satisfaction of the frequency constraints
and the cost resulting from subcontracting and traveling.

3 Conclusion and Perspectives

Scheduling tasks on a horizon of several weeks before optimizing the daily
routes allows more complex constraints to be taken into account. We showed
here the interest of scheduling tasks with frequency constraints on a longer
horizon before optimizing routes. In particular, more complexity can be han-
dled while getting solutions faster than when directly optimizing the daily
routes.

By varying the values of some parameters in the iterative approach, differ-
ent solutions can be determined and thus Pareto optimal solutions. Depending
on the definition of the quality of the routes, the tactical plan can find the
best distribution of the tasks to satisfy frequency constraints while taking the
constraints of operational routes into account. Planners could then interact
with the approach by selecting one of several solutions and improving them.
More constraints could also be added in the tactical plan, such as dependencies
between tasks, assignment of the tasks to a specific employee or day, different
skills for employees and workload balancing between the employees and over
the planning horizon.

By solving the problem in two phases, our goal is to find the best way
to embed scheduling and routing considerations in workforce planning and
scheduling problems. As far as future research is concerned, our main perspec-
tive involves studying the robustness of the plan regarding small perturbations
(e.g. duration of a task or delay of an employee) or the ease of re-building the
plan when major disruptions occur (e.g. the absence of an employee).

References

1. N. Absi, C. Archetti, S. Dauzère-Pérès, and D. Feillet, A two-phase iterative heuris-
tic approach for the production routing problem, Transportation Science, 49(4), 784–795
(2014)

2. Y.-J. An, Y.-D. Kim, B. Jeong, and S.-D. Kim, Scheduling health-care services in a home
healthcare system, Journal of the Operational Research Society, 63(11), 1589–1599 (2012)

3. J. A. Castillo-Salazar, D. Landa-Silva, and R. Qu, Workforce scheduling and routing
problems: literature survey and computational study, Annals of Operations Research,
239(1), 39–67 (2016)

190

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Anne-Laurence Thoux et al.

4. S. Dauzère-Pérès and J.-B. Lasserre, Integration of lotsizing and scheduling decisions in
a job-shop, European Journal of Operational Research, 75(2), 413–426 (1994)

5. P. De Bruecker, J. Van den Bergh, J. Beliën, and E. Demeulemeester, Workforce planning
incorporating skills: State of the art. European Journal of Operational Research, 243(1),
1–16 (2015)

6. N. Dellaert and J. Jeunet, A variable neighborhood search algorithm for the surgery
tactical planning problem, Computers and Operations Research, 84, 216–225 (2017)

7. C. Fikar and P. Hirsch, Home health care routing and scheduling: A review, Computers
& Operations Research, 77, 86–95 (2017)

8. W. Jang, H. Lim, T. Crowe, G. Raskin, and T. Perkins, The missouri lottery optimizes its
scheduling and routing to improve efficiency and balance, Interfaces, 36, 302–313 (2006)

191

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Grouping and timetabling for multi-league sports
competitions

Miao Li1[0000−0002−6205−814X] and Dries Goossens1[0000−0003−0224−3412]

Faculty of Economics and Business Administration, Ghent University,
Tweekerkenstraat 2, 9000 Ghent, Belgium

miao.li@ugent.be;dries.goossens@ugent.be

Abstract. This work presents a bi-objective grouping and timetabling
problem for sports competitions that are played using multiple leagues.
We propose a decision-making framework to uncover the trade-off be-
tween minimizing travel distance and venue capacity violations, in order
to meet the preferences of different stakeholders.

Keywords: OR in sports · bi-objective optimization · sport team group-
ing · sports timetabling · multi-league scheduling

1 Introduction and problem description

Youth and amateur sports provide non-professional players with the opportu-
nity to exercise and develop athletic skills. In such sports, the number of teams
involved can reach the thousands, and considerable efforts are required to orga-
nize their competition. A first challenge is that teams with players of the same
age, gender or strength need to be grouped into leagues. This problem is known
as the sports team grouping problem (STGP [3]). The main objective with this
problem is to minimize the total travel distance travelled by all teams, knowing
that teams visit each other team in their league, but none of the teams from
other leagues. Another issue is setting up a timetable for each of these leagues,
i.e. deciding when each match is to be played. This problem is known as multi-
league sports timetabling problem (MLSP [1]). Since teams of the same club
share the same infrastructure (venue), whose capacity should be respected, the
leagues are interdependent and cannot (optimally) be scheduled one by one. In
particular, per time slot on which the number of home-playing teams from a
club exceeds the number of home matches the club can host, a capacity vio-
lation arises. Hence, the main objective in the multi-league sports timetabling
problem is to minimize the total venue capacity violations over all clubs.

In practice, these problems are handled sequentially: first solve the sports
team grouping problem, and then, based on the resulting league composition,
solve the multi-league sports timetabling problem. However, some team group-
ing may allow a timetable where few or even no clubs face a capacity issue,
while another grouping may be more problematic, resulting more venue capac-
ity violations. As its main novelty, this paper integrates both decision problems

192

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 M. Li and D. Goossens

(i.e., STGP and MLSP) as the multi-league grouping and timetabling problem
(MLGTP), with two objective functions: the minimization of total distance trav-
elled by all teams and the minimization of total venue capacity violations over
all clubs. Both objectives are demonstrated to be conflicting when leagues have
different sizes. We therefore investigate their trade-off, and develop a method
that allows us to approximate the Pareto front.

2 Proposed method

For instances with a somewhat realistic scale, an approach like the ϵ-constraint
method (ECM) [2] is intractable within a reasonable computation time. Hence
we develop a two-phase two-layer constructive algorithm (SLCM) to find an ap-
proximate Pareto front for our bi-objective problem in a reasonable time. The
optimization process begins with an initial Pareto solution. Next, in the first
phase, the problem is decomposed into STGP and MLSP sub-problems, which
are solved by a two-layer method sequentially and iteratively. At each iteration,
the outer layer is first used to minimize the total distance travelled, where the
initial assignment of teams to leagues is further improved by simulated anneal-
ing. In the second phase, we enlarge the search space and improve incumbent
candidate Pareto solutions. Then, given a list of potential Pareto efficient solu-
tions of MLGTP, an approximate Pareto front is identified. The overall process
is able to optimize two distinct objectives simultaneously.

3 Preliminary results and conclusion

Due to the fact that there are no MCGTP instances available in the literature,
we created some sets of instances with various numbers of teams, leagues and
clubs, as well as league and club sizes, as given in Table 1.

Table 1. Overview of instance types and their features

Instance
type

Instance
ID

No.
teams

No.
clubs

No.
leagues

League size

16 10 8 6 4

Small-scale
S1 18 8 3 − − 1 1 1
S2 34 16 3 1 1 − 1 −

Large-scale

N1 80 17 8 2 − 6 − −
N2 112 18 11 3 − 8 − −
N3 144 20 13 5 − 8 − −
N4 176 20 16 6 − 10 − −
N5 208 25 19 7 − 12 − −

Note: ‘−’ indicates the instance type does not contain leagues of the corre-
sponding size

193

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Grouping and timetabling for multi-league sports competitions 3

After preliminary tests for parameter configurations, we evaluate the per-
formance of the proposed bi-objective solution method. Besides the two-phase
two-layer constructive method (SLCM), in order to study the contribution of
the second phase, each problem instance is solved by the two-layer constructive
method (LCM) which only includes the first phase of SLCM.

We first assess the ability of the methods on small-scale instances. The re-
sults show that SLCM is capable of producing optimal Pareto solutions for all
instances, and that the approximate Pareto set obtained by the LCM lies close
to the optimal set. Additionally, compared with the computationally demanding
ECM, LCM and SLCM both operate far more efficiently.

We next turn our attention to large-scale instances. For these instances, ECM
cannot obtain a feasible solution within the time limit (7200s). Four evaluation
metrics, namely the number of Pareto efficient solutions (NPS), the diversifica-
tion metric (DM), the mean ideal distance (MID) and the spacing metric (SM)
are applied to compare different sets of Pareto solutions produced by SLCM and
LCM. While with respect to DM, both algorithms display more or less the same
performance, based on the metrics NPS, MID and SM, SLCM is clearly superior
to LCM. Overall, this indicates that the second phase of the SLCM approach is
a valuable addition.

With respect to computation time, small-scale instances were solved by SLCM
in less than 405 seconds, while we needed no more than 1800 seconds for the
large-scale instances.

In summary, our preliminary results suggest that the proposed method is able
to offer a good approximation of the Pareto front, helping the league organizers
to find a good compromise proposal to balance the travel distance of all teams
and the venue capacity violations over all clubs.

References

1. Davari, M., Goossens, D., Beliën, J., Lambers, R., Spieksma, F.C.: The multi-league
sports scheduling problem, or how to schedule thousands of matches. Operations
Research Letters 48(2), 180–187 (2020)

2. Haimes, Y.: On a bicriterion formulation of the problems of integrated system iden-
tification and system optimization. IEEE transactions on systems, man, and cyber-
netics 1(3), 296–297 (1971)

3. Toffolo, T.A., Christiaens, J., Spieksma, F.C., Vanden Berghe, G.: The sport teams
grouping problem. Annals of Operations Research 275(1), 223–243 (2019)

194

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports

Scheduling Problem

Angelos Dimitsas1, Christos Gogos1, Christos Valouxis2, Alexandros Tzallas1,
and Panayiotis Alefragis3

1 University of Ioannina, Dept. of Informatics and Telecommunications, Arta, Greece
{a.dimitsas, cgogos, tzallas}@uoi.gr

2 University of Patras, Dept. of Electrical and Computer Engineering, Patras, Greece
cvalouxis@upatras.gr

3 University of Peloponnese, Dept. of Electrical and Computer Engineering, Greece,
Patras

alefrag@uop.gr

Abstract. Sports Scheduling is a problem with many variations, re-
garding the sport type, the various hard rules that have to be obeyed
and the quality metrics that are expected to be met. Various stakehold-
ers including organizers, teams, spectators and others have interest in
acquiring high quality schedules that satisfy rules and constraints cru-
cial from their point of view. In this work we propose an approach for
solving the Sports Scheduling problem as de�ned in the International
Timetabling Competition 2021 (ITC2021). We describe the analytical
formulation of each constraint, as it can be modeled for a CP solver and
�ve moves that can be used for altering a schedule by a metaheuristic.
We also document the experience gained in trying to address the prob-
lem using heuristics, metaheuristics, Constraint Programming and the
capable ORTools CP/SAT solver. Despite the computational hardness
of the problem instances, our approach managed to achieve good results
for most of them.

Keywords: Sports Scheduling· Constraint Programming · Simulated
Annealing

1 Introduction

Sports Scheduling is the problem of constructing a tournament schedule consist-
ing of matches among competing teams that form a league. The schedule should
satisfy the constraints imposed by the tournament's rules and be `invisible' in
the sense that the various stakeholders such as organizers, teams, spectators,
and others should not have legitimate reasons to question it.

Sports scheduling exists for as long as there are sports and teams willing to
participate in tournaments with matches against each other. For some sports,
like tennis, instead of teams, individual athletes compete. Furthermore, there
are tournaments, like chess or other board games tournaments, where the actual

195

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 A. Dimitsas et al.

matches would be hardly identi�ed as sports, in the typical sense. Esports (elec-
tronic sports), is another example of a competition for which its events should be
scheduled according to a carefully crafted plan. The same principles regarding
scheduling apply to all previously identi�ed cases of tournaments and are special
instances of the sports scheduling problem.

Several variations of tournaments exist including single round tournaments,
double round tournaments, tournaments with elimination games, compact tour-
naments (all teams have matches in every timeslot), etc. Some heuristics for con-
structing sport schedules are known for many years, like the circle [11] method
and the Berger [3] method. But when constraints are added the problem quickly
becomes very hard to solve. Such constraints might involve the avoidance of
consecutive away games for all or some teams, the enforcement of minimum
distances (number of time slots) between a match and the rematch, and many
others. In this paper, an approach of generating high quality schedules for the
compact, double round robin (2RR) type of tournament, is presented. This ap-
proach is based on several moves that keep the schedule feasible and a Constraint
Programming formulation that results in a model capable of performing com-
plex moves when no progress can be achieved otherwise. A move is eventually a
series of changes involving teams participating in a set of matches. Some moves
result in better schedules and some others may lay the foundation for performing
subsequent moves that will lead to even better schedules.

2 Related work

Several real life tournaments have been addressed using automated techniques
involving mathematical programming, constraint programming, metaheuristics
and heuristics; e.g., the Belgian soccer league [7], the Brazilian soccer tourna-
ment [16], the Finnish national youth ice hockey league [14], the Chilean soccer
leagues [1], the South American quali�ers for FIFA 2018 [6], the Icelandic football
league [8].

Lewis and Thompson, in [12] present the association of the sports scheduling
problem to the a graph coloring problem. Moreover, an edge coloring presenta-
tion of the problem is available at [10].

Regarding the exploration of the solution space in [4] it is established that
the solution space is not connected by the usually used neighborhood structures,
i.e. it's impossible starting from a feasible timetable to reach all other possible
timetables just by performing the usual heuristic moves proposed in the bibli-
ography, and [9] proposed a new neighborhood operator to handle this issue.

Since sports timetabling usually results in problems of big sizes, decomposi-
tion approaches can be advantageous. In [18] a �rst schedule then break approach
was tried. First it was decided when teams would meet, and the home advantage
is decided later. The opposite, �rst break then schedule approach can be seen at
[17], �rst it is decided where each team plays at home and the teams are paired
later. An e�ort on minimizing breaks is available at [13]. A research on feasible
home-away patterns is presented at [2].

196

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 3

3 Problem Description

The problem description can be found at [19] and it refers to tournaments cat-
egorized as time-constrained double round robin. Time-constrained or compact
means that the timetable uses the minimum number of time slots, i.e. in each
time slot all teams play in matches.

3.1 The Base Constraints

The base constraints for each tournament are the format of the tournament. All
tournaments are in double round robin format, i.e. each team has two matches
against every other team, one at home and one away. Some of the tournaments
contain the Phase rule; the timetable is divided in half (two phases), a match
and its rematch must be in a di�erent phase. All tournaments are compact.

3.2 The Hard and Soft Constraints of ITC2021

All type of constraints can be either hard or soft as of the type attribute. Hard
constraints must be satis�ed and soft constraints create deviations penalized in
the objective function. There are 9 types of constraints in 5 di�erent constraint
categories.

Capacity Constraints Capacity constraints regulate the matches played by a
team or a group of teams at home or away.

CA1 constraints regulate the number of matches a team plays at home or
away in speci�c slots.

CA2 constraints regulate the number of matches a team plays at home or
away in speci�c slots against speci�c teams.

CA3 constraints regulate the number of matches a team plays at home or
away in a sequence of slots.

CA4 constraints regulate the number of matches a group of teams play at
home or away in speci�c slots against speci�c teams.

Game Constraints Game constraints enforce or forbid speci�c matches in
certain slots.

GA1 constraints deal with �xed or forbidden matches to slots assignments.

Break Constraints If a team plays a game with the same home-away status
as its previous game, we say it has a break.

BR1 constraints limit the breaks a team has in speci�c slots.
BR2 constraints limit the breaks a group of teams has in speci�c slots.

Fairness Constraints Fairness constraints attempt to increase fairness and
attractiveness of a tournament.

FA2 constraints limit the di�erence in played home games of set of teams.

197

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 A. Dimitsas et al.

Separation Constraints Separation constraints regulate the number of slots
between matches involving the same pairs of teams.

SE1 limits the di�erence between matches and rematches of the same teams.

4 A Pragmatic Approach

4.1 Heuristic Moves

We have identi�ed �ve di�erent heuristic moves that create a new timetable from
an existing one. The new timetable conforms to the base constraints. In Table 1
a timetable is presented, this timetable will be used as a starting timetable for
the examples for all available moves.

Table 1. Double round robin tournament created with the circle method.

1 2 3 4 5 6

1-4 1-3 1-2 4-1 3-1 2-1
2-3 4-2 3-4 3-2 2-4 4-3

� SwapHomes. Two teams t1 ̸= t2 are selected, we swap match t1 − t2 with
t2 − t1. Two matches are a�ected. An example can be seen in Table 2.

Table 2. Timetable 1 after SwapHomes move for teams 1 and 4.

1 2 3 4 5 6

4-1 1-3 1-2 1-4 3-1 2-1
2-3 4-2 3-4 3-2 2-4 4-3

� SwapRounds. Two slots s1 ̸= s2 are selected, we swap the matches of s1
with those of s2. For a tournament of T teams, T matches are a�ected.
An example can be seen in Table 3. For tournaments with the Phase rule
swapping slots is allowed only on slots of the same phase.

� Swap Teams. Two teams t1 ̸= t2 are selected, we swap team t1 with t2 in all
matches. For a tournament of T teams, 4(T − 1) matches are a�ected. An
example can be seen in Table 4.

� PartialSwapTeams. Two teams t1 ̸= t2 are selected, we swap opponents of
team t1 with those of t2 in all slots and also keep in mind that if a match is
already scheduled to also schedule its rematch. For a tournament of T teams,
4(T − 1)− 2 matches are a�ected. An example can be seen in Table 5.

198

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 5

Table 3. Timetable 1 after SwapRounds move for slots 1 and 5.

1 2 3 4 5 6

3-1 1-3 1-2 4-1 1-4 2-1
2-4 4-2 3-4 3-2 2-3 4-3

Table 4. Timetable 1 after SwapTeams move for teams 1 and 2.

1 2 3 4 5 6

2-4 2-3 2-1 4-2 3-2 1-2

1-3 4-1 3-4 3-1 1-4 4-3

� PartialSwapRounds. One match m is selected and moved from slot A to slot
B, matches involving teams fromm are moved to slot A, an ejection sequence
between slots A and B occurs until each team participates in one match per
slot. For tournaments with the Phase rule the match m is allowed only to
move to a slot in the same phase. The number of matches a�ected varies.
An example can be seen in Table 6.

4.2 Simulated Annealing

Simulated Annealing [21] is a well-known optimization technique that manages
to produce near optimal results for a variety of problems. It escapes local minima
by accepting inferior solutions with high probability during early stages of the
process. This probability diminishes as the process continues. In particular, the
acceptance probability of an inferior solution at step k of the procedure is given

by ef(cur)−f(new)

Tk
where f(cur) is the cost of the current best solution, f(new) is

the cost of the new solution and Tk is the temperature after k decreases from an
initial temperature T . The temperature is decreased based on the cooling factor
a, using the formula Tk = aTk−1.

There seems to be some art in calibrating Simulated Annealing to get the
best possible results [5]. In our approach, after trial and error the following values
were chosen, T = 5, a = 0.999. The procedure restarts when the temperature of
0.1 is reached.

4.3 Constraint Programming Formulation

Decision Variables For the set of teams T, the set of slots S, with S as the
number of available slots and T as the number of teams we de�ne the following
binary decision variables.

199

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 A. Dimitsas et al.

Table 5. Timetable 1 after PartialSwapTeams move for teams 1 and 3.

1 2 3 4 5 6

1-2 1-3 1-4 2-1 3-1 4-1
4-3 4-2 3-2 3-4 2-4 2-3

Table 6. Timetable 1 after placing match 1-2 in slot 5. Note that in small tournaments
the e�ect is always a swap of the slots, but in larger tournaments only some of the
matches will exchange slots.

1 2 3 4 5 6

1-4 1-3 3-1 4-1 1-2 2-1
2-3 4-2 2-4 3-2 3-4 4-3

xi,j,s =

{
1, If team i plays against team j in slot s
0, Otherwise

∀i, j ∈ T, i ̸= j,∀s ∈ S

(1)
To monitor the home away pattern we de�ne:

yi,s =

{
1, If team i plays at home in slot s
0, Otherwise

∀i ∈ T,∀s ∈ S (2)

We enforce the home-away pattern to follow the timetable:

yi,s =

T∑
j=1

xi,j,s ∀i ∈ T, i ̸= j,∀s ∈ S (3)

In all instances, constraints regarding breaks do not take into consideration
if the breaks occur at Home or Away, so we just have to keep track in which
slots a general break occurs:

zi,s =

{
1, If team i has a break in slot s
0, Otherwise

∀i ∈ T,∀s ∈ S (4)

We enforce the break pattern to follow the home-away pattern:

zi,s =

{
1, yi,s = yi,s−1, s > 1
0, s = 1

∀i ∈ T,∀s ∈ S (5)

Base Constraints Each team must play exactly one match at home against
each other team:

S∑
s=1

xi,j,s = 1 ∀i, j ∈ T, i ̸= j (6)

200

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 7

To satisfy the compactness rule each team plays one match in each slot:

T∑
j=1

(xi,j,s + xj,i,s) = 1 ∀i ∈ T, i ̸= j,∀s ∈ S (7)

For instances with the phase rule a match and its rematch must be in di�erent
phases:

S/2∑
s

(xi,j,s + xj,i,s) = 1 ∀i, j ∈ T, i < j,∀s ∈ S (8)

CA1 Constraints Each CA1 constraint with team tc in �teams� �eld, with Sc
the set of teams in �slots� �eld and maxc in �max� �eld, triggers a dc deviation.

CA1 with mode=�H�:

dc =
∑
s∈Sc

ytc,s −maxc (9)

CA1 with mode=�A� and Sc the size of Sc:

dc = Sc −
∑
s∈Sc

ytc,s −maxc (10)

CA2 Constraints Each CA2 with team t1 in �teams1� �eld, with Sc the set of
slot in �slots� �eld, with Tc the set of slots in �teams2� �eld, with maxc in �max�
�eld triggers a deviation dc.

CA2 with mode=�H�:

dc =
∑
t2∈Tc

∑
s∈Sc

xt1,t2,s −maxc (11)

CA2 with mode=�A�:

dc =
∑
t2∈Tc

∑
s∈Sc

xt2,t1,s −maxc (12)

CA2 with mode=�HA�:

dc =
∑
t2∈Tc

∑
s∈Sc

(xt1,t2,s + xt2,t1,s)−maxc (13)

CA3 Constraints Each CA3 with Tc1 the set of teams in �teams1� �eld, with
Sc as the slots in �slots� �eld, with Tc2 the set of teams in �teams2� �eld and
maxc in �max� �eld triggers deviations dc for each team in Tc1 and for all slot
sequences Sc of size intp in �intp� �eld.

CA3 with mode=�H�:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt1,t2,s −maxc ∀t1 ∈ Tc1, t1 ̸= t2, 1 ≤ k ≤ Sc − intp (14)

201

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 A. Dimitsas et al.

CA3 with mode=�A�:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt2,t1,s −maxc ∀t1 ∈ Tc1, t1 ̸= t2, 1 ≤ k ≤ Sc − intp (15)

Special case: In all instances there are at most two Hard CA3 constraints,
one with mode=�H� and the other with mode=�A�, Tc1 = Tc2 = T, Sc = S,
maxc is always 2 and intp is always 3. If both rules exist then the home-away
patterns �HHH� and �AAA� cannot appear, so for those instances a team cannot
have two breaks in a row:

zi,s + zi,s−1 ≤ 1 ∀i ∈ T,∀s ∈ S, s > 2 (16)

CA4 Constraints Each CA4 with mode2=�GLOBAL� triggers a deviation dc
equal to the sum of the matches between the set of teams Tc1 in �teams1� �eld
and the set of teams Tc2 in �teams2� �eld in all slots of the set Sc in �slots� �eld
over maxc in �max� �eld.

CA4 with mode2=�GLOBAL� and mode1=�H�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 ̸= t2 (17)

CA4 with mode2=�GLOBAL� and mode1=�A�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 ̸= t2 (18)

CA4 with mode2=�GLOBAL� and mode1=�HA�:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s)−maxc t1 ̸= t2 (19)

Each CA4 with mode2=�EVERY� triggers a deviation dc for each slot of the
slots set Sc in �slots� �eld equal to the sum of the matches between the set of
teams Tc1 in �teams1� �eld and the set of teams Tc2 in �teams2� �eld over maxc

in �max� �eld.
CA4 with mode2=�EVERY� and mode1=�H�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 ̸= t2,∀s ∈ Sc (20)

CA4 with mode2=�EVERY� and mode1=�A�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 ̸= t2,∀s ∈ Sc (21)

CA4 with mode2=�EVERY� and mode1=�HA�:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s)−maxc t1 ̸= t2,∀s ∈ Sc (22)

202

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 9

GA1 Constraints Each GA1 triggers a deviation dc calculated as the sum of
matches of the set Mc in �eld �meetings� which occur in set of slots Sc in �eld
�slots� under minc in �eld �min� or over maxc in �eld �max�.

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s −maxc (23)

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s +minc (24)

BR1 Constraints Each BR1 with tc the team in �teams� �eld, triggers a
deviation dc equal to the sum of teams tc breaks in set of slots Sc in �slots� �eld
over maxc in �max� �eld.

dc =
∑
s∈Sc

ztc,s −maxc (25)

BR2 Constraints In all instances where a BR2 constraint exists �eld �teams�
contains all teams and �eld �slots� contains all slots except the �rst slot (as a
team cannot have a break in the �rst slot). As such, a BR2 constraint triggers a
deviation dc equal to the sum of all breaks of all teams over max in �max� �eld.

dc =
∑
t∈T

∑
s∈S

zt,s −maxc (26)

FA2 Constraints In all instances where an FA2 constraint exists �eld �teams�
contains all teams and �eld �slots� contains all slots. As such, an FA2 constraint
triggers deviations dc for each pair of teams equal to the largest di�erence in
played home games over all slots more than intp in �intp� �eld.

dc =
max
s ∈ S (

s∑
m=1

yi,m −
s∑

m=1

yj,m − intp; 0) ∀i, j ∈ T, i < j (27)

SE1 Constraints For SE1 we need to keep track of the distance between
matches and rematches for all combinations of the set of teams Tc in �eld �teams�.
Each combination of teams triggers a deviation dc equal to the sum of the number
of time slots less than min in �min� �eld between the match and the rematch.

dc =

∣∣∣∣∑
s∈S

s ∗ xt1,t2,s −
∑
s∈S

s ∗ xt2,t1,s

∣∣∣∣−minc t1 ̸= t2,∀t1, t2 ∈ Tc (28)

Objective Function Hard constraints must not generate any deviation. Soft
constraints' deviations are multiplied by pc denoted by the �eld �penalty� and
summed. Deviations under zero are ignored.

min
∑
c∈C

dc ∗ pc (29)

203

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 A. Dimitsas et al.

Employing the CP/SAT Solver of ORTools The overly constrained nature
of sports scheduling made it di�cult for traditional Constraint Programming
solvers to even reach a feasible solution let alone a good one. In our approach we
used the ORTools [15] CP/SAT solver that allowed us to formulate the problem
using CP terms. The distinctiveness of the CP/SAT solver is that it reformulates
internally the CP model into a SAT (satis�ability) model that seems to be better
adapted to the nature of the sports scheduling problem.

4.4 A Hybrid Approach

An initial solution satisfying the base constraints is constructed using CP/SAT
and Hard constraints are perceived as soft and Soft constraints are ignored. The
Simulated Annealing process tries to bring the solution in the feasible space. If
a feasible solution is found then Hard constraints become mandatory and Soft
constraints are activated. Each time the simulated annealing process terminates
an improvement process using CP/SAT attempts to improve the current solu-
tion. In order to achieve this we randomly select a number of teams, or a number
of slots, or a number of games, or some combination of the above and keep them
�xed while the rest of the current solution is allowed to change. In Figure 1 a
�owchart of the process is presented.

5 Experimental Results

5.1 Datasets

The problem instances of ITC20214 are formatted with the RobinX XML data
format [20]. The instances were released in three phases (Early, Middle, Late)
and each set contains 15 instances. All instances are in double round robin format
of 16, 18 or 20 teams. Some instances contain the Phase rule. Not all constraints
make an appearance in every tournament.

5.2 Results

The hybrid process was able to produce solutions for 37 out of 45 instances. The
objective of the solutions can be seen in Table 7. Solution �les are available at
our github5 repository.

6 Conclusions

Sports scheduling has several facets that make it an interesting and di�cult
problem. Sports scheduling problems are proved to be, in practice (and in the-
ory), hard to solve. Sometimes even �nding a feasible solution or proving that

4 https://www.sportscheduling.ugent.be
5 https://bit.ly/3wtrW4i

204

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 11

Create initial timetable
with CP/SAT enforcing
2RR, Compactness,

Phases

Are
Constraints
Satisfied?

Ignore Soft Constraints
Hard Constraints ? Soft Constraints

Simulated Annealing

Enable Hard Constraints
Activate Soft Constraints

Try improvement with
CP/SAT

Simulated Annealing

Try improvement with CP/SAT

Termination
Criteria

met

Schedule

Termination
Criteria

met

No feasible
schedule found

Simulated
Annealing

Stuck

Simulated
Annealing

Stuck

No

Yes

Fig. 1. Flowchart of the hybrid process.

such a solution does not exist is extremely challenging. We had the opportunity
to assert this during our participation in the ITC2021 competition.

In this paper, an approach to solving the problem was presented that involved
modeling of the problem using Constraint Programming. A Simulated Annealing
solver employing small and large moves was implemented. Small moves, are often
inspired by the perspective as a graph of the problem, make schedule changes
that keep the schedule feasible, but are rather local. Large moves �x randomly
selected teams, matches or slots and let the other ones free to move. We managed
to receive good results and we �rmly believe that our approach can be even more
successful in addressing sports scheduling problems by using more processing
power and more sophisticated strategies than the random selection for �xed
objects.

Acknowledgements We acknowledge support of this work by the project
�Dioni: Computing Infrastructure for Big-Data Processing and Analysis.� (MIS

205

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 A. Dimitsas et al.

Table 7. Results after three hours of execution time for each instance using the hybrid
process. Objective is presented as the tuple (deviation of hard constraints, penalty of
soft constraints).

Instance Objective Instance Objective Instance Objective

Early 1 0, 512 Middle 1 17, - Late 1 0, 2234
Early 2 0, 266 Middle 2 48, - Late 2 0, 5680
Early 3 0, 1354 Middle 3 0, 12170 Late 3 0, 3004
Early 4 6, - Middle 4 0, 7 Late 4 0, 0
Early 5 5, - Middle 5 0, 732 Late 5 39, -
Early 6 0, 3957 Middle 6 0, 1900 Late 6 0, 1440
Early 7 0, 9644 Middle 7 0, 2792 Late 7 0, 3009
Early 8 0, 1614 Middle 8 0, 301 Late 8 0, 1375
Early 9 0, 448 Middle 9 0, 1015 Late 9 0, 1108
Early 10 32, - Middle 10 1, - Late 10 6, -
Early 11 0, 8189 Middle 11 0, 2956 Late 11 0, 511
Early 12 0, 1025 Middle 12 0, 1596 Late 12 0, 7218
Early 13 0, 380 Middle 13 0, 780 Late 13 0, 3576
Early 14 0, 63 Middle 14 0, 1619 Late 14 0, 1650
Early 15 0, 4470 Middle 15 0, 1833 Late 15 0, 80

No. 5047222) which is implemented under the Action �Reinforcement of the Re-
search and Innovation Infrastructure�, funded by the Operational Programme
�Competitiveness, Entrepreneurship and Innovation� (NSRF 2014-2020) and co-
�nanced by Greece and the European Union (European Regional Development
Fund).

References

1. Alarcón, F., Durán, G., Guajardo, M., Miranda, J., Muñoz, H., Ramírez, L.,
Ramírez, M., Sauré, D., Siebert, M., Souyris, S., Andrés, W., Rodrigo, W.Y., Gon-
zalo, Z.: Operations research transforms the scheduling of Chilean soccer leagues
and South American world cup quali�ers. Interfaces 47(1), 52�69 (2017)

2. Briskorn, D.: Feasibility of home�away-pattern sets for round robin tournaments.
Operations Research Letters 36(3), 283�284 (2008)

3. Chen, J., Dong, D.: Research on the general method of round robin scheduling. In:
Advances in Multimedia, Software Engineering and Computing Vol. 2, pp. 393�399.
Springer (2011)

4. Costa, F.N., Urrutia, S., Ribeiro, C.C.: An ILS heuristic for the traveling tour-
nament problem with prede�ned venues. Annals of Operations Research 194(1),
137�150 (2012)

5. Delahaye, D., Chaimatanan, S., Mongeau, M.: Simulated annealing: From basics
to applications. In: Handbook of metaheuristics, pp. 1�35. Springer (2019)

6. Durán, G., Guajardo, M., Sauré, D.: Scheduling the South American Quali�ers to
the 2018 FIFA World Cup by Integer Programming. European Journal of Opera-
tional Research 262(3), 1109�1115 (2017)

206

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

A Pragmatic Approach for Solving the Sports Scheduling Problem 13

7. Goossens, D., Spieksma, F.: Scheduling the Belgian soccer league. Interfaces 39(2),
109�118 (2009)

8. Gunnarsdóttir, E.L.: An integer programming formulation for scheduling of the
Icelandic football league. Ph.D. thesis, Reykjavík University (2019)

9. Januario, T., Urrutia, S.: A new neighborhood structure for round robin scheduling
problems. Computers & Operations Research 70, 127�139 (2016)

10. Januario, T., Urrutia, S., Ribeiro, C.C., De Werra, D.: Edge coloring: A natural
model for sports scheduling. European Journal of Operational Research 254(1),
1�8 (2016)

11. Lambrechts, E., Ficker, A., Goossens, D.R., Spieksma, F.C.: Round-robin tourna-
ments generated by the circle method have maximum carry-over. Mathematical
Programming 172(1), 277�302 (2018)

12. Lewis, R., Thompson, J.: On the application of graph colouring techniques in
round-robin sports scheduling. Computers & Operations Research 38(1), 190�204
(2011)

13. Miyashiro, R., Matsui, T.: Round-robin tournaments with a small number of
breaks. Department of Mathematical Informatics, The University of Tokyo, Math-
ematical Engineering Technical Reports METR 29, 2003 (2003)

14. Nurmi, K., Goossens, D., Kyngäs, J.: Scheduling a triple round robin tournament
with minitournaments for the Finnish national youth ice hockey league. Journal of
the Operational Research Society 65(11), 1770�1779 (2014)

15. Perron, L., Furnon, V.: OR-tools, https://developers.google.com/optimization/
16. Ribeiro, C.C.: Sports scheduling: Problems and applications. International Trans-

actions in Operational Research 19(1-2), 201�226 (2012)
17. Ribeiro, C.C., Urrutia, S.: Scheduling the Brazilian soccer tournament: Solution

approach and practice. Interfaces 42(3), 260�272 (2012)
18. Trick, M.A.: A schedule-then-break approach to sports timetabling. In: Interna-

tional conference on the practice and theory of automated timetabling. pp. 242�
253. Springer (2000)

19. Van Bulck, D., Goossens, D., Belien, J., Davari, M.: The �fth international
timetabling competition (ITC 2021): Sports timetabling. In: MathSport Interna-
tional 2021. pp. 117�122. University of Reading (2021)

20. Van Bulck, D., Goossens, D., Schönberger, J., Guajardo, M.: RobinX: A three-�eld
classi�cation and uni�ed data format for round-robin sports timetabling. European
Journal of Operational Research 280(2), 568�580 (2020)

21. Van Laarhoven, P., Aarts, E.: Simulated annealing: theory and applications. Dor-
drecht. Reidel Pub. Comp., Netherlands (1987)

207

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Integer Programming Formulations for Compact
Single Round Robin Tournaments

Jasper van Doornmalen1[0000−0002−2494−0705], Christopher
Hojny1[0000−0002−5324−8996], Roel Lambers1[0000−0002−0314−6094], and Frits

Spieksma1[0000−0002−2547−3782]

Eindhoven University of Technology Combinatorial Optimization Group
PO Box 513, 5600 MB Eindhoven, the Netherlands

{m.j.v.doornmalen,c.hojny,r.lambers,f.c.r.spieksma}@tue.nl

Abstract. We consider the problem of finding an optimal schedule for
compact single round robin tournaments. To this end, we discuss one
polynomial size and two exponential size integer programming formula-
tions of this problem. We compare the strength of the linear programming
relaxations of these three models. Moreover, we show that the pricing
problems of both exponential size formulations can be solved in polyno-
mial time.

Keywords: Sport scheduling · Round Robin · Mixed Integer Program-
ming · Branch and Price

Integer programming continues to be a very popular way to obtain a schedule
for a round robin tournament. It does not only allow to automatically gener-
ate schedules, but also to easily incorporate different kinds of constraints to
find a schedule addressing needs of a specific tournament. To substantiate this
claim of widespread use of integer programming, it is a fact that the litera-
ture contains lots of papers demonstrating the use of integer programming for
finding schedules in sports timetabling. Well-known surveys are by Rasmussen
and Trick [10] and Kendall et al. [8]. Complexity results regarding round robin
tournaments are provided by Easton [6], Briskorn et al. [3], and Van Bulck and
Goossens [12]. Integer programming formulations have also been studied, among
others, by Trick [11] and Briskorn and Drexl [2]. More recently, the international
timetabling competition [4] featured a round robin sports timetabling problem,
and most of the submissions used integer programming in some way to obtain a
good schedule. Other recent contributions using integer programming for sports
timetabling include Durán et al. [5] and Bouzarth et al. [1]. For more papers in
the field of sports scheduling, we refer to Knust [9], who maintains an elaborate
classification of literature on sports scheduling.

We aim to take a fresh look at the problem of finding an optimal schedule for
compact single round robin tournaments using integer programming techniques.
Given a set of n teams, a compact single round robin tournament consists of n−1
rounds of matches such that each team plays against exactly one other team
per round and each pair of opponents meets exactly once. The FIFA World Cup

208

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 J. van Doornmalen et al.

group stage is an example of a compact single round robin tournament. This type
is also common for chess tournaments, for instance for all important tournaments
between London 1862 and Curaçao Candidates tournaments of 1962 [7]. In the
following, we assume that each hypothetical match at a specific round has an
associated cost. Our goal is then to find a schedule that minimizes total cost.
By finding cost-minimizing optimal schedules for compact single round robin
tournaments, one can take practical considerations and wishes into account.

We discuss three different integer programming formulations for finding an
optimal schedule. First, we consider a traditional formulation using O(n3) many
variables and constraints that is also studied by Trick [11] and Briskorn and
Drexl [2]. This model introduces, for every hypothetical match between two
teams and round, a binary decision variable that indicates whether this match is
scheduled on that round. We compare this formulation with two alternative novel
formulations that are based on different encodings of a schedule: a matching and
a permutation formulation.

The matching formulation introduces a binary variable for each pair (M, r),
whereM is a perfect matching of the n teams and r is the index of a round. These
variables encode the entire schedule of round r. Instead of fixing the schedule
of a round, the permutation formulation fixes, for a given team, the order of
matches that it plays against all other teams. That is, it introduces a variable
for each team t and each permutation of {1, . . . , n} \ {t}. Note that, in contrast
to the traditional formulation, both the matching and permutation formulation
have exponentially many variables.

Our main contributions are twofold:

1. Despite the exponential number of variables, we show that the linear pro-
gramming relaxations of both the matching and permutation formulation can
be solved in polynomial time. To this end, we show that the pricing problems
of both formulations reduce to finding perfect matchings in suitably defined
auxiliary graphs.

2. We provide a comparison of the optimal values of linear programming re-
laxations of the three different models. We show that the traditional and
permutation formulation both provide the same optimal value of their linear
programming relaxations, whereas the matching formulation is at least as
strong as the other two formulations. In particular, we show that it can be
strictly stronger.

Moreover, we discuss how the matching and permutation formulation can be
solved within a branch-and-price framework.

References

1. Bouzarth, E.L., Grannan, B.C., Harris, J.M., Hutson, K.R.: Scheduling the valley
baseball league. INFORMS Journal on Applied Analytics (2021). https://doi.
org/10.1287/inte.2021.1076

2. Briskorn, D., Drexl, A.: IP models for round robin tournaments. Computers &
Operations Research 36(3), 837–852 (2009)

209

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/10.1287/inte.2021.1076
https://doi.org/10.1287/inte.2021.1076
https://doi.org/10.1287/inte.2021.1076
https://doi.org/10.1287/inte.2021.1076

IP Formulations for Compact SRR Tournaments 3

3. Briskorn, D., Drexl, A., Spieksma, F.C.R.: Round robin tournaments and three
index assignments. 4OR 8(4), 365–374 (2010)

4. van Bulck, D., Goossens, D., Beliën, J., Davari, M.: The fifth international
timetabling competition (ITC 2021): Sports timetabling. In: Proceedings of Math-
Sport International 2021 Conference, MathSport. pp. 117–122 (2021)

5. Durán, G., Guajardo, M., Gutiérrez, F., Marenco, J., Sauré, D., Zamorano, G.:
Scheduling the main professional football league of Argentina. INFORMS Journal
on Applied Analytics 51(5), 361–372 (2021)

6. Easton, K.K.: Using integer programming and constraint programming to solve
sports scheduling problems. Ph.D. thesis, Georgia Institute of Technology (2003)

7. Hooper, D., Whyld, K.: The Oxford Companion to Chess. Oxford Companions
Series, Oxford University Press (1984)

8. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An anno-
tated bibliography. Computers & Operations Research 37(1), 1–19 (2010)

9. Knust, S.: Classification of literature on sports scheduling. http://www.inf.uos.
de/knust/sportssched/sportlit_class/, accessed: March 2022

10. Rasmussen, R.V., Trick, M.A.: Round robin scheduling–a survey. European Journal
of Operational Research 188(3), 617–636 (2008)

11. Trick, M.A.: Integer and constraint programming approaches for round-robin tour-
nament scheduling. In: International Conference on the Practice and Theory of
Automated Timetabling. pp. 63–77. Springer (2002)

12. Van Bulck, D., Goossens, D.: On the complexity of pattern feasibility problems
in time-relaxed sports timetabling. Operations Research Letters 48(4), 452–459
(2020)

210

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://www.inf.uos.de/knust/sportssched/sportlit_class/
http://www.inf.uos.de/knust/sportssched/sportlit_class/

Timetabling Research: A Progress Report

Jeffrey H. Kingston

School of Information Technologies, The University of Sydney, Australia
jeff@it.usyd.edu.au

http://jeffreykingston.id.au

Abstract. As the PATAT conference series passes its 25th year, this
paper describes how the discipline of automated timetabling has changed
in that time. It examines the sub-disciplines studied and the solvers used,
and considers the effect of data sets, data formats, and competitions. The
paper concludes by asking whether insight into the timetabling problem
has deepened since 1995, and where the discipline should go from here.

Keywords: Automated Timetabling · History · Future

1 Introduction

As the PATAT conference series [13] passes its 25th year, this paper examines
how the discipline of automated timetabling has changed since 1995, when the
first PATAT conference was held.

Section 2 measures how timetabling’s sub-disciplines (course timetabling,
nurse rostering, and so on) have changed, and how its solvers have developed.
Section 3 discusses progress within the sub-disciplines. Section 4 asks whether
insight into timetabling has deepened, and Section 5 discusses the goals of our
discipline and where it should go from here.

2 Progress since 1995

The first PATAT conference was held in 1995 [13]. Before then, although some
significant work had been done, there was no forum devoted to automated
timetabling, and the field was very fragmented [17]. From the start, PATAT
was international in outlook and welcoming of any interesting contribution, and
it immediately became the centre of the discipline, as it is today.

This section examines how automated timetabling has changed since 1995.
To do this objectively, the author has classified the papers from three pairs of
PATAT conferences. The chosen conferences were the first two (1995 and 1997),
with 91 papers in total; the middle two (2006 and 2008), with 156 papers; and
the most recent two (2016 and 2018), with 114 papers.

Each paper has been classified by sub-discipline, by kind (explained below),
and by solver method. All papers in the proceedings of the chosen conferences
have been included (plenary papers, full papers, and extended abstracts, as well
as system demonstrations), and given equal weight.

211

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Jeffrey H. Kingston

Of course, the PATAT proceedings contain only a subset of the literature.
But there is no reason to believe that they are unrepresentative: PATAT has
always been open to any kind of timetabling paper.

Figure 1 shows how the relative number of papers from each sub-discipline
has changed over time. In general the space given to the various sub-disciplines
has become more balanced, except that high school timetabling has virtually
disappeared for the moment. Personnel scheduling (excluding nurse rostering)
covers many problems, including physician scheduling, call centers, and so on,
so its growth is a healthy development.

UC

UE

UX

HS

PS

NR

SS

1995 and 1997

UC

UE

UX

HS

PS NR
TS

SS

2006 and 2008

UC

UE
UX

PS

NR
TS

SS

2016 and 2018

Fig. 1. The relative number of papers from each sub-discipline, over three pairs of
PATAT conferences: 1995 and 1997; 2006 and 2008; and 2016 and 2018. The sub-
disciplines are: university curriculum-based course timetabling (UC); university post-
enrolment course timetabling (UE); university examination timetabling (UX); high
school timetabling (HS); personnel scheduling excluding nurse rostering (PS); nurse
rostering (NR); transport scheduling (TS); sports scheduling (SS); white means other.
Only papers that study specific sub-disciplines are included. Those few papers that
study several sub-disciplines are counted once for each sub-discipline.

For our next figure we need to define two kinds of papers.

A case study paper defines some problem, presents one or a few instances
of that problem, and solves those instances. Case study papers are valuable for
uncovering new sub-disciplines and new requirements within sub-disciplines. The
solving in case study papers is usually less valuable, because it is done on new
instances, and so is hard to evaluate objectively.

A solver paper takes a previously defined problem and presents one or more
solvers for it. It compares them with previous solvers by testing them on stan-
dard data sets. (In this paper, a data set is a set of instances of a timetabling
problem, stored together in a common format.) Solver papers are important
for establishing objective standards of performance, helping to make automated
timetabling into a truly scientific discipline [16].

Figure 2 shows how the relative number of case study and solver papers has
changed. These two kinds cover all papers that solve instances, since such papers
must either introduce their own instances or take them from elsewhere. In 1995–

212

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Timetabling Research: A Progress Report 3

97, with just one pioneering exception, all papers that solved instances were case
studies. But now the two kinds are equally common.

CS
SV

1995 and 1997

CS

SV

2006 and 2008

CS

SV

2016 and 2018

Fig. 2. The relative number of case study papers (CS) and solver papers (SV), over
three pairs of PATAT conferences: 1995 and 1997; 2006 and 2008; and 2016 and 2018.
Only papers that solve instances are included.

Figure 3 shows how the relative number of papers devoted to each type of
solver has changed. The growth in integer programming is very clear, and has
come at the expense of genetic algorithms, tabu search, and constraint program-
ming. Integer programming is also frequently used in VLSN search, to optimally
reassign the unassigned variables.

3 Progress within sub-disciplines

At any given moment, different sub-disciplines will be at different stages of de-
velopment. We distinguish four stages here; their boundaries are not sharp.

A Stage 1 sub-discipline is one which can be met with in the literature, but
only in a few case study papers. Its scope is far from clear.

A Stage 2 sub-discipline is one which is often met with in the literature, again
in case study papers. Its scope is fairly clear.

A Stage 3 sub-discipline is also often met with in the literature. Apart from
minor issues, its scope is clear, and expressed in standard data sets.

A Stage 4 sub-discipline is one whose research agenda has been exhausted.
Activity declines, and there is no feeling of progress being made.

What constitutes progress in a sub-discipline depends on its stage. A Stage
1 sub-discipline needs case studies which help to elucidate its scope. A Stage
2 sub-discipline may need more case studies, or it may need to transition to
Stage 3. What constitutes progress in Stage 3 sub-disciplines will be considered
in Section 5; it includes improving the quality of solutions to near-optimality,
and ensuring that data sets are real-world.

Major progress occurs when a sub-discipline moves from one stage to the next.
Moving from Stage 1 to Stage 2 is relatively easy; all it takes is for interest to be
sufficient to stimulate a number of case studies. Moving from Stage 2 to Stage 3

213

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Jeffrey H. Kingston

IP

GA

SA

TS

CP SH

1995 and 1997

IP

GA
SA

TS

HH

CP

SH

2006 and 2008

IP

GA

SA

TS

HH

VL

SH

2016 and 2018

Fig. 3. The relative number of papers for each solver type, over three pairs of PATAT
conferences: 1995 and 1997; 2006 and 2008; and 2016 and 2018. The solver types are:
integer programming (IP); genetic and other evolutionary algorithms (GA); simulated
annealing (SA); tabu search (TS); hyper-heuristics (HH); constraint programming and
logic progamming (CP); VLSN search (VL); simple heuristics (SH); and white means
other (many types, e.g. satisfiability solvers, dynamic programming, and flows and
matchings). Only papers that solve instances are included. Papers that use several
solver types are counted once for each type, except that simple heuristics are not
counted when other solver types are used.

is harder, because it requires agreement on the scope of the sub-discipline, and
the expression of that agreement in standard data sets. In practice, this difficult
transition has usually been driven by competitions.

Let us consider now the stages reached by the various sub-disciplines.

University course timetabling is a clear Stage 3 sub-discipline, with three
competitions to its credit, including the first ever timetabling competition [13],
organized by Ben Paechter in 2003. The most recent competition, ITC 2019 [5],
was organized by leading practitioners, and its data format is a step forward
which brings this sub-discipline very close to the real world.

University examination timetabling boasts the first ever standard data set
(the Toronto data set [18], assembled by Mike Carter ca. 1997). The Toronto
instances now have very good solutions that are unlikely to be significantly im-
proved on. Until recently university examination timetabling appeared to be the
closest thing in timetabling to a Stage 4 sub-discipline. However, recently there
has been a resurgence of interest, including new and more real-world models.

High school timetabling transitioned to Stage 3 about ten years ago, driven
as usual by a competition. It was active for some years after that, but recently
the number of committed researchers seems to have declined (Figure 1).

Personnel scheduling (excluding nurse rostering) is a Stage 2 sub-discipline
whose transition to Stage 3 is arguably overdue. It encompasses many different
problems, whose interrelationships remain to be elucidated.

Nurse rostering is a Stage 3 sub-discipline, with two competitions and at
least four standard data sets. The most recent competition [1, 2] focused on how
a nurse roster for one week interacts with the rosters for preceding and following
weeks, taking a big step towards modelling the real world.

214

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Timetabling Research: A Progress Report 5

Transport scheduling is at Stage 2. There have been transport scheduling pa-
pers for decades, and there are well-established problems, such as vehicle routing
and air-crew scheduling; but judging from the PATAT offerings the sub-discipline
is fragmented over many problems and is not ready for Stage 3.

This author does not know whether there are other forums for presenting
research on transport scheduling. There are many conferences devoted to many
aspects of transportation [19], but examination of one recent vehicle routing
paper [11] and one recent air-crew scheduling paper [6] revealed an extensive
journal literature but no conferences and no evidence of data exchange. A vehicle
routing competition (using generated data) was held recently [9].

Sports scheduling is also at Stage 2. The travelling tournament problem,
a simplified problem, was formulated two decades ago [4]. A real-world data
format, RobinX [20], has appeared recently, and a competition using RobinX is
underway. Whether this will drive a transition to Stage 3 remains to be seen; a
critical mass of committed researchers will be needed.

4 Insight into the timetabling problem

One would like to think that recent papers show more insight into automated
timetabling than older papers. But what does that mean? And is it true?

Timetabling has several aspects for which insight would be desirable. The fun-
damental one must surely be how best to solve the problems. The NP-hardness
of real-world timetabling problems has been known since well before 1995. It
prevents the kind of deep insight that a polynomal-time solver would give proof
of. Over the years attempts have been made to match problem types with solver
types, but they have never produced anything that could be called an established
body of theory. Questions such as why one simulated annealing cooling schedule
should be better than another, or why one tabu list length should be better than
another, have not been answered.

A less intractable aspect is specification: insight into what timetabling is.
For example, the new sports scheduling format [20] could be said to offer insight
into that sub-discipline. The scope of the timetabling problem is clearer to the
researcher of today than it was to the attendees at the first PATAT conference
in 1995, where a seminar (not documented in the proceedings) addressing the
specification issue ended with nothing resolved.

One particular point that has become clear is that real-world specification
is not hopelessly open-ended. Those who take on the hard work of collecting
constraints do eventually reach the end of them, even when they work across
multiple institutions. The researcher of 1995 did not know this.

If the specifications of the various sub-disciplines could be unified into one
specification that was significantly smaller than the sum of the specifications of
the separate problems, then that could be considered a step forward in insight.
At present all that can be said is that all timetabling problems have events
containing times and resources, some preassigned, and some left open for a solver
to assign, subject to constraints. But even that may not be true of transport

215

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Jeffrey H. Kingston

scheduling, and bringing together the disparate constraints found in different
sub-disciplines might well produce nothing but chaos.

Another way to approach the insight question is simply to look through
the literature for results that seem insightful. One such is the realization that
curriculum-based university course timetabling and high school timetabling are
closely related [12]. This author has published a method of specifying minimal
perturbation problems that works for any timetabling problem and any kind
of perturbation [7]. But results of this kind are few and scattered. Insight has
deepened, but only very slowly.

5 Moving forward

Looking back across the decades, there does seem to be an element of fashion in
the choice of solvers. For example, genetic algorithms were very popular during
the early PATAT years, but have declined since. One wonders which kinds of
solvers will survive the next 25 years. Will integer programming continue to
grow, or will its undoubted recent gains plateau off, and its lack of robustness
as instance size increases become increasingly seen as a liability?

The author considers such questions to be futile: most forecasts turn out to
be wrong. Instead, this section examines the papers being written today, and
asks which of them are moving the field forward. Although the answer will be
subjective, any honest appraisal of our discipline must address this question.

First, we need to agree on the direction in which we should be moving. In-
evitably, that is a matter of opinion. In the author’s opinion, then, our discipline
is a practical one that has always had one simple goal:

Automated timetabling seeks to help people find high-quality timetables

quickly and reliably wherever they are needed.

If this is accepted, then anything that helps to remove any significant obstacle
to its achievement is forward progress.

Case study papers, which introduce a problem and solve it on new data,
are generally forward-looking in Stage 1 and Stage 2 sub-disciplines, although
their value decreases as their number increases. Case study papers in Stage 3
sub-disciplines are unlikely to offer anything new: they are backward-looking.

Solver papers, which introduce solvers and apply them to existing data, are
characteristic of Stage 3 sub-disciplines. They are essential to the scientific ad-
vance of our discipline. But they suffer from diminishing returns: they are all
about finding better solutions, but that becomes harder and harder as time
passes. Some data sets have now been solved to optimality, or so close to it that
significant further improvement is impossible (Figure 4). So we regard solver pa-
pers in sub-disciplines that reached Stage 3 some years ago as backward-looking,
except when the instances they solve become more real-world, as in the recent
nurse rostering [1, 2] and university course timetabling [5] competitions.

A classification of the papers from the two most recent PATAT confer-
ences into forward-looking and backward-looking, based on these ideas, appears

216

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Timetabling Research: A Progress Report 7

1998 2004 2006 2011 2014 2016

0

10

20

30

40

Fig. 4. Example of how results improve as the years go on. The number of hard con-
straint violations in the best known solution to high school instance BGHS98, collected
by the author ca. 1997. The first two results are debatable, but by 2011 the instance
was expressed in its current form, using the XHSTT data format, and the results were
archived [15].

in Figure 5. About one-third of the papers are forward-looking, one-third are
backward-looking, and one-third are case studies in Stage 2 sub-disciplines.

To conclude this section, here are some suggestions for papers that would
move the discipline forward, even in Stage 3 sub-disciplines.

Large case studies. In Stage 3 sub-disciplines, ordinary case studies are no
longer useful, but large case studies would be very useful. Many university course
timetabling instances are for one department or faculty, despite the presence of
students who take courses from several departments and indeed several faculties,
and the fact that many of the challenging aspects of the problem are practical
ones that arise from its large scale [10]. Several hospital scheduling problems
are known beyond nurse rostering, but scheduling an entire hospital is virgin
territory. And so on.

Faster and more robust solvers. Solution quality is one of three criteria by
which solvers should be judged. The other two are running time and robustness:
the ability to perform creditably on any real-world instance. Giving these other
criteria more prominence would be a forward step. All solver papers should
show running times, and all data formats should have running time attributes.
Robustness can be encouraged by assembling and using data sets that contain
real-world instances from a variety of sources. It is disturbing that what seems
to be the most varied and real-world nurse rostering data set, Curtois’ ‘original
instances’ [3], is also the least used. (See also the Appendix to this paper.)

Minimal perturbation problems. For every timetabling problem there is a
corresponding minimal perturbation problem. It takes an instance and solution
(assumed to be already published), and a few changes to the instance, and asks
for a revised solution incorporating the changes while altering the solution as
little as possible. These very practical problems have been known for decades,
yet their literature is still tiny [7].

217

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 Jeffrey H. Kingston

BC

BS
BO

CP

CT

CS
FR

FN

FM

FO

2016 and 2018

Fig. 5. Forward-looking and backward-looking papers, over one pair of PATAT con-
ferences: 2016 and 2018. Backward-looking categories (shown in red) are: case studies
in Stage 3 sub-disciplines (BC); solver papers in Stage 3 sub-disciplines (BS); other
backward-looking (BO). Case study papers in Stage 2 sub-disciplines (shown in yel-
low) are: personnel scheduling excluding nurse rostering (CP); transport scheduling
(CT); sports scheduling (CS). Forward-looking papers (shown in green) are: real-world
oriented (FR); new application area (FN); minimal perturbation problem (FM); other
forward-looking (FO). The assignment of papers to categories is mostly objective; the
interpretation of the categories as backward-looking or forward-looking is subjective.

Infrastructure papers. Research infrastructure—mainly data formats, data
sets, and competitions—often drives a discipline forward. For example, two re-
cent competitions, for nurse rostering [1, 2] and university course timetabling [5],
both made significant steps towards fidelity to the real world.

Dissemination of timetabling expertise. If automated timetabling is ever to
become routine, then instances cannot be assembled only by researchers. Instead,
people with administrative expertise (ward managers, departmental coordina-
tors, and so on) must be trained in the use of software fit for their use. Today’s
literature is all but silent on this.

6 Conclusion

This paper has examined the progress of automated timetabling since 1995,
when the first PATAT conference was held. There have been many positive
developments: a better balance between sub-disciplines; a steady growth of data
sets, data formats, and competitions; and improved solution quality, to a point
that in some cases approaches optimality.

The newer sub-disciplines can follow the old track for some time yet: for
them, case studies are the immediate need, and then data sets, data formats,
competitions, and solver papers. But in well-established sub-disciplines, case
studies are now contributing nothing useful, and solver papers are experiencing
diminishing returns. There is a danger that these sub-disciplines could wither
without yielding any benefit to society. The way forward for them, we have
suggested, is to recommit to practice and orient our research accordingly.

218

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Timetabling Research: A Progress Report 9

7 Appendix: Success in practice

Timetabling research whose aim is success in practice is at a disadvantage in
the academic world. Work leading to solvers that find new best solutions is
virtually guaranteed publication, even if the solvers are highly tuned for one
data set and run slowly. That is as it should be. But work leading to solvers that
find good solutions on several data sets and run quickly, but do not find new
best solutions, is likely to be denied publication, as this author can attest from
personal experience. That is a problem.

One advantage of expecting solvers to produce new best solutions is that it
provides a clear criterion for rejecting inferior work. We do not want ‘success in
practice’ to be a loophole through which inferior work comes to be published.
So we need a challenging, objective definition of success in practice.

Here is a proposal for such a definition:

A solver is successful in practice if, on every instance that is likely to be

encountered in practice, it finds a solution whose cost is within 10% of

the best known when run for 5 minutes, and within 5% of the best known

when run for 60 minutes.

We are not saying that a practical solver must reach this standard, any more
than a theoretical solver must find a new best solution for every instance it is
tested on. Rather, we are defining what a practical solver should aspire to.

A prerequisite for applying this definition is the availability of data sets that
bring together real-world instances from a variety of sources. Some exist now,
but we need more, and we need to value the work of making them.

Of course, the numbers chosen above are open to argument; they represent
the author’s idea of a practitioner’s needs. A 5-minute run seems reasonable for
exploring an alternative scenario. A 60-minute run seems reasonable for finding
a timetable that will be used. If that timetable is within 5% of best known, then
the difference will be barely noticeable: where the best known solution has 20
defects, the practical solution might have 21.

A definition of this kind could conceivably vary between sub-disciplines. But
real-world time limits seem fairly uniform across sub-disciplines, perhaps because
someone is waiting for the result, whatever the sub-discipline. Also, a definition
could vary with instance size. But restricting to practical instances rules out
unrealistically large sizes, and the given time limits seem reasonable for the rest.
A practical solver might run much faster on small instances.

When questions arise about the detailed interpretation of the definition, they
should be resolved in a way that reflects what is feasible in practice. Running
times are wall clock times on widely available desktop hardware. Multiple cores
are widely available, so multi-threading is allowed. Arbitrary tuning of parame-
ters is permitted before the solver is released, but all other tuning of parameters
is only permitted if it is done without human intervention and the time it takes
is included in the running time.

219

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 Jeffrey H. Kingston

The solver knows whether a 5-minute or 60-minute run is wanted, and may
adapt itself accordingly. Indeed, a pair of unrelated solvers packaged together,
one for 5-minute runs and one for 60-minute runs, is acceptable.

This definition is challenging even though it does not require solutions to
be new bests. The challenge is spread across the three criteria for success in
practice: good solution quality, moderate running time, and robustness.

References

1. Ceschia, S., Nguyen, T. T. D., De Causmaecker, P., Haspeslagh, S., and Schaerf, A.:
Second international nurse rostering competition (INRC-II), problem description
and rules. oRR abs/1501.04177 (2015). URL http://arxiv.org/abs/1501.04177

2. Ceschia, S., Nguyen, T. T. D., Causmaecker, P., Haspeslagh, S., and Schaerf,
S.: Second international nurse rostering competition (INRC-II) web site,
http://mobiz.vives.be/inrc2/

3. Curtois, T.: Employee Shift Scheduling Benchmark Data Sets,
http://www.schedulingbenchmarks.org/ (2019)

4. Easton, K., Nemhauser, G., and Trick, M.: Solving the travelling tournament prob-
lem: a combined integer programming and constraint programming approach, In:
PATAT 2002 (Fourth International Conference on the Practice and Theory of Auto-
mated Timetabling, Gent, Belgium, August 2002), Selected Papers, Springer Lecture
Notes in Computer Science 2740, 100–109 (2003)

5. The Fourth International Timetabling Competition (ITC 2019),
https://www.itc2019.org/home (2019)

6. Kasirzadeh, A., Saddoune, M., and Soumis, F.: Airline crew scheduling: models,
algorithms, and data sets. EURO Journal on Transportation and Logistics (2015).
https://doi.org/10.1007/s13676-015-0080-x

7. Kingston, J. H.: Specifying and solving minimal perturbation problems in
timetabling. In: PATAT 2016 (Eleventh International Conference on the Practice
and Theory of Automated Timetabling, Udine, Italy, August 2016), 207–210

8. Kingston, J. H., Post, G., and Berghe, G. V.: A unified nurse rostering model based
on XHSTT. In: PATAT 2018 (Twelfth International Conference on the Practice and
Theory of Automated Timetabling, Vienna, August 2018), 81–96

9. Mavrovouniotis, M. et al.: CEC-12 Competition on electric vehicle routing problem,
https://mavrovouniotis.github.io/EVRPcompetition2020/

10. McCollum, B.: University timetabling: bridging the gap between research and prac-
tice. In: PATAT 2006 (Sixth International Conference on the Practice and Theory
of Automated Timetabling, Brno, Czech Republic, August 2006), 15–35

11. Munari, P., Dollevoet, T., and Spliet, R.: A generalized formulation for vehicle
routing problems. Working paper (2017)

12. Nurmi K., Kyngs̈, J.: A conversion Scheme for turning a curriculum-based
timetabling problem into a school timetabling problem. In: PATAT 2008 (Seventh
International Conference on the Practice and Theory of Automated Timetabling,
Montreal, August 2008)

13. The PATAT conference series, https://patatconference.org/ (2020)
14. Ahmadi, S., Daskalaki, S., Kingston, J. H., Kyngäs, J., Nurmi, C., Post, G., Ranson,

D., Ruizenaar, H.: An XML format for benchmarks in high school timetabling.
In: PATAT 2008 (Seventh International Conference on the Practice and Theory of
Automated Timetabling, Montreal, August 2008)

220

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Timetabling Research: A Progress Report 11

15. Post, G.: Benchmarking project for high school timetabling,
https://www.utwente.nl/en/eemcs/dmmp/hstt/ (2020)

16. Schaerf, A., Measurability and reproducibility in university timetabling research:
discussion and proposals. In: PATAT 2006 (Sixth International Conference on the
Practice and Theory of Automated Timetabling, Brno, Czech Republic, August
2006), Selected Papers, Springer Lecture Notes in Computer Science 3867, 40–49
(2007)

17. Schmidt G. and Ströhlein, T.: Timetable construction—an annotated bibliography.
The Computer Journal 23, 307–316 (1980)

18. Toronto examination timetabling dataset, http://www.cs.nott.ac.uk/˜pszrq/data.htm
19. Transportation Conferences 2020–21, https://waset.org/transportation-

conferences
20. Van Bulck, D., Goossens, D., Schönberger, J., and Guajardo, M.: RobinX: an XML-

driven classification for round-robin sports timetabling. In: PATAT 2018 (Twelfth
International Conference on the Practice and Theory of Automated Timetabling,
Vienna, August 2018), 481–484

221

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Design of an Exact Approach for Timetabling at
Project-Oriented Schools

Michael Hölscher

Technische Universität Dresden, Fakultät Wirtschaftswissenschaften, Lehrstuhl für
BWL, insb. Industrielles Management, 01062 Dresden

michael.hoelscher@tu-dresden.de

Keywords: Timetabling · Multi-Objective Optimization · Project-oriented Schools

1 Introduction

Automatic timetabling in an educational context is a complex planning task
that can help to provide decision support for school administrations and re-
place manual planning through higher solution quality and speed. Depending on
the application, a distinction can be made between the high school timetabling
problem (HSTP) and the university course timetabling problem (UCTP) [1]. In
the school context, planning is done for disjunct classes and an assignment to
rooms, teachers and events is required that is free of conflicts [2]. This contrasts
with scheduling at universities, where students often have a great freedom of
choice, which is why it is more a matter of minimizing conflicts in timetabling
approaches due to the many overlapping possibilities. A distinction is made in
this class between curriculum-based course timetabling (CB-CTT) and post-
enrolment course timetabling (PE-CTT). The CB-CTT formulation [3] takes
into account a curriculum that reflects the courses to be fulfilled by the students
and to which the constraints are oriented. In contrast, the PE-CTT formula-
tion [4] requires students to enroll in courses before the actual timetabling is
done. We want to focus on project-oriented schools that combine or recombine
features from the context of classical school and university timetabling. The ex-
perimental school Universitätsschule Dresden (USD) serves as a real use case
for such a school, which should be supported in the timetabling process. Since
2019, a learning concept has been tested there that focuses on project work and
does not have a typical class structure. Students stay together in small project
groups for a limited period of time and work on a specific topic. The planning
horizon is much shorter than for regular schools, so one of the project cycles
usually lasts six weeks and followed by a new planning iteration instead of one
isolated timetabling procedure at the beginning of a school year. In principle,
each student receives his or her individual timetable in the USD instead of a
common timetable being generated for a whole class where everyone follows the
same subject-related schedule. This distinction is shown again in Figure 1.

222

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Michael Hölscher

Fig. 1. Comparison between regular school and project-oriented school

2 Problem Description

At USD special restrictions apply that must be taken into account during the
solution process. The projects have a certain capacity, so there can be four to
six students in a project group. In addition, each student is expected to work
on several projects from different categories within a cycle. There is also the
possibility for students to come up with a topic on their own and form a fixed
project group. At the school, a distinction is made between group rooms and
special rooms that have also a specific capacity that needs to be respected. The
special rooms are for example a science lab, a music/art room or a sports hall.
For each project, it is determined before the cycle begins whether and how many
appointments are to take place in these special rooms. Regarding teachers, their
availability must be taken into account. In addition, it is important to have
the appropriate professional qualifications for the supervision of the specialized
rooms. Each project also has a teacher that is directly responsible. It is not
necessary to be supervised by this teacher on all dates, but there must be a
minimum number of meetings per week to be able to discuss the progess of the
project. The generated timetables should not have any overlapping conflicts in
relation to the students and teachers. Each student must therefore be assigned
to exactly one project and one room at each time slot, and each teacher can only
supervise one room at a time.
The objective criteria that play a role in the underlying problem are, on the
one hand, the highest possible satisfaction of the students in the assignment to
projects. For this purpose, preferences are requested from each student regarding
the projects, which are then to be fulfilled as best as possible in the solution
process. In addition, there should be a fair distribution of the teachers’ workload
and a roughly equal number of supervised rooms for each teacher. And the use of
rooms should be efficient, so the goal is to have as few rooms in use as possible.

223

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Design of an Exact Approach for Timetabling at Project-Oriented Schools 3

3 Methodical Approach and Preliminary Results

In order to solve the timetabling problem at USD, we will try to use an exact
procedure. For this purpose, a mathematical optimization model is to be set
up that represents the above-mentioned conditions. All hard constraints must
be met in order to achieve a feasible solution. The three mentioned objective
criteria are implemented as soft constraints and give through their optimization
an indication of the quality of the generated timetables. This results in a multi-
objective perspective, which will be treated with the approach of a lexicographic
optimization. Most important in the solution process is the consideration of
student preferences, prior to the fair distribution of the teacher’s workload and
the efficient use of space. The aim is to test variants in which not only a strict
hiearchical optimization is used, but also a certain degradation is allowed in
order to find other solutions in the efficient set and compare them with each
other. First results are promising and give hope that the problem can be solved
to optimality in an acceptable time with the help of a commercial solver such as
Gurobi. A systematic computational study is to be performed, with randomly
generated instances of different sizes, to analyze the impact on computation
times and to determine the possible limitations of the approach. A sensitivity
analysis is also conceivable in order to find out how the computing time reacts
to different parameter constellations. In the end, the USD should be supported
by a practicable approach to generate feasible and optimized timetables, which
are necessary to successfully implement the developed concept of project work
at the school.

References

1. Schaerf, A. (1999). A survey of automated timetabling. Artificial intelligence review,
13(2), 87-127.

2. Carter, M. W., Laporte, G. (1997). Recent developments in practical course
timetabling. In international conference on the practice and theory of automated
timetabling (pp. 3-19). Springer, Berlin, Heidelberg.

3. Di Gaspero, L., McCollum, B., Schaerf, A. (2007). The second international
timetabling competition (ITC-2007): Curriculum-based course timetabling (track
3). Technical Report, Queen’s University, Belfast, United Kingdom.

4. Lewis, R., Paechter, B., McCollum, B. (2007). Post enrolment based course
timetabling: A description of the problem model used for track two of the second
international timetabling competition. Technical Report, Cardiff University, Wales,
United Kingdom.

224

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

Modeling and Methods in Untis,
a Popular Software System for School Timetabling

Sebastian Knopp

Received: date / Accepted: date

Abstract Untis is a company focusing on school timetabling since 1970. Its
software is used by more than 25 000 educational institutions worldwide and
satisfies the needs of a diverse range of users (including elementary and sec-
ondary schools, vocational schools, or universities of applied sciences). The
majority of the customers apply the integrated optimization solver. Enabling
each school to solve its individual timetabling problem requires taking into ac-
count a large range of constraints that are arbitrarily combinable. Therefore,
a quite general optimization model is necessary. The modeling in the Untis
software includes all 28 constraints listed in the survey of [Pillay(2014)] plus
further important aspects such as the consideration of multiple time grids or
an integrated planning over a whole year. The modelling incorporates only few
hard constraints and more than fifty soft constraints. The optimization uses
sophisticated construction and improvement heuristics which are embedded
in different meta-heuristic approaches. While optimizing in a batch-mode (see
[Schaerf(1999)]) is the core feature of the Untis software, various interactive
modes, supported by the underlying optimization model, are offered to ease
the work of the timetabler.

We address three topics in this talk. First, we outline core modelling as-
pects of the main timetabling problem addressed in the software. Second, we
discuss the integrated planning over a whole school year, where timetables
might change from week to week. Finally, some features of the interactive
planning modes are shown.

First, let us outline the modeling and its core assumptions. We consider a
week divided into a grid of periods, specifying times during which lessons can
take place. The main resources involved are classes, teachers, and rooms. The
goal is to schedule a given a set of lessons. Each lesson is assigned to a subject,
such as music or mathematics. Each lesson must take place for a given number

Sebastian Knopp
Untis GmbH, A-2000 Stockerau, Belvederegasse 11
E-mail: sebastian.knopp@untis.at

225

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Sebastian Knopp

of times during the week and requires a given set of resources. Additionally,
we are given a set of couplings. A coupling is a set of lessons which must
take place simultaneously. Coupling constraints are always observed. This is
ensured by the solution representation. All other constraints are included as
soft constraints which cover a broad range of requirements, including didac-
tic aspects, workload constraints, resource utilization constraints, and time
preferences. Violations of soft constraints are rated using penalty scores. The
objective function is to minimize a total weighted penalty score.

Second, we survey the temporal planning over the course of a year. A
feature important for many schools which has found only little attention in the
literature. Often, timetables can differ from week to week. For example, some
lessons might take place only every second week instead of every week. Other
lessons should be taught only once a year during a block of three consecutive
weeks, which is a common case for vocational schools. Also, differences in the
curriculum between the first and the second half-year must often be taken into
account. To address such requirements in the problem formulation, we assign
to each lesson a set of calendar days during which the lesson is allowed to take
place. Additionally, consistency is required as follows: The same lesson must
take place at the same times during all weeks (if it takes place). In combination
with coupling constraints, this modeling allows, e.g., to enforce two weekly
alternating subjects which take place during the same period every week. These
constraints are included in the optimization algorithm in an integrated way.

Finally, we show how the modeling as an optimization problem is applied
to assist the user with the creation of a timetable. Usually, the timetabling
process starts with importing or entering data and constraints. After that, a
first and quick optimization run allows the user to assess if major problems
exist in the input data. Problems might be caused by an extensive use of
coupling constraints or a combination of constraints which is too rigid. The
user can spot such issues by using an analysis tool which searches for maximum
cliques in a conflict graph. Once all the inputs are completed, the user can start
the thorough optimization run which creates a high-quality timetable. After
that, manual modifications to the timetable can be made. Their impact on
the objective function is immediately visualized in the user interface. In case
a user dislikes the placement of a particular lesson, the software can suggest
complex moves which shift that lesson. The objective function is taken into
account to find suitable displacements for the lessons involved.

Keywords School Timetabling · Heuristics · System Demonstration

References

[Pillay(2014)] Pillay N (2014) A survey of school timetabling research. Annals of Operations
Research 218(1):261–293

[Schaerf(1999)] Schaerf A (1999) A survey of automated timetabling. Artificial intelligence
review 13(2):87–127

226

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

International Timetabling Competition 2021: Sports
Timetabling

Dries Goossens · Jeroen Beliën ·
Morteza Davari · David Van Bulck

Received: date / Accepted: date

Abstract This extended abstract discusses the organization of the most re-
cent International Timetabling Competition (ITC 2021). This competition fo-
cused on sports timetabling, where the problem is to decide on a suitable
date for each of the matches to be played in the tournament. This is a com-
plex and challenging problem, even for tournaments with few contestants. As
a consequence, state-of-the-art typically focuses on a particular season of a
sports competition for which a tailored algorithm is developed which is then
compared to a manual solution. The aim of this competition was therefore to
promote and provide insights in the development of more generally applicable
sports timetabling solvers. To this purpose, participants required to solve a
rich and diverse set sports timetabling instances involving various constraints
that are common in real life. We introduce the contours of the problem in-
stances, as well as the data format. We give an overview of the competition
rules and timeline, and conclude with an overview of the finalists.

Keywords Sport timetabling · Competition · File format · Rules

D. Goossens and D. Van Bulck
Ghent University, Faculty of Economics and Business Administration
Department of Business Informatics and Operations Management
E-mail: dries.goossens@ugent.be; david.vanbulck@ugent.be

J. Beliën
KU Leuven, Campus Brussels
Research Centre for Operations Management
E-mail: jeroen.belien@kuleuven.be

M. Davari
SKEMA Business School
E-mail: morteza.davari@skema.edu

227

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Dries Goossens et al.

1 Introduction

Creating timetables for sports competitions has been a topic of research since
the 1970s (e.g., [1]). Ever since, academic papers about sports timetabling have
increased considerably in numbers and sports timetabling has become a spe-
cialized field [10], which has been discusssed at most of the PATAT meetings.
Sports timetabling is often complex and challenging, even for a small number of
teams. While generating a schedule where each team plays against each other
team once and no team is involved in simultaneous matches is easy [6], some
rather basic sports timetabling problems are already NP-hard. For instance,
Briskorn et al. [2] show that there is no constant-factor approximation (unless
P=NP) for a sports timetabling problem where certain matches cannot be
played on certain rounds. Furthermore, real-life sports timetabling problems
are characterized by a wide diversity of constraints, and conflicting interests
of many stakeholders. At the same time, in professional sports, the timetable
has an impact on commercial interests and revenues of the clubs, broadcasters,
sponsors, as well as an impact on society through resulting traffic and policing
costs.

Since 2002, there have been frequent timetabling competitions, which have
been benificial for the research community. The first international timetabling
competition (ITC) was organized in 2002 and focused on (a simplified version
of) the university course timetabling problem [11]. The next ITC competition
(2007) aimed to further develop interest in the general area of educational
timetabling and involved three problems: curriculum-based timetabling, exam-
ination timetabling, and post-enrollment timetabling [12,13]. With high-school
timetabling, the ITC placed yet another educational timetabling problem in
the spotlights in 2011 [16, 17]. The fourth ITC is again devoted to univer-
sity course timetabling: it introduces the combination of student sectioning
together with time and room assignment of events in courses [14, 15]. In be-
tween, PATAT has supported two international nurse rostering competitions
in 2010 [9] and 2014 [4], as well as a cross-domain heuristic search challenge
(CHeSC 2011), where the challenge was to design a high-level search strat-
egy that controls a set of problem-specific low-level heuristics, which would be
applicable to different problem domains [3].

Many of the sports timetabling contributions in the literature read as a case
study, describing a single instance for which a tailored algorithm is developed
(which is then compared to a manual solution). Moreover, the state-of-the-art
does not offer a general solution method, or even much insight in which type
of algorithm would work well for which type of problem [18]. One notable
exception is the travelling tournament problem [7], which minimizes the total
team travel in a timetable. For this problem, substantial algorithmic progress
has been reported after Easton et al. [7] made a set of artificial benchmark
instances publicly available, and for which best results can be submitted to a
website maintained by professor Michael Trick (see http://mat.tepper.cmu.
edu/TOURN/). Hence, an international timetabling competition could make a
valuable contribution to the field of sports timetabling, and given the efforts

228

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://mat.tepper.cmu.edu/TOURN/
http://mat.tepper.cmu.edu/TOURN/

International Timetabling Competition 2021: Sports Timetabling 3

done by Van Bulck et al. [18,19] with respect to the development of an XML-
based file format for problem instances and solutions, we believe the time was
right for a timetabling competition on sports.

2 Problem description and file format

The input of a sports timetabling problem consists of a set of rounds R, a set
of teams T , and a set of games G. The set of games consists of ordered pairs
(i, j) in which i ∈ T is the home team providing the venue where the game
is played, and j ∈ T is the away team. Although many tournament formats
are conceivable, in this competition we focus on so-called double round-robin
tournaments (2RR), which are very common in practice [8]. In a double round-
robin tournament, each team plays against each other team twice, typically
once at home and once away. Although there is a line of research that focuses
on the simultaneous scheduling of multiple leagues with dependencies [5], we
focus on a single league. No team can play more than one game per round.
In practice, rounds typically correspond to weekends, which may consist of
several time slots (e.g., Saturday evening, or Sunday afternoon), each with
their capacity. We focus on so-called time-constrained tournaments, i.e., tour-
naments that use the minimum number of rounds required to play all matches.
In a 2RR with n teams, n even, the minimum number of rounds to play all
games equals 2(n− 1); if n is odd, the minimum number of rounds is 2n.

A timetable maps each game in G to a round in R such that no team
plays more than one game per round. An example of a timetable for a double
round-robin tournament with 6 teams is given in Table 1.

Table 1 A compact double round-robin timetable for a league with 6 teams.

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

(1,2) (2,5) (2,4) (2,3) (6,2) (2,1) (5,2) (4,2) (3,2) (2,6)
(3,4) (4,1) (1,6) (5,1) (4,5) (4,3) (1,4) (6,1) (1,5) (5,4)
(5,6) (6,3) (5,3) (6,4) (1,3) (6,5) (3,6) (3,5) (4,6) (3,1)

Sports timetables need to satisfy a usually large set of constraints, which is
partitioned into hard constraints and soft constraints. Hard constraints repre-
sent fundamental properties of the timetable that can never be violated. Soft
constraints, in contrast, rather represent preferences that should be satisfied
whenever possible. The validation of each soft constraint c results in a vector
Dc of nc integral numbers, called the deviation vector Dc = [d1 d2 . . . dnc

].
If a constraint is satisfied, all elements of its deviation vector are equal to
zero. Contrarily, the deviation vector of a violated constraint contains one or
more strictly positive elements. For hard constraints, any deviation renders
the schedule infeasible. Each soft constraint features a cost function fc and
weight wc. A violated soft constraint triggers a penalty pc = wcfc(Dc), equal

229

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Dries Goossens et al.

to a weighted mapping of its deviation vector by its cost function. The objec-
tive we use for the competition instances sums over all violated soft constraint
penalties.

The instances feature a variety of constraints from the classicification de-
veloped by Van Bulck et al. [18]. The authors distinguish capacity constraints,
game constraints, break constraints, fairness/attractiveness constraints, and
separation constraints. Capacity constraints force a team to play home or away
and regulate the total number of games played by a team or group of teams.
Game constraints enforce or forbid specific assignments of a game to rounds.
Constraints to increase the fairness or attractiveness involve balancedness of,
e.g., home advantage, travel distances, etc. Break constraints regulate the fre-
quency and timing of breaks in a competition; we say that a team has a break
if it has two consecutive home games, or two consecutive away games. Sepa-
ration constraints regulate the number of rounds between consecutive games
involving the same teams.

The problem instances are expressed using the standardized XML data
format developed by Van Bulck et al. [18]. The main intention of this data
format is to promote problem instance data sharing and reuse among differ-
ent users and software applications, and this is exactly what the timetabling
competition envisions. The XML data format is open, human readable (i.e.,
no binary format), software and platform independent, and flexible enough to
store the problem instances.

Most of the sports timetabling constraints are easy to express in words
but are hard to enforce within specific algorithms such as mathematical pro-
gramming or metaheuristics. We believe this format minimizes the specifica-
tion burden and maximizes the accessibility. The main advantage of xml over
plain text-only file formats lies in the structured way of data storage. Indeed,
an important motivation behind xml is to separate data representation from
data content.

A detailed description of the the file format is available on the competition
website (http://itc2021.ugent.be). The website also provides access to a
validator, allowing participants to verify whether their solution satisfies all
hard constraints and to determine its score on the objective function.

3 Competition rules

We are much indebted to the various organizers of the previous international
timetabling competitions. Their experience has crystallized into the rules that
were used for the ITC 2019 competition [15], and to which we will largely
adhere for this competition. In particular, we enforce no bound on the com-
putation time. In fact, the objective function value of the solution is the only
criterion that matters. While computation time is obviously not unimportant,
a fair comparison in terms of computation time is quite challenging, and it
could easily lead to disputes that we as organizers prefer to avoid. Moreover,
from a practical point of view, sports timetabling problems are often not so

230

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://itc2021.ugent.be

International Timetabling Competition 2021: Sports Timetabling 5

Announce winner of first milestone

Competition closes

2020 2021

Sep Oct Nov Dec Jan Feb Mar Apr May Jun

Early group of instances

Middle group of instances

Late group of instances

Finalists are announced

Winners are announced at Mathsport 2021

Fig. 1 Timeline for the International Timetabling Competition 2021

time-critical, as there are often several days or even weeks available to obtain
a good solution.

We also allow to make use of any commercial solver. In this way, we would
like to lower the threshold to participate, and reach out to the largest possible
research community. Obviously, to keep it interesting, the instances for the
competition will not solve to optimality with any straightforward formulations
on e.g., state-of-the-art IP solvers.

Although we allow parameter tuning, we require that the same version of
the algorithm is used for all instances. In other words, the algorithm should
not “know” which instance it is solving. While the algorithm may analyze the
problem instance and set parameters accordingly, it should apply this same
procedure for all instances. The programmer should not set different parame-
ters for different instances, however, if the program is doing this automatically,
then this is acceptable. We will be asking for the source code of the finalists,
in order to check whether the participants comply with this rule.

We believe these rules are efficient (in the sense that they do not require the
organizer to run the participant’s code) and fair/simple (in the sense that the
only thing that matters is the obtained objective value; it avoids all discussion
about measuring, e.g., computation time, the impact of random seeds, etc.).

4 Competition timeline and results

An overview of the competition timeline is given in Figure 1. In total, we re-
leased three groups of 15 artificially generated problem instances each: early,
middle, and late instances. While all instances contributed to the final rank-
ing of participants, instances that were released later in the competition had a
higher weight. For instance, the overall best found solutions was respectively
awarded 10, 15, and 25 instances for an early, middle, and late problem in-
stance. The early group of instances were already available from our website at
the time the competition was officially announced (mid October 2020), while
the middle group of instances were only released in February 2021. The late
instances followed half April 2021, which gave the participants two weeks to
come up with solutions.

231

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Dries Goossens et al.

Team name Research institute Participants

TU/e Eindhoven University of Technology F. Spieksma, H. Christopher, R. Lambers, and J. van Doorn-
malen

Saturn HSE University S. Daniil and R. Ivan
MODAL Zuse Institute Berlin T. Koch, T. Berthold, and Y. Shinano
GOAL Federal University of Ouro Preto G. H. G. Fonseca and T. A. M. Toffolo
UoS University of Southampton T. Mart́ınez-Sykora, C. Potts, C. Lamas-Fernández
Udine University of Udine R. M. Rosati, M. Petris, L. Di Gaspero, and A. Schaerf

Table 2 Overview of the 6 finalists (randomly ordered)

Around half January 2021, we organized a first milestone event where par-
ticipants had the possibility to submit their best solutions found at that time.
Although optional, participation in the first milestone was strongly encouraged
as it provided participants with the feedback on where their algorithms ranked
among their peers as well as a chance to win a small prize (free registration
for Mathsport 2022). The first milestone was won by team UoS, followed by
team Udine and TU/e (see Table 2).

At the time of the final submission deadline, 13 research teams from over 10
different countries successfully submitted solutions. As a comparison, the cross-
domain heuristic search challenge attracted 17 teams, the two international
nurse rostering competitions each attracted 15 teams, and the third and fourth
international timetabling competition each attracted 5 teams that submitted
one or more solutions by the final submission deadline.

Out of all 13 participating teams, the 6 finalists given in Table 2 were se-
lected. The prize fund is 1,750 EUR to be split between the first, second, and
third place competitors. Moreover, a discount on registration for the upcoming
PATAT conference is awarded to the top three overall. We thank our sponsors
OR in Sports and PATAT for their generous contribution to the rewards we
could distribute over the winners. At the Mathsport International 2021 con-
ference, team UoS (University of Southampton) was announced as the winner
of the ITC 2021.

References

1. Ball, B. C., Webster, D. B. (1977). Optimal scheduling for even-numbered team athletic
conferences. AIIE Transactions 9(2):161–169.

2. Briskorn, D., Drexl, A., Spieksma F.C.R. (2010). Round robin tournament and three
index assignments. 4OR - A Quarterly Journal of Operations Research, 8:365–374.

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G., Parkes,
A.J., Petrovic, S. (2011). The Cross-Domain Heuristic Search Challenge – An International
Research Competition. In: C.A.C. Coello (editor) Learning and Intelligent Optimization,
pp. 631–634. Springer.

4. Ceschia, S., Dang, N., De Causmaecker, P., Haspeslagh, S., Schaerf, A. (2019). The second
international nurse rostering competition. Annals of Operations Research, 274:171-–186.

5. Davari, M., Goossens, D., Beliën, Lambers, R., Spieksma, F.C.R. (2020). The multi-
league sports scheduling problem, or how to schedule thousands of matches. Operations
Research Letters, forthcoming.

232

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

International Timetabling Competition 2021: Sports Timetabling 7

6. de Werra, D. (1980). Geography, games and graphs. Discrete Applied Mathematics 2:327–
337.

7. Easton, K., Nemhauser, G., Trick, M., (2001). The traveling tournament problem de-
scription and benchmarks. In: Walsh, T. (editor), Principles and Practice of Constraint
Programming — CP 2001. Springer, Berlin, Heidelberg, pp. 580-–584.

8. Goossens, D., Spieksma, F.C.R. (2012). Soccer schedules in Europe: an overview. Journal
of Scheduling 15(5): 641–651.

9. Haspeslagh, S., De Causmaecker, P., Schaerf, A., Stølevik, M. (2010). The first interna-
tional nurse rostering competition 2010. Annals of Operations Research 218(1):221–236.

10. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S. (2010). Scheduling in sports: An
annotated bibliography. Computers & Operations Research 37(1):1–19.

11. Paechter, B., Gambardella, L.M., Rossi-Doria, O. (2002). International timetabling com-
petition (ITC2002). http://sferics.idsia.ch/Files/ttcomp2002

12. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Di
Gaspero, L., Qu, R., Burke, E.K. (2007). The second international timetabling competition
(ITC2007). http://www.cs.qub.ac.uk/itc2007/index.htm

13. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Di
Gaspero, L., Qu, R., Burke, E.K. (2010). Setting the research agenda in automated
timetabling: The second international timetabling competition. INFORMS Journal on
Computing 22(1):120–130.

14. Müller, T., Rudová, H. Müllerová, Z. (2018). University course timetabling and Inter-
national Timetabling Competition 2019. In: E. K. Burke, L. Di Gaspero, B. McCollum,
N. Musliu, and E. Özcan (editors), Proceedings of the 12th International Conference on
the Practice and Theory of Automated Timetabling, Vienna, pp. 5–31. PATAT.

15. Müller, T., Rudová, H. Müllerová, Z. (2019). International Timetabling Competition
(ITC2019). http://www.itc2019.org/home

16. Post, G., Di Gaspero L., Kingston, J.H., McCollum, B., Schaerf, A. (2011). Inter-
national timetabling competition (ITC2011). http://www.utwente.nl/en/eemcs/dmmp/

hstt/itc2011/

17. Post, G., Di Gaspero L., Kingston, J.H., McCollum, B., Schaerf, A. (2016). The third
international timetabling competition. Annals of Operations Research, 239:69—75.

18. Van Bulck D., Goossens D., Schönberger J., Guajardo M. (2020a), RobinX: A three-
field classification and unified data format for round-robin sports timetabling. European
Journal of Operational Research, 280:568–580.

19. Van Bulck, D., Goossens, D., Schönberger, J., Guajardo, M. (2020b). An instance data
repository for the round-robin sports timetabling problem. Management and Labour Stud-
ies, 45:184–200.

233

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://sferics.idsia.ch/Files/ttcomp2002
http://www.cs.qub.ac.uk/itc2007/index.htm
http://www.itc2019.org/home
http://www.utwente.nl/en/eemcs/dmmp/hstt/itc2011/
http://www.utwente.nl/en/eemcs/dmmp/hstt/itc2011/

Real-world university course timetabling at the
International Timetabling Competition 2019

Hana Rudová1, Tomáš Müller2, and Zuzana Müllerová3

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
hanka@fi.muni.cz

2 Purdue University, West Lafayette, Indiana, USA
muller@unitime.org

3 UniTime, s.r.o., Zlín, Czech Republic
mullerova@unitime.org

1 Introduction

The International Timetabling Competition 2019 (ITC 2019) [12] introduced
a variety of real-life university course timetabling problems coming from differ-
ent parts of the world. A novel model of a complex course timetabling problem
allows the specification of problems from many different universities. In the com-
petition, representative problems from ten universities worldwide were consid-
ered. However, they represent a fraction of the institutions using UniTime [16],
a non-commercial software, from which the instances for the competition were
taken. Thirty benchmark problems together with six test instances are available
at the competition website [6], which allows for solution validation and provides
a repository of existing solutions. This paper will discuss the characteristics of
the course timetabling problems considered in the competition. We will demon-
strate that the model proposed for the competition allows encapsulating very
different features.

The first International Timetabling Competition 2002 considered a simplified
course timetabling where post-enrollment problems were solved. For these prob-
lems, course enrollments of students are defined, and courses must be assigned in
timeslots and rooms without any overlap for students. All benchmark instances
were randomly generated. The second competition in 2007 [9] has organized two
course timetabling tracks. One of them slightly extended the post-enrollment
problem from the first competition [8] and the other introduced curriculum-
based timetabling based on problems from the University of Udine in Italy [4].
The curriculum contains a set of courses, which must be assigned into time-
slots with no overlaps. All the competitions, including ours, were supported by
the PATAT conference together with several other competitions from different
domains [13]. A recent survey about educational timetabling benchmarks and
competitions is available at [1].

234

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Characteristics

Our problems use a complex course structure to model the presence of students
in different parts of a course. A course may contain one or more course con-
figurations, each with one or more classes that can be of different types and
have an optional parent-child relationship between them. These classes are to
be timetabled into rooms and time periods. A class may occupy multiple time
periods, possibly spanning multiple days and weeks. This allows us to model
classes with multiple meetings at the same time and room, and/or classes that
are taught only during certain weeks of the semester. All benchmark problems
have five-minutes time periods, which are going from midnight to midnight, have
seven days a week, and are running for a given number of weeks (between 6 and
21). This permits a very flexible organization of time and supports various ir-
regularities and other exceptions in class placements. Students are enrolled in
courses and are to be assigned to classes based on the defined course structure.
A student must get one class of each type from a single course configuration,
following the parent-child relationship when defined. For example, each student
must get a lecture and a seminar, where only some lecture-seminar combinations
are allowed. Finally, there are soft and hard distribution constraints of nineteen
types defined on subsets of classes. Most of the constraints such as SameDays
or NoOverlap can be validated on pairs of classes, i.e., each pair that does not
satisfy the constraint incurs a penalty. Four types of constraints such as MaxDays
must be validated on the whole subset of classes.

There are four essential optimization criteria. The goal is to minimize penal-
ties for time and room assignments of classes, penalties for unsatisfied soft distri-
bution constraints, and the number of student conflicts. Minimizing the number
of student conflicts is a fundamental part of the problem, which is crucial for
university course timetabling. A student conflict exists if the student cannot at-
tend a pair of his/her classes. The conflicts are not only between classes that
overlap in time, but they are also between classes that students cannot attend
due to travel distances between assigned rooms.

3 Problems from different universities

We will see that the proposed XML model allows specifying very different real-
life university course timetabling problems. Timetabling problems may differ
even within the same institution.

We have included three different problems from Masaryk University (Czech
Republic). The timetable for the Faculty of Informatics can be generated based
on pre-enrollments of students into courses. Otherwise, it is a relatively standard
mid-size problem with about 500 classes each scheduled weekly or sometimes bi-
weekly. There are two different types of problems for the Faculty of Education
and Faculty of Sport Studies, representing (1) the common present form of study
and (2) the lifelong together with the combined forms of study [11]. This second
problem is very specific and complex. Here, a different timetable is needed each

235

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

week, and each course is taught only several weeks during the semester. On top
of that, the Faculty of Sport Studies timetables are significantly influenced by
traveling to various sports facilities that are spread over the city. We can see
specific curricula patterns for the Faculty of Education, typically composed of
a pair of "sub-curricula", each representing one field of study such as Math,
Physics, English, or Music. These pairs may result in many student conflicts
because it is impossible to satisfy all the possible combinations.

Purdue University (USA) uses automated timetabling for all its departments
together [15], which means that we can see the large-scale problem representing
all courses of the large public university with about 40,000 students. The con-
struction of the timetable starts with timetabling for the large lecture rooms,
which the university shares. We have only a few courses for each student in this
problem, but the room utilization is very high since large rooms for hundreds
of students represent a scarce and expensive resource. At Purdue, we can also
see a typical example of an American university where classes are taught several
times a week at the same time and same room, for instance, Monday, Wednes-
day, Friday at the half-hour (7:30 am, 8:30 am, ... 4:30 pm). Also, courses may
be taught using different patterns, e.g., either two times a week for an hour and
a half or three times a week for one hour. In contrast to other problems dis-
cussed before, there are neither curricula nor pre-enrollments. The timetable is
constructed based on last-like semester course enrollments (e.g., timetable con-
struction for Fall 2019 used as an input real course enrollments for Fall 2018).

AGH University of Science and Technology from Poland builds course timeta-
bles separately for each faculty. Still, they share some resources, and some of the
faculties provide a lot of courses for students outside of their faculty. For instance,
in our data sets, the Faculty of Humanities has almost two-thirds of the classes
for students of other faculties. The data are structured so that the courses for
students from these faculties can be managed and timetabled separately. AGH
uses pretty rigid curricula, only containing mandatory and elective courses. In
the original (UniTime) problem, students of the same curriculum are kept to-
gether and attend the same classes. There are no student conflicts allowed to be
created by the solver.

For several other universities from Asia, such as Turkish-German University,
İstanbul Kültür University, and Bethlehem University, it may seem that there
are no students involved because no students are present in the data set. This is
because these universities decided to model student course requirements using
the SameAttendees or NoOverlap distribution costraints.

Many other specifics of the competition problems will be described in the full
version of this paper.

4 Conclusion

The competition problems introduce complex real-world problems with many
different characteristics, which led to a relatively small number of approaches
capable of solving them. Initially, five different teams submitted results to the

236

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

competition, and two others, including one competition organizer, computed so-
lutions as well. Thanks to the open-source prize, the source codes of three solvers
are now publicly available. As of June 2022, thirteen teams have submitted some
solutions published on the competition website. The winning team applied a par-
allelized matheuristic [10] based on the graph-based mixed integer programming
formulation [5]. The second team applied mixed integer programming [14], and
the third team’s solution [3] is representative of a metaheuristic method, which
is the modified version of simulated annealing. The fifth team opted for a so-
lution using the MaxSAT solver combined with a local search [7]. The winning
team also maintains a website [2], where their lower bounds for all competition
instances are published. We can see that five instances are now solved optimally.
For many instances, the gap is still significant, promising opportunities for future
research. Also, there is a high potential for developing more efficient methods
capable of solving the problems in a more reasonable time frame.

References

1. Ceschia, S., Gaspero, L.D., Schaerf, A.: Educational timetabling: Problems, bench-
marks, and state-of-the-art results (2022), arXiv:2201.07525

2. DSUM data science for university management, ITC 2019, https://dsumsoftware.
com/itc2019/

3. Gashi, E., Sylejmani, K., Ymeri, A.: Simulated annealing with penalization for
university course timetabling. In: Proceedings of the 13th International Conference
on the Practice and Theory of Automated Timetabling PATAT 2021, Volume II
(2021). pp. 361–366 (2021)

4. Gaspero, L.D., McCollum, B., Schaerf, A.: The second International Timetabling
Competition (ITC-2007): Curriculum-based course timetabling (track 3).
Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0, Queen’s University,
Belfast (2007)

5. Holm, D.S., Mikkelsen, R.Ø., Sørensen, M., Stidsen, T.J.R.: A graph-based
MIP formulation of the International Timetabling Competition 2019. Journal of
Scheduling (2022), published: 11 March 2022

6. ITC 2019: International Timetabling Competition, https://itc2019.org
7. Lemos, A., Monteiro, P.T., Lynce, I.: ITC 2019: University course timetabling with

MaxSAT. In: Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling PATAT 2021, Volume I (2020). pp. 105–128
(2021)

8. Lewis, R., Paechter, B., McCollum, B.: Post enrolment based course timetabling:
A description of the problem model used for track two of the second Interna-
tional Timetabling Competition. Cardiff Working Papers in Accounting and Fi-
nance A2007-3, Cardiff Business School, Cardiff University (2007)

9. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J.,
Gaspero, L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated
timetabling: The second International Timetabling Competition. INFORMS Jour-
nal on Computing 22(1), 120–130 (2010)

10. Mikkelsen, R.Ø., Holm, D.S.: A parallelized matheuristic for the International
Timetabling Competition 2019. Journal of Scheduling (2022), published: 3 May
2022

237

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://dsumsoftware.com/itc2019/
https://dsumsoftware.com/itc2019/
https://itc2019.org

11. Müller, T., Rudová, H.: Real-life curriculum-based timetabling with elective
courses and course sections. Annals of Operations Research 239(1), 153–170 (2016)

12. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and Interna-
tional Timetabling Competition 2019. In: PATAT 2018—Proceedings of the 12th
International Conference on the Practice and Theory of Automated Timetabling.
pp. 5–31 (2018)

13. PATAT conferences, http://patatconference.org/communityService.html
14. Rappos, E., Thiémard, E., Robert, S., Hêche, J.F.: A mixed-integer programming

approach for solving university course timetabling problems. Journal of Scheduling
(2022), published: 15 February 2022

15. Rudová, H., Müller, T., Murray, K.: Complex university course timetabling. Jour-
nal of Scheduling 14(2), 187–207 (2011)

16. UniTime.org: University timetabling, comprehensive academic scheduling solu-
tions, https://www.unitime.org/

238

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://patatconference.org/communityService.html
https://www.unitime.org/

Noname manuscript No.
(will be inserted by the editor)

A MIP based approach for International Timetabling
Competation 2019

Dennis S. Holm? · Rasmus Ø. Mikkelsen? ·
Matias Sørensen · Thomas R. Stidsen

Received: date / Accepted: date

Keywords Mixed Integer Programming · Matheuristics · Fix and Optimize ·
Conflict graphs · University Timetabling · International Timetabling Competition
2019 · ITC 2019
1 Introduction
Top five finalist summary paper.
This summary paper was written as a part of the submission for the International
Timetabling Competition 2019 (ITC2019). It aims to give an overview description
of the algorithm used to solve the ITC2019 problem instances. Since the paper is
limited to 4 pages, the description cannot be very comprehensive. The algorithm is
divided into different parts. First part is a reduction algorithm where unnecessary
information in the data is removed. It is followed up by two initial solution algo-
rithms and a Fix-and-Optimize matheuristic. The initial solution algorithms and
Fix-and-Optimize algorithms all depend on a Mixed Integer Programming (MIP)
formulation, which will also be described briefly. Finally the computational setup
is presented as it defines the resulting algorithm.

? First Author

Dennis S. Holm?

Akademivej
Building 358
2800 Kgs. Lyngby
E-mail: dsho@dtu.dk

Rasmus Ø. Mikkelsen?
Akademivej
Building 358
2800 Kgs. Lyngby
E-mail: rasmi@dtu.dk

Matias Sørensen
E-mail: sorensen.matias@gmail.com

Thomas R. Stidsen
Akademivej
Building 358
2800 Kgs. Lyngby
Tel.: +45 45254449
E-mail: thst@dtu.dk

239

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2

2 Reducing the problems
The reduction of the problems concern two parts. One part considers the removal
of times/rooms of classes that are never allowed in a feasible solution. The other
part considers the removal of distribution constraints that are dominated by other
distribution constraints.

2.1 Reducing times/rooms
This part is very useful for the MIP because it reduces the number of variables.
Consider a graph where each vertex corresponds to a class-time pair. To get a
valid class-time assignment in the problem, a vertex must be chosen for each of
the classes. Now add an edge between two vertices if the two pairs cannot both
be chosen in a valid solution. That could happen if a hard distribution constraint
states, that the times of the two classes are not allowed simultaneously or if the
two vertices represent the same class. Likewise a conflict graph of class-room pairs
can be constructed.
Now consider a conflict graph G described as above and consider the sets of vertices
V (ci) that represents class ci. If |V (ci)| = 1 for a ci we denote the vertex as fixed.
This means that any neighbour of a fixed vertex cannot be chosen in a valid
solution, thus such vertices can be removed from G.
Consider a clique C in the graph. C describes that only one of the vertices V (C)
can be chosen. If V (ci) ⊂ V (C) for a specific ci then the vertices of V (C) \ V (ci)
can be removed from G. By reducing the graph G to G′ with the above methods
one might find vertices that are fixed in G′ but not in G. It is therefore important
to keep reducing G′ until no more reductions can be made.

2.2 Reducing distribution constraints
Redundant distribution constraints: A constraint that consider at most one class,
a soft constraint with 0 penalty, or cannot be violated by the classes it consider.
Dominated distribution constraints: A distribution constraint (hard or soft) d1 is
said to be dominated by a hard distribution constraint of equal type d2 if the
classes of d1 is a subset of the classes of d2.
Redundant and dominated distribution constraints are removed from the problem.

3 MIP
The Mixed Integer Programming formulation consider a binary decision variable
xc,t,r that is equal to 1 if a class c is scheduled at time t in room r and 0 otherwise.
If the problem includes student sectioning the MIP formulation also consider the
binary variable Es,c which is equal to 1 if student s is attending class c and 0
otherwise.
The decision variable xc,t,r leads to auxiliary variables yc,t, zc,d and wc,r, which
respectively consider the assignment of time t, day d or room r for a class c. Note
that the variables yc,t and wc,r are represented by vertices in the conflict graphs
presented in section 2. The distribution constraints used to define the edges of a
conflict graph are modelled by a clique cover of the conflicts graphs. This is the
modelling of most of the hard distribution constraints. Note that SameAttendees
requires an additional conflict graph on xc,t,r when the times by themselves are
not overlapping but the room assignments violate the constraint. Conflict graph
are created for the soft distribution constraints as well. Here the edges have a cost
corresponding to the distribution constraint(s) that created the edge. Each edge
can be used as a constraint in the model. But to lower the amount of constraints

240

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

3

it is better to divide the graph into subgraphs where all edges have equal cost and
then find a star cover of each graph. Each star is added as a constraint to the
model.
The distribution constraints MaxDays, MaxDayLoad, MaxBreaks and MaxBlock
are modelled in a more advanced way.
Student sectioning is performed like SameAttendees except that the cost of overlap
between courses c1 and c2 is related to Es,c1 and Es,c2 .

4 Initial solution
An initial solution is constructed by two simple constructive matheuristics. The
constructive heuristics split the problem into two or three parts respectively, where
the parts are solved one followed by the other.

Algorithm 1 Two-Stage Constructive Algorithm (2SCA)
1: assign times and rooms to classes
2: assign students to classes
3: return assignments

For the 2SCA algorithm a MIP is defined with the only objective being the number
of unassigned classes. When a feasible schedule is found, the schedule is given to
the original MIP which is solved to assign students to classes.

Algorithm 2 Three-Stage Constructive Algorithm (3SCA)
1: assign times to classes
2: try to assign rooms to classes
3: while assignment of rooms was not possible do
4: find a new assignment of times to classes
5: try to assign rooms to classes
6: end while
7: assign students to classes
8: return assignments

In the 3SCA algorithm a MIP that considers only the assignment of times is
solved first. The time-assignment is then given to another MIP that considers the
assignment of rooms. If there is no feasible room-assignment to the given time-
assignment another time-assignment will be found. When a feasible time and room
assignment has been found the schedule is given to a MIP that considers student
sectioning.

5 Fix-and-Optimize
To improve the solutions found in section 4 we use a Fix-and-Optimize matheuris-
tic. The Fix-and-Optimize splits the decision variables into two sets F and U . We
then consider the subproblem where the variables of F are fixed and we optimize
the subproblem. The results are strongly dependent on the way the sets are cho-
sen. If a large set U is chosen, the model will be too complex, on the other hand
if U is too small there will be no improvement.

When choosing U we consider a neighbourhood of courses. That is the decision
variable xc,t,r (and related auxiliary variables) for all classes that are part of a

241

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4

given set of courses. As the instances vary greatly in difficulty, we choose the size
of U to be 25% of class assignments as a base line.

Algorithm 3 Pseudo code for Fix-and-Optimize
1: MIP: Set solution sol∗

2: MIP: Fix all variables to current value
3: while time do
4: U = GetVariablesToUnfix()
5: MIP: Unfix all U
6: solnew = Solve MIP
7: if solnew is improving then
8: MIP: Set soltuion solnew

9: end if
10: MIP: Fix all variables to current value
11: end while

The pseudo code of Fix-and-Optimize is shown in algorithm 3. The solution sol∗ is
the warm start solution, that could be the initial, best known or any other solution.
The set of variables U is determined by function GetVariablesToUnfix().

5.1 Dynamically updating parameters
The goal of Fix-and-Optimize is to find a balance between the MIP complexity
and the availability and ease of finding improving solutions. On smaller and easier
instances it is preferable to unfix in a more aggressive manner, while a more
conservative strategy should be used for more difficult cases. The correct strategy
is difficult to gauge a priori and therefore the parameters of Fix-and-Optimize are
updated dynamically through the search.

6 Computational setup
When a data instance is received we start by reducing the file as described in
section 2, this gives a reduced data instance that is used to construct the MIP
described in section 3. The 3SCA algorithm described in section 4 is run without
considering soft distribution constraints to find a pool of initial solutions. Addition-
ally the 2SCA is also run. The MIP and a number of Fix-and-Optimize algorithms
are run in parallel. The MIP has focus on improving the lower bound while the
Fix-and-Optimize algorithms produce new solutions that are passed to the MIP
to help reduce the branch and bound tree. The Fix-and-Optimize algorithms focus
on separate neighbourhoods and regularly reset to the best known solution, such
that none are “left behind”. If enough time passes with no improvement in best
known solution, the Fix-and-Optimize algorithms begin to diversify; each search
starts from a new initial solution (from the 3SCA algorithm), no longer resets to
the best known solution and considers all available neighbourhoods. This contin-
ues until the best known solution is improved, where after the Fix-and-Optimize
algorithms revert to their normal strategy.
For instances where the number of students exceeds 30.000, we start an additional
process where a specialized MIP is defined that applies student sectioning to fixed
timetables. The timetables are produced by the 3SCA algorithm and a variant
of the Fix-and-Optimize algorithm that is set up to produce timetables without
considering the students.

242

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

ITC 2019: Results Using the UniTime Solver

Tomáš Müller

Purdue University, West Lafayette, Indiana, USA
muller@unitime.org

Abstract. This abstract presents results on using the Uni-Time solver
on the International Timetabling Competition 2019 late data sets. The
results are compared with the best solutions that are published on the
competition website.

Keywords: University course timetabling · ITC 2019 · UniTime

1 Introduction

Building on the success of the earlier timetabling competitions, the International
Timetabling Competition 2019 (http://www.itc2019.org) is aimed to motivate
further research on complex university course timetabling problems coming from
practice. The competition data sets are based on real-world problems that have
been collected using the UniTime application [11]. The individual timetabling
problems are quite large with the largest problem having close to 9,000 classes
and over 38,000 students. The data for the competition have been collected from
10 institutions around the world and there are a lot of differences between them.
For example, some instances have no students (classes are spread in time using
hundreds of non-overlapping constraints), some instances are based on student
pre-registrations (aka post-enrollment course timetabling) and some instances
are based on curricular data. There have been three sets of 10 instances published
during the competition: early, middle and late.

The competition problem combines student sectioning together with stan-
dard time and room assignment of individual course events [8]. Classes are orga-
nized in a course structure defining the valid combinations of classes a student
can take. For example, each student taking a Mathematics course needs to attend
a lecture and a lab that is associated with the lecture. The problem also deals
with travel times between individual rooms, classes that have different lengths
and multiple meetings on a week, classes that are meeting only during certain
weeks, and various additional distribution constraints, such as minimizing gaps
between classes of an instructor or defining how many class hours an instructor
can teach on a day.

UniTime [12] is a comprehensive educational scheduling system that supports
developing course and exam timetables, managing changes to these timetables,
sharing rooms with other events, and scheduling students to individual classes. It
is a distributed system that allows multiple university and departmental sched-
ule managers to coordinate efforts to build and modify a schedule that meets

243

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

http://www.itc2019.org

their diverse organizational needs while allowing for minimization of student
course conflicts. The software is distributed free under an open-source license
and the UniTime project is a part of the Apereo Foundation, a non-profit orga-
nization whose mission is to develop and sustain open-source software for higher
education.

As the UniTime course timetabling problem is quite complex, with many ad-
ditional aspects, some simplifications have been made in the competition prob-
lem as well as on the problems collected from UniTime. The aim was to reduce
the modeling complexity without losing any of the hardness (or computational
complexity) of the problems. For example, in UniTime, it is possible for a class
to need two or more rooms, or in certain cases, for multiple classes to share a
room. Also, some distribution constraints have been removed or reformulated
in the competition problem. For example, instead of having a back-to-back con-
straint, the competition problem requires such classes to be placed in the same
room, on the same day, and with limited time between the first and the last
class. This makes for the same outcome when the constraint is satisfied, but the
penalization of a partially violated soft constraint is a bit different. More details
are discussed in [8].

The paper is organized as follows: in the next chapter, the competition solver
is described. There is a short description of the UniTime solver and the code
written to make the solver work on the competition problem. Results are pre-
sented in the following chapter and conclusions are presented at the end of the
paper.

2 The Solver

In this work, the UniTime course timetabling solver is used as it is, even using
the default configuration that ships with the UniTime application. New code
has been only needed to load the competition problem into the UniTime solver
and to save the solution in the competition format. Other than that, some of
the penalizations of violated soft distribution constraints have been changed to
follow the competition problem. The code is open-source (under the Apache
license) and available in GitHub [6].

The UniTime solver is based on an iterative forward search (IFS) algo-
rithm [11]. This algorithm is similar to local search methods; however, in contrast
to classical local search techniques, it operates over feasible, though not necessar-
ily complete, solutions. In these solutions, some classes may be left unassigned.
All hard constraints on assigned classes must be satisfied. Such solutions are eas-
ier to visualize and more meaningful to human users than complete but infeasible
solutions. Because of the iterative character of the algorithm, the solver can also
easily start, stop, or continue from any feasible timetable, either complete or
incomplete.

The algorithm makes use of Conflict-based Statistics (CBS) [9] to prevent
itself from cycling. The IFS algorithm is used until a complete timetable is
found. In the next phase, a local optimum is found using a Hill Climbing (HC)

244

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

algorithm. Once a solution can no longer be improved using this method, the
Great Deluge (GD) technique [1] is used. The GD algorithm is altered so that
it allows some oscillations of the bound that is imposed on the overall solution
value [7].

The solver splits the problem into two sub-problems: student sectioning and
class assignment. In the beginning, students are assigned to individual classes fol-
lowing their course demands and course structure. Students with similar courses
are kept together as much as possible, using a simple construction heuristics
while sectioning one course at a time. This allows for the computation of poten-
tial student conflicts between individual classes, that is, the numbers of students
assigned to pairs of classes that are overlapping in time or are one after the other
in rooms that are too far apart. During the solver run, classes are assigned in
times and rooms while the number of student conflicts is minimized, together
with the other penalizations on assigned times, rooms, and violated soft distri-
bution constraints. When the class assignment solver is finished, a local-search
technique is used to move students between alternative classes or to swap two
students between such classes. During the class assignment, student conflicts be-
tween two classes that have some alternatives are weighted less (0.2 of the weight
defined in the problem) than the conflicts between classes with no alternatives
(i.e., conflicts that cannot be removed by re-sectioning).

More details about the UniTime solver, including various improvements that
have been done over the years, are presented in [7].

3 Results

The best and the average penalty from 10 independent runs are presented in
the following table. The results were computed using a 2021 model of MacBook
Pro with an Apple M1 Max processor, 64 GB memory, OS X 12.3 and Java 8.
The solver uses only one CPU core, and the time limit was restricted to two
hours. To make use of multiple processor cores, 8 independent runs were done
in parallel. UniTime solver cpsolver-1.3.189 was used in the experiment. All the
runs were done with the same parameters (using the UniTime’s default solver
configuration), without any parameter tuning or consideration of a particular
instance. The results are compared with the best solutions available at the time
of the experiment.

Table 1 shows the results from the experiment compared with the best so-
lutions uploaded at the competition website as of June 27, 2022. The first two
columns (named UniTime) show the results of this experiment. For each of the
late instances, the penalty from the best solution of the 10 independent runs and
the average penalty from all the 10 runs is listed respectively. These results are
compared with the best solutions from the five competition finalists (columns
Holm [4], Rappos [10], Gashi [3], Er-rhaimini [2], and Lemos [5]), which together
with the solver of the author of this paper (column Müller) are the six best
solvers available at the time of the writing.

245

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Table 1. UniTime solver results compared with the best results on the late instances.

Late UniTime Best Result at ITC2019.org

Instance 2h Best Average Holm Rappos Gashi Er-rhaimini Lemos Müller

agh-fal17 130 635 133 754.9 140 194 184 030 153 236 142 687 117627

bet-spr18 352 249 353 373.5 348524 360 057 360 437 373 039 353 920 348 536

iku-spr18 40 765 43 082.0 25863 36 711 85 969 70 932 45 537 35 783

lums-fal17 398 411.1 349 386 486 558 813 368

mary-fal18 4 924 5 101.4 4331 5 637 7 199 6 944 44 097 4 805

muni-fi-fal17 3 506 3 789.5 2837 3 794 4 712 4 820 4 161 3 180

muni-fspsx-fal17 12 455 15 639.9 12 390 33 001 41 933 104 625 101 317 10058

muni-pdfx-fal17 117 382 125 200.6 82258 151 464 159 203 191 887 151 461 97 449

pu-d9-fal19 46 067 47 441.5 39081 134 009 82 757 70 450 47 543 44 603

tg-spr18 16 140 20 418.2 12704 12 856 15 992 19 738 31 900 14 548

The best know solution of each instance is marked in bold. Solutions of the
finalists that were improved after the competition has ended are underlined.
This means that in these cases a better solution was uploaded on the ITC 2019
website after the competition.

Within the short period of time, the solver was consistently able to produce
a solution that is better than the second best solver from the finalists in seven
cases. This is indicated by the table colors. The second best results from the
five finalists is indicated by blue color. All UniTime results from this experiment
that are better than this result are marked with violet color. The remaining three
instances (iku-spr18, lums-fal17, and tg-spr18) are the only three late instances
that do not have any students.

Better results can be achieved with longer run times and some parameter
tuning, which has only been done to some extent. These include some additional
improvements, e.g., allowing students to be re-sectioned continuously during the
search or removing some of the complexity of the solver (that is not needed for
the competition). The best results achieved are listed in the last column (named
Müller). With these changes, the UniTime solver has produced the best know
solution for two late instances (agh-fal17 and muni-fspsx-fal17), and it was able
to produce second best results for all but one instance (tg-spr18).

4 Conclusion

The presented solver did not compete in the competition as the author of this
abstract is the technical lead and principal developer of the UniTime system
and a co-organizer of the competition. Nonetheless, the presented results can
provide a good reference of how the UniTime solver would do on the competition
problems.

While the UniTime system benefits of almost two decades of research and
development, it is good to see that the competitors are able to produce results

246

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

that are in par or better than what UniTime would produce out of the box using
a reasonable runtime.

References

1. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-
to record travel. Journal of Computational Physics 104, 86–92 (1993)

2. Er-rhaimini, K.: Forest growth optimization for solving timetabling problems. In:
ITC 2019: International Timetabling Competition (2020)

3. Gashi, E., Sylejmani, K., Ymeri, A.: Simulated annealing with penalization for
university course timetabling. In: Proceedings of the 13th International Conference
on the Practice and Theory of Automated Timetabling - PATAT 2021. vol. 2, pp.
361–366 (2021)

4. Holm, D.S., Mikkelsen, R.Ø., Sørensen, M., Stidsen, T.J.R.: A graph-based MIP
formulation of the international timetabling competition 2019. Journal of Schedul-
ing (2022), published: 11 March 2022

5. Lemos, A., Monteiro, P.T., Lynce, I.: ITC 2019: University course timetabling with
MaxSAT. In: Proceedings of the 13th International Conference on the Practice and
Theory of Automated Timetabling - PATAT 2021. vol. 1, pp. 105–128 (2020)

6. Müller, T.: UniTime ITC 2019 solver source codes, https://github.com/tomas-
muller/cpsolver-itc2019

7. Müller, T.: University course timetabling: Solver evolution. In: Practice and Theory
of Automated Timetabling 2016 Proceedings. pp. 263—-282 (2016)

8. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and inter-
national timetabling competition 2019. In: Practice and Theory of Automated
Timetabling 2018 Proceedings. pp. 5–31 (2018)

9. Müller, T., Barták, R., Rudová, H.: Conflict-based statistics. In: EU/MEWorkshop
on Design and Evaluation of Advanced Hybrid Meta-Heuristics (2004)

10. Rappos, E., Thiémard, E., Robert, S., Hêche, J.F.: A mixed-integer programming
approach for solving university course timetabling problems. Journal of Scheduling
(2022), published: 15 February 2022

11. Rudová, H., Müller, T., Murray, K.: Complex university course timetabling. Jour-
nal of Scheduling 14(2), 187–207 (2011)

12. UniTime: University timetabling – Comprehensive academic scheduling solutions,
https://www.unitime.org

247

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://github.com/tomas-muller/cpsolver-itc2019
https://github.com/tomas-muller/cpsolver-itc2019
https://www.unitime.org

Towards A Unified Timetabling Model

Jeffrey H. Kingston

School of Information Technologies, The University of Sydney, Australia
jeff@it.usyd.edu.au

http://jeffreykingston.id.au

Abstract. Timetabling has many sub-disciplines: nurse rostering, high
school timetabling, examination timetabling, and so on. Their problems
are usually considered to be separate, but there might be advantages
in unifying them. This paper describes some advantages of unification,
analyses a few design issues, and tentatively suggests some design ideas.
The work is incomplete and is offered as a stimulus to discussion, not as
a formal proposal.

Keywords: Timetabling · Modelling.

1 Introduction

Timetabling has many sub-disciplines: nurse rostering, high school timetabling,
examination timetabling, and so on. Their problems are usually considered to
be separate, but there might be advantages in unifying them.

Timetabling problems may be modelled using events, which are meetings
at which some resources (teachers, rooms, and so on) are occupied together at
some times, and constraints, which are rules that limit the time and resource
assignments, with penalties (hard and soft) to impose if the rules are broken.
This basic common structure is what makes unification possible.

This paper describes some advantages of unification, analyses a few design
issues, and tentatively suggests some design ideas. The work is incomplete and
is offered as a stimulus to discussion, not as a formal proposal.

2 Why unify?

Why unify at all? Isn’t it sufficient if research supervisors keep abreast of devel-
opments in the various sub-disciplines?

There is no pressing need to unify. Good progress is being made without it,
and solvers for the unified problem are unlikely to perform better than solvers
for specific problems. But there are other reasons for unifying, as follows.

Even if solvers do not benefit, other kinds of software might: software for
evaluating solutions like the HSEval web site [6], or solve platform software like
KHE [7]. These two systems currently support high school timetabling and nurse
rostering, but nothing else.

248

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 J. Kingston

Specification work done in one sub-discipline may be valuable in another.
The XESTT nurse rostering model [10] was based on the XHSTT high school
timetabling model [15]. It is argued below that UniTime [20], the leading uni-
versity course timetabling model, would benefit from some XHSTT ideas.

Unification might also shed light on the scientific question of how related the
sub-disciplines are. Student sectioning, for example, as found in universities and
some high schools, seems to be different from everything else [8]. But is that
really so? Such questions have little practical importance, but surely there is
room in our discipline for some intellectual curiosity about them.

Perhaps the strongest reason concerns problems that fall outside, or span
across, the usual categories: hospital problems other than nurse rostering, high
schools whose senior students follow a university-style curriculum, and so on.
These problems are widespread, but they are marginalised at present. A unified
model would help to specify them and bring them into the mainstream.

Our main concern in this paper is with what might be called ‘internal models’:
models concerned with precisely specifying instances, ready for solving. There
are also ‘external models’, which express instances in terms that end users are
familiar with. Conversion between external and internal is a significant issue
that we do not address here; it is in practice aided by software, such as instance
translators and interactive user interfaces.

3 Existing models

The author knows of no recent models that try to cover all or most sub-disciplines
of timetabling. So this paper is inspired by analyses of several sub-disciplines and
their leading models. These are the subject of this section.

Many years ago several authors designed unified timetabling models built on
mathematical foundations, for example [5, 13]. This work proved to be useful
only in showing what not to do. Its excessive generality was avoided in the
following generation of models, many of which are discussed below. Although our
proposal could be described as general because it spans multiple sub-disciplines,
it is actually just as concrete as the models we’ll discuss now.

High school timetabling was very fragmented for many years. Virtually no
data was exchanged, at least at the international level, before the advent of
XHSTT [15]. It improved the situation greatly, opening the way to the Third
International Timetabling Competition [16], and also to the XHSTT-2014 data
set [14], which contains real-world instances from many countries.

To this author, XHSTT’s major choices still seem right ten years later. There
are opportunities for increasing generality and reducing verbosity, but XHSTT’s
four-part structure (times, resources, events, and constraints) has worked well,
and several specific ideas deserve to be passed on to new models: the resource
concept (the old idea [1] that all entities that attend events, including teachers,
rooms, nurses, and so on, are basically the same); the ability to define arbitrary
sets of times and resources and use them in constraints; and the way that cost
calculations are specified transparently and uniformly over all constraints.

249

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Towards A Unified Timetabling Model 3

Examination timetabling was the first sub-discipline to have a widely used
model, the one for the Toronto instances [17, 18]. Its constraints are mainly local
workload limits. It has been criticised for incompleteness (for example, it omits
rooms). The more complete models that have emerged more recently have added
features already found in other models, such as university course timetabling.

Nurse rostering has a solid history of modelling and data sharing. In fact, it
arguably has too many models rather than too few. These models were analysed
during the design of the XESTT nurse rostering format [10], which turned out
to be XHSTT with some enhancements, including two new constraints. Some
recently suggested nurse rostering constraints [4] are expressible in XESTT.

University course timetabling has only one widely cited model: UniTime. Its
creators have investigated the requirements of many universities (at least ten
[12]), and their current model seems to be close to complete. This author has
used the UniTime university course timetabling model, version 2.4 [20] as his
main source for university course timetabling, along with the closely related
International Timetabling Competition 2019 (ITC2019) model [12].

University course timetabling has several challenging features. Its instances
can be very large, with thousands of students, perhaps, each of whom needs an
individual timetable that may vary from week to week. Then there is student
sectioning, which can be more than assigning each student to one section of a
course, since a course may have multiple configurations, each with a variety of
parts (lectures, tutorials, and so on), logically related in various ways. Finally
there are room capacity and walking time constraints.

Generalization would improve UniTime. Introducing the resource concept,
and expressing the common parts of constraints uniformly, are two obvious steps.
Arbitrary sets of times would also help: several of UniTime’s ‘group constraints’
are identical except for the sets of times they apply to.

Sports scheduling needs one event for each fixture, holding two preassigned
resources (the teams) and possibly a third one (the venue). The well-known
travelling tournament problem [3] is precisely specified, but not very general.
The only general model is the RobinX round-robin tournament model [19, 21].
Its creators say that it is based on analyses of many real-world tournaments.

RobinX defines 21 constraints. Some are familiar from other models. For
example, there is a travel distance constraint like the university constraint on
walking time. Others are more familiar than they seem. For example, RobinX
schedules have a particular large-scale structure, such as mirrored round-robin.
These are enforced by constraint SE2, which says that if one event is assigned a
certain time, a corresponding event must be assigned a certain other time. This
is similar to the nurse rostering ‘complete weekends’ constraint, which says that
nurses who work on Saturday or Sunday must work on both days.

However, there are also constraints that do not seem to fit well with other
models. Some RobinX constraints aim to produce a fair schedule: one which
spreads defects evenly among the teams. The XHSTT approach to fairness is
to specify an acceptable maximum number of defects and use a quadratic cost
function to strongly penalize larger deviations. RobinX tries to minimize the

250

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 J. Kingston

maximum, over all pairs of teams, of the difference in value. And some RobinX
constraints, notably CA5 and GA2, seem to be far removed from other models.
Altogether, then, sports scheduling will seriously test a unification project—but
it is important, for that very reason.

4 Issues

This section discusses some issues raised by unification. The discussion often
takes XHSTT as its starting point, but only because it is familiar, precisely
specified, and already supports much of what is needed.

4.1 Times

As mentioned, the various sub-disciplines have a basic similarity that makes
unification possible. But they model time differently. High school timetabling
has periods, which are disjoint time intervals. RobinX is much the same. Nurse
rostering has shifts, which are longer intervals that may overlap. UniTime has
hierarchically defined sets of intervals, such a ‘9-10am Monday, Wednesday, and
Friday, starting in Week 2 of semester’. But still there is a basic similarity: all
models deal with intervals, or finite sets of intervals, of real time.

What seems to be needed is a finite set of times, each representing a finite
set of intervals of real time. Importantly, each event must choose its times from
this finite set: no timetabling problem known to the author allows solutions to
choose arbitrary time intervals. In this way, time is discretized.

There are implementation efficiency issues in calculating overlaps between
times. UniTime addresses these issues by requiring the sets of intervals that
can be times to have a regular hierarchical structure (same time each week,
etc.). A general model should allow a time to represent an arbitrary finite set of
intervals, but in a way that optimizes calculations involving regular structures.
The author has designed a time model of this kind (unpublished). In this model,
the hierarchy (semesters, weeks, days) is arbitrary and is defined within the
instance, and one time is very like a finite set of UniTime times.

4.2 Resources

Resources are entities that attend events: teachers, rooms, nurses, and so on.
XHSTT allows any number of resource types to be defined (Teacher, Room,
and so on), along with any number of resources of each type. Arbitrary sets of
resources, called resource groups, may be defined and used in constraints.

It seems to be necessary to add resource attributes, such as room capacity
and location, since some constraints in models other than high school timetabling
depend on them. XHSTT does not offer resource attributes, except membership
in a resource group, which is equivalent to a Boolean attribute.

Some attributes can be simulated by constraints. For example, a teacher’s
workload limit is an attribute of the teacher, but it is expressed in XHSTT by

251

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Towards A Unified Timetabling Model 5

the upper limit of a limit workload constraint that applies to the teacher. But
even if this could be made to work in all cases, it is unnatural and can become
very verbose. One would not want to add an entire constraint for each pair of
rooms, for example, just to hold the walking time between them.

4.3 Events

An event is a meeting between some resources at some times. The times and
resources may be preassigned, or left to a solver to assign. We think of an event
as a variable which may be assigned a set of times, but which also contains other
variables called tasks, each of which may be assigned a set of resources.

An XHSTT task may be assigned only one resource, but problems other than
high school timetabling need a more flexible design: a task that may be assigned
several resources. Their number may be constrained but need not be fixed. This
is the norm in nurse rostering, for the nurses assigned to a shift, and in university
course timetabling, for the students assigned to a lecture.

There is a big difference between, say, a university course meeting at 9am on
Mondays, Wednesdays, and Fridays, and a high school course meeting at 9am
on Mondays, 11am on Wednesdays, and 3pm on Fridays. The university course
meets at rigidly coupled times, so it could be represented by an event assigned a
single time containing three intervals. The high school course meets at separately
chosen times, so it must be represented by an event assigned three times, each
containing one interval. Care is needed over resource stability: a course must be
able to meet in different rooms at different times, if desired.

4.4 Constraints

Similar constraints from different sub-disciplines should be merged into a single
constraint (possibly generalized) in the unified model, where possible. Several
familiar constraints are easily merged, including constraints that limit events
and tasks to preferred times and resources, and constraints on resources that
prohibit clashes, specify unavailable times, and impose workload limits.

Here is a deeper example. Consider a constraint that limits the length of
sequences of consecutive free days, as is found in nurse rostering. This is based
on a sequence of sets of tasks, one set for each day, containing the tasks that a
given resource is assigned on that day. Maximal sequences of consecutive empty
sets must be identified and the ‘length’ function applied to them.

Now consider a constraint that limits the number of idle times that a resource
may have on one day (times when the resource is not busy, provided it is busy
earlier and later in the day). Again, this is based on a sequence of sets of tasks,
one for each time of the day, and again sequences of empty sets of tasks must
be identified. The function is different (the total length of empty sequences not
at the ends, rather than the length of each sequence taken separately), but the
two constraints have the same underlying structure.

Or consider a nurse rostering constraint requiring at least one senior nurse to
be on duty at 3pm. XESTT models this by a limit resources constraint, which

252

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 J. Kingston

takes some tasks and a set of resources, and imposes lower and upper limits
on the number of assignments to the tasks of resources from the set. In the
example, the tasks are all tasks running at 3pm (possibly from several shifts),
the resources are all senior nurses, and there is a lower limit of 1.

This constraint can also be used to specify that a given university student
should attend one of the laboratory sessions of a given course. The tasks are the
student tasks of the course’s laboratory events, the resources consist of just the
given student, and there are lower and upper limits, both 1.

But however cleverly we find such connections between constraints, a serious
problem remains. Several sub-disciplines have constraints that cannot be fitted
to a general pattern, because they use functions, such as Pythagorean distance,
or the RobinX fairness function, which are essentially arbitrary. When all of
them meet in a unified model, the result might be chaos.

A possible way out is to provide a single, uniform method of selecting the
tasks to which a constraint applies. This would select all tasks from a given set
of tasks S which are assigned resources from a given set of resources R and lie
in events assigned a time from a given set of times T . Then the only arbitrary
aspect would be the function to apply to the selected tasks, which could be
taken from a long fixed list: the number of tasks, their total duration in minutes,
the walking time between their locations, and so on. The author has designed
constraints of this kind (unpublished) which can express all of the constraints
of all of the models described in Section 3. Arbitrarily complex constraint trees

are included; they are needed for student sectioning.

4.5 Reducing verbosity

It seems inevitable that a unified model will ultimately be expressed in XML.
XML-based models are notorious for leading to large, verbose files.

One way to reduce verbosity is to reduce repetition. For example, XESTT
allows a constraint to be defined for one day (or week etc.), and then annotated
with ‘and repeat this every day (or every week)’. This could be generalized to
nested iterators (‘for each resource r in set R, for each time t in set T , ...’).

Verbosity can also be reduced in a more local way. For example, XHSTT
consumes a lot of space saying whether a constraint is hard or soft, what its
weight is, and so on. All this could be replaced by a single string, for example

cost="count:2-5|s20"

which says (reading the bar as ‘or else’), ‘count (the number of tasks) must lie
between 2 and 5, or else a soft cost equal to the distance from these limits times
20 is incurred’.

Lower and upper limits, like 2 and 5, appear in many XHSTT constraints
but not all. It seems to be a good idea to give them to all constraints: it is more
general and more uniform and creates no problems. It was pointed out long ago
that limits on the measures of sets are basic in timetabling [11].

253

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Towards A Unified Timetabling Model 7

5 Conclusion

This paper has offered some ideas for unifying the sub-disciplines of timetabling.
Although the ideas are incomplete, the author hopes that they will stimulate
interest in a field which does not really exist, but perhaps should.

References

1. Appleby, J. S., Blake, D. V., Newman, E. A.: Techniques for producing school
timetables on a computer and their application to other scheduling problems. The
Computer Journal 3, 237–245 (1960)

2. Ceschia, S., Nguyen T. T. D., De Causmaecker, P., Haspeslagh, S., Schaerf, A.:
Second international nurse rostering competition (INRC-II), problem description
and rules. oRR abs/1501.04177 (2015). http://arxiv.org/abs/1501.04177.

3. Easton, K., Nemhauser, G., and Trick, M.: The traveling tournament problem de-
scription and benchmarks. In: Walsh, T. (ed.) Principles and Practice of Constraint
Programming (CP 2001), 580–584, Springer, Berlin, Heidelberg (2001)

4. Gätner, J., Bohle, P., Arlinghaus, A., Schafhauser, W., Krennwallner, T., Widl, M.:
Scheduling matters: some potential requirements for future rostering competitions
from a practitionerâĂŹs view. In: PATAT 2018 (Twelfth international conference
on the Practice and Theory of Automated Timetabling, Vienna, August 2018)

5. Kingston, J. H.: Modeling timetabling problems with STTL, Springer Lecture
Notes in Computer Science 2079 309 (2001)

6. Kingston, J. H.: The HSEval High School Timetable Evaluator,
http://jeffreykingston.id.au/cgi-bin/hseval.cgi (2010)

7. Kingston, J. H.: KHE web site, http://jeffreykingston.id.au/khe (2014)
8. Kingston, J. H.: Integrated student sectioning. In: PATAT 2014 (Tenth interna-

tional conference on the Practice and Theory of Automated Timetabling, York,
UK, August 2014, 489–492 (2014)

9. Kingston, J. H.: XESTT web site, http://jeffreykingston.id.au/xestt (2018)
10. Kingston, J. H.: A unified nurse rostering model based on XHSTT. In: PATAT

2018 (Twelfth international conference on the Practice and Theory of Automated
Timetabling, Vienna, August 2018)

11. Kitagawa F., Ikeda, H.: An existential problem of a weight-controlled subset and
its application to school timetable construction. Discrete Mathematics 72, 195–211
(1988)

12. Müller, T., Rudová, H., and Müllerová, Z.: University course timetabling and In-
ternational Timetabling Competition 2019. In: PATAT 2018 (Twelfth international
conference on the Practice and Theory of Automated Timetabling, Vienna, August
2018)

13. Ozcan, E.: Towards an XML based standard for Timetabling Problems: TTML. In:
Multidisciplinary Scheduling: Theory and Applications, Springer Verlag 163 (24),
May 2005

14. Post, G.: XHSTT web site, http://www.utwente.nl/ctit/hstt/ (2011)
15. Ahmadi, S., Daskalaki, S., Kingston, J. H., Kyngäs, J., Nurmi, C., Post, G., Ranson,

D., Ruizenaar, H.: An XML format for benchmarks in high school timetabling.
Annals of Operations Research 194, 385–397 (2012)

254

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 J. Kingston

16. Post, G., Di Gaspero, L., Kingston, J. H., McCollum, B., Schaerf, A.: The Third
International Timetabling Competition. In: PATAT 2012 (Ninth international con-
ference on the Practice and Theory of Automated Timetabling, Son, Norway, Au-
gust 2012), 479–484 (2012)

17. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search method-
ologies and automated system development for examination timetabling. Journal
of Scheduling 12 55–89 (2009)

18. Qu, R.: Benchmark data sets in exam timetabling,
http://www.cs.nott.ac.uk/˜rxq/data.htm. (2012)

19. RobinX: An XML-driven classification for round-robin sports timetabling,
http://www.sportscheduling.ugent.be/RobinX/index.php (2019). Note: the con-
straints are listed at http://www.sportscheduling.ugent.be/RobinX/threeField.php

20. The Comprehensive University Timetabling System, www.unitime.org, especially
www.unitime.org/uct_dataformat_v24.php (2018)

21. Van Bulck, D., Goossens, D., Schönberger, J., Guajardo, M.: RobinX: an XML-
driven classification for round-robin sports timetabling. In: PATAT 2018 (Twelfth
international conference on the Practice and Theory of Automated Timetabling,
Vienna, August 2018)

255

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Sustainable energy aware industrial production

scheduling

Panayiotis Alefragis1[0000−0002−1313−1750], Konstantinos Plakas2, Ioannis
Karambinis2, Christos Valouxis2, Michael Birbas2, Alexios Birbas2, and

Christos Gogos2

1 Electrical & Computer Engineering Department, University of Peloponnese, Patras,
Greece alefrag@uop.gr

2 Electrical & Computer Engineering Department, University of Patras, Patras,
Greece

{plakas,lkarabinis,mbirbas,birbas}@ece.upatras.gr, cvalouxis@upatras.gr
3 Informatics & Telecommunications Department, University of Ioannina, Arta,

Greece
cgogos@uoi.gr

Abstract. This paper describes a software component that was devel-
oped to solve the energy aware production scheduling problem. Firstly,
day-ahead energy prices and energy production mix are forecast us-
ing publicly available data. Secondly, a Constraint Programming (CP)
scheduling model was developed in order to minimize production cost
and CO2 emissions. The paper presents a hybrid methodology to fore-
cast day ahead energy prices, a simpli�ed CP model and preliminary
results from the application of energy aware scheduling algorithms to a
3D additive printing industrial production use case.

Keywords: production scheduling · Constraint Programming · energy
price forecasting

1 Introduction

Emerging industrial sustainability domain dictate new production e�ciency in-
terventions since manufacturing plants are facing increasing pressure to reduce
their carbon footprint, driven by concerns related to energy costs and climate
changes. To create an energy sustainable environment in the industrial produc-
tion ecosystem multiple aspects should be taken into account and a hierarchical
decision-making process should be implemented. Supply chain, production plan-
ning and scheduling and maintenance planning inter-wind with �oor-shop energy
monitoring, gas emissions tari�s tracking and energy market prices to create a
sustainable manufacturing system. In this paper we focus on the production
planning and scheduling aspect where day-ahead energy prices are forecast and
used.

256

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 P. Alefragis et al.

2 Related work

Customer Environmental Awareness (CEA) urge energy-intensive manufactur-
ers into creating an energy saving strategy. In [13], several mathematical models
have been developed to support enterprises that are facing choices of self-saving,
shared savings and guaranteed savings to determine the optimal strategies of
improving energy e�ciency when CEA is considered. At production level, pro-
duction scheduling is critical in decision making process while been computation-
ally demanding and sensitive on data availability and credibility. Many decision
support approaches has been proposed. During the FP7 ARTISAN project an
energy-aware hierarchical optimization DSS that used an Iterated Local Search
with application to the textile industry was implemented [14]. A rescheduling
method is proposed to tackle the problem of reducing energy consumption when
resolving dynamic �exible job-shop scheduling problem under machine break-
downs [11]. In [4], a hybrid mathematical model and an NGSA-II multi-objective
genetic algorithm is used to address integrated production scheduling, mainte-
nance planning and energy controlling for sustainable manufacturing systems. A
recent trend is the collaboration between manufacturing enterprises and energy
providers. In [12], a multi-agent architecture aimed at elaborating predictive and
reactive energy-e�cient scheduling through collaboration between cyber physi-
cal production and energy systems is proposed. A framework of data-driven sus-
tainable intelligent/smart manufacturing based on demand response for energy-
intensive industries is proposed in [8] where a framework is implemented to
support multi-level demand response models that address machine, shop-�oor
and factory levels. A framework to allow collaboration between energy providers
and manufacturing companies is proposed in [10]. Energy price forecasts are
signaled to the manufacturers and an adaptive production scheduling approach
considering the power usage of manufacturers in response to time-varying energy
prices is presented.

3 Day Ahead Energy Price Forecasting

Electricity energy prices and source mix varies based on the time of the day
and the period of the year. Synchronizing energy hungry production tasks with
�green� energy availability is of outmost importance for sustainable production.
To achieve sustainability, the variability of the energy production should be
incorporated in the production scheduling process. Fig. 1 presents a typical intra-
day electricity production and demand variability [15].

To implement a forecast on the day ahead energy cost data from multiple
sources have to be acquired. In addition, for every supported energy market, a
di�erent forecast model should be created as prices per market usually follow
di�erent patterns. The implemented algorithms use as input the following data:

1. Electric energy production data
(a) Day ahead historical predictions
(b) Realized historical production

257

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Sustainable energy aware industrial production scheduling 3

Fig. 1. Typical Electricity Production variability [15]

(c) Connected energy markets predictions if available
(d) Published energy production estimations

2. Electric energy demand data

(a) Day ahead historical demand predictions
(b) Realized historical consumption
(c) Up and Down Reserves
(d) Connected energy markets predictions if available
(e) Published energy demand by energy market operator

3. System Marginal Prices per energy market supported

(a) Day ahead historical predictions
(b) Realized historical SMP
(c) Connected energy markets SMP if available

4. Weather data

(a) Temperature, wind speed, solar radiation etc.
(b) Outside temperature, relative humidity, etc.

5. Miscellaneous data

(a) Holidays, working days, weekdays, year period

All input was sourced from publicly available data sources. We performed a
feature selection analysis [3] to determine the most important features from the
available data sets. Fig. 2 present the features importance for the prediction of
the energy prices. It can be observed that due to the intense variability in the
behaviour of the energy market players the most important feature component is
the mean price of the last 7 days, which was not the most signi�cant component
if the same analysis was performed some years ago when the energy market
was more stable . Multiple forecasting algorithms were used to create a hybrid
ensemble prediction model that exhibits a more robust performance compared
to individual forecasting algorithms. The individual forecasting algorithms that
were used are regression methods (OLS, Ridge, Lasso) [2], Tree based methods
(Random Forest) [9] and RNN(LSTM) [7]. Fig. 3 shows a visual representation
of the predicted System Marginal Price (SMP) for the day-ahead Greek Energy
Market versus the actual realized values for the Greek energy market.

258

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 P. Alefragis et al.

4 Energy-aware production scheduling problem

The Production Scheduling Component is part of the ENERMAN Intelligent
Decision Support System and implements a number of energy aware produc-
tion mapping and scheduling algorithms. The component provides as output the
assignment and scheduling of jobs to machines, machine operational mode per
task and produces the estimated total energy consumption, energy cost and the
estimated total CO2 emissions for the produced solution.

The Production Scheduling Component expects in the �nal version the fol-
lowing inputs:

Fig. 2. Features Importance Analysis

Fig. 3. Hybrid Energy Market Price Forecasting

259

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Sustainable energy aware industrial production scheduling 5

1. Task related data

(a) Energy consumption per task for each compatible machine
(b) Execution time for each compatible machine and operation mode
(c) If it is an obligatory or optional job
(d) Job execution �exibility (availability, deadline, time windows)

2. Machine related data

(a) Energy consumption function at di�erent operational states
(b) Machine availability (planned maintenance, operating personnel etc)
(c) Machine pre-allocated capacity

3. Production description data

(a) Feasibility of schedulable time periods (Available working days & hours)
(b) Time horizon and related penalties if not a schedule meets makespan

requirements
(c) Dependencies between tasks
(d) Intermediate products storage availability and feasible time windows
(e) Transfer time and energy cost to move intermediate products between

machines / sites

4. Energy prices per hour for the relative energy markets
5. Energy production mix per hour for the relative energy markets

Some of the implemented heuristics and ILP algorithms are based on ideas
presented in [6], [1] and [5] but are outside the scope of the current paper. In the
current paper, a reduced version of a Constraint Programming model to solve
the problem is presented. The CP model only supports one operational mode
per machine and 2b, 3b-3e inputs are ignored. The model will be extended in
the future to support the full problem de�nition.

Let T = {1, 2, . . . , t} be a number of independent non-preemptive tasks and
M = {1, 2, . . . ,m} be a set of heterogeneous machines. The goal is to allocate
and schedule all tasks to the machines while minimizing the total cost and/or
the CO2 emissions. Each task can only be executed on a subset Mt ⊆ M of the
available machines and due to the heterogeneity of the machines, the execution
time Dij and consumed energy Cij of task ti on machine mj are not the same.
Let Tm ⊆ T be the tasks that can be executed on machine m. Let the variables
si and ei denote the start and end time of task ti, while the variable xij is a
binary decision variable that equals to 1 when task ti is assigned to machine
mj , otherwise xij = 0. Using si, ei, Dij and xij an optional �xed size interval
variable Iij is introduced for each ti ∈ Tm and mj ∈ Mt. In addition, each task
ti ∈ T is associated with a resource envelope type rl ∈ R and for each type
pair (rl, rn) ∈ R di�erent energy consumption Hln and execution time Gln is
de�ned to represent the setup process between tasks. Finally, for each machine
m ∈ M and for every pair (ti, tk) ∈ Tm a pair of Boolean variables pmik, qmik is
introduced that help us to identify that task ti precedes tk. The above problem
can be formulated as a CP model and optimal solution for realistic problems can
be achieved in minutes. A simpli�ed version of the scheduling problem model is
as follows:

260

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 P. Alefragis et al.

∀ ti ∈ T,
∑

m∈Mt

xim = 1 (1)

∀ m ∈ M,∀ ti, tk ∈ Tm, i ̸= k, pmik = 1 ↔ xim + xkm = 2 (2)

∀ m ∈ M,∀ ti, tk ∈ Tm, i ̸= k, pmik = 0 ↔ xim + xkm < 2 (3)

∀ m ∈ M,∀ ti, tk ∈ Tm, i ̸= k, qmik = 1 ↔ si ≤ sk (4)

∀ m ∈ M,∀ ti, tk ∈ Tm, i ̸= k, qmik = 0 ↔ si ≥ sk (5)

∀ m ∈ M,∀ ti, tk ∈ T, i ̸= k, pmik = 1, qmik = 1 ↔ si+Dim+Grirk ≤ sk (6)

∀m ∈ M, ∀ ti, tk ∈ T, i ̸= k, pmik = 1, qmik = 0 ↔ sk+Dkm+Grkri ≤ si (7)

Equation (1) ensures that each task is assigned to exactly one machine. A
non-overlapped in time execution sequence between two tasks ti, tk is imposed
by (6) and (7), when they are assigned to the same machine. The full version
of the model includes additional interval variables that act like pre-scheduled
tasks in the model and prohibit the real tasks to be scheduled during a machine
unavailability periods, adaptation to constraints (6) and (7) are required to take
into account these pre-scheduled tasks.

Multiple objectives are supported. For example, if we want to minimize the
total energy consumption the objective is set to

min
∑

i∈T,j∈M

xij ∗ Cij (8)

If we want to minimize total CO2 emissions or the total energy cost, an
extension to the above model is required. Given a time horizon L where for each
time period [la, lb] we have forecast the cost of energy Sab and the renewable
energy percentage Pab in the available energy, for each machine mj ∈ M and for
every task ti ∈ Tm an extra array of variables Eij is introduced that for each
point in time in the time horizon calculates the cost or the CO2 emissions. For
example, if we want to minimize the total energy cost the objective function can
be written

min
∑

i∈T,j∈Mt

xij ∗ Eij [si] (9)

Given the solution of the optimization model is part of a decision process
multiple objectives can be combined using weights introduced by the user and
alternative solutions can be generated.

261

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Sustainable energy aware industrial production scheduling 7

Figure 4 presents optimal solutions for the two aforementioned objectives
for a small example, where grey areas are prohibited scheduling periods for
each machine, blue tasks have A0 resource envelope while orange tasks have A1
resource envelope. To demonstrate the e�ect of energy prices we used a linear
decreasing cost per minute. It can be observed in the right Gantt chart that the
tasks are scheduled as right as possible while still satisfying where lower energy
prices are realized.

Fig. 4. Solutions using di�erent objective functions example.

5 Use case description and preliminary results and

conclusions

The Enerman project has multiple use cases that must be supported by the pro-
duction scheduling algorithms. Problem data originate from industrial partners
that have energy demanding production processes like automotive manufactur-
ing, semiconductor production, steel and aluminum production, food processing
and 3D additive components manufacturing. Preliminary results originate from
a 3D metallic component printing process were machines with di�erent laser
technologies and variable performance capabilities are present in the production
environment. Each task is independent but the setup time between tasks on the
same machine depends on the powdered material used to manufacture the pre-
vious component. If the same material is used the setup time can be reduced
but the setup time never reaches 0 as some cleaning between jobs is required. In
addition, each machine has di�erent operational points for the laser that allow
more energy e�cient production to be realized by prolonging the production
time. Preliminary results that use historic production schedules and forecast en-
ergy prices for the speci�c energy market that the company is operating show
that if the tasks have used the introduced optimization model to produce an
alternative production schedule that aligned the more energy demanding tasks

262

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 P. Alefragis et al.

with low cost energy periods, a signi�cant cost reduction could be achieved. To
assess the e�ect of the forecast quality, we performed a lower bound optimal
scheduling were the realized SMP values were used instead of using the forecast
values. It was observed that using the forecast energy prices a reduction of about
7% in the production cost was achieved compared to a reduction of about 9%
that was achieved if we have predicted exactly the realized SMP prices, while in
both case a model optimal solution has been found.

6 Conclusions and future work

This short paper presents preliminary work over the problem of minimizing the
cost of production scheduling in an industry setting. Industries that are heav-
ily depended on the energy cost for their operation need an automated way of
avoiding suboptimal schedules. Future prices are di�cult to predict. Thus, it
is very important to generate high quality forecasts to be used as input to the
scheduling algorithm. In this context, we propose a CP model that is able to
produce good schedules taking into account the forecast electricity prices. The
CP optimization model will be extended to support dependencies between tasks,
intermediate product storage capacity constraints, time windows for intermedi-
ate product storage and time and energy cost for the transfer of the intermediate
product between machines.

Acknowledgements The work in this paper is partially �nanced by H2020-
Enerman project, European Union's Horizon 2020 research and innovation pro-
gramme (grant agreement No 958478)

References

1. Alefragis, P., Gogos, C., Valouxis, C., Goulas, G., Voros, N., Housos, E.: Assigning
and scheduling hierarchical task graphs to heterogeneous resources. Proceedings of
the 10th Practice and Theory of Automated Timetabling (PATAT) (2014)

2. Antonio, G.P., Maria, P.O., Sanchez-Monedero, J., et al.: Ordinal regression meth-
ods: Survey and experimental study. IEEE Transactions on Knowledge & Data
Engineering 28(1), 127�146 (2016)

3. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Computers
& Electrical Engineering 40(1), 16�28 (2014)

4. Cui, W., Sun, H., Xia, B.: Integrating production scheduling, maintenance planning
and energy controlling for the sustainable manufacturing systems under tou tari�.
Journal of the Operational Research Society 71(11), 1760�1779 (2020)

5. Emeretlis, A., Theodoridis, G., Alefragis, P., Voros, N.: Static mapping of ap-
plications on heterogeneous multi-core platforms combining logic-based benders
decomposition with integer linear programming. ACM Transactions on Design Au-
tomation of Electronic Systems (TODAES) 23(2), 1�24 (2017)

6. Gogos, C., Valouxis, C., Alefragis, P., Goulas, G., Voros, N., Housos, E.: Scheduling
independent tasks on heterogeneous processors using heuristics and column pricing.
Future Generation Computer Systems 60, 48�66 (2016)

263

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://enerman-h2020.eu/
https://enerman-h2020.eu/

Sustainable energy aware industrial production scheduling 9

7. Li, W., Becker, D.M.: Day-ahead electricity price prediction applying hybrid mod-
els of lstm-based deep learning methods and feature selection algorithms under
consideration of market coupling. Energy 237, 121543 (2021)

8. Ma, S., Zhang, Y., Liu, Y., Yang, H., Lv, J., Ren, S.: Data-driven sustainable in-
telligent manufacturing based on demand response for energy-intensive industries.
Journal of Cleaner Production 274, 123155 (2020)

9. Mei, J., He, D., Harley, R., Habetler, T., Qu, G.: A random forest method for real-
time price forecasting in new york electricity market. In: 2014 IEEE PES General
Meeting| Conference & Exposition. pp. 1�5. IEEE (2014)

10. Mourtzis, D., Boli, N., Xanthakis, E., Alexopoulos, K.: Energy trade market e�ect
on production scheduling: an industrial product-service system (ipss) approach.
International Journal of Computer Integrated Manufacturing 34(1), 76�94 (2021)

11. Nouiri, M., Bekrar, A., Trentesaux, D.: Towards energy e�cient scheduling and
rescheduling for dynamic �exible job shop problem. IFAC-PapersOnLine 51(11),
1275�1280 (2018)

12. Nouiri, M., Trentesaux, D., Bekrar, A.: Towards energy e�cient scheduling of man-
ufacturing systems through collaboration between cyber physical production and
energy systems. Energies 12(23), 4448 (2019)

13. Ouyang, J., Fu, J.: Optimal strategies of improving energy e�ciency for an energy-
intensive manufacturer considering consumer environmental awareness. Interna-
tional Journal of Production Research 58(4), 1017�1033 (2020)

14. Plitsos, S., Repoussis, P.P., Mourtos, I., Tarantilis, C.D.: Energy-aware decision
support for production scheduling. Decision Support Systems 93, 88�97 (2017)

15. Satchwell, A., Cappers, P., Deason, J., Forrester, S., Frick, N.M., Gerke, B.F.,
Piette, M.A.: A conceptual framework to describe energy e�ciency and demand
response interactions. Tech. rep. (07 2020)

264

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Noname manuscript No.
(will be inserted by the editor)

On the call intake process in service planning

Gerhard Post · Stefan Mijsters

Received: date / Accepted: date

Abstract The call intake process for field service assigns a time window to
a client’s request for a service. What time window is chosen has influence on
the quality of the total planning. The quality is measured by the number of
planned requests, the lateness of planned requests and the total travel time.

We constructed challenging datasets, for 25 engineers and an average of
200 tasks per day. We use simulations on these datasets to study the effect
of different strategies. Aspects that turn out to be beneficial are: ignore the
severity of lateness, give preference to empty shifts, cluster tasks in a shift,
and use intermediate optimization.

Keywords Vehicle routing, field service, clustering, call intake, scheduling

1 Introduction

There is a large body of literature on Vehicle Routing Problems (VRPs) with
different types of settings and constraints. For a survey on rich VRPs, see
for example [Caceres-Cruz et al (2014)]. Here we are interested in the area
usually called ‘field service’, where in addition to the usual set-up the shifts
(working hours) of the (field) engineers are fixed beforehand. Having fixed
employee shifts might seem not very relevant, but it is: the main objective in
VRP usually is to minimize the number of vehicles first, and secondary the
total travel distance. In the case we consider here, this ‘number of vehicles’ is
fixed: each shift of an employee is open for service tasks, and there is no gain

Gerhard Post
PCA, Klipperweg 19, 8102 HR Raalte, The Netherlands
and
Department of Applied Mathematics, University of Twente, The Netherlands
E-mail: g.f.post@utwente.nl

Stefan Mijsters
PCA, Klipperweg 19, 8102 HR Raalte, The Netherlands

265

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 Gerhard Post, Stefan Mijsters

in leaving a shift empty. On the contrary, spreading the work can be one of
the objectives.

More in particular, we consider the situation in which a company (or ‘ser-
vice provider’) provides services to its clients upon request. Such a request
leads to a task that is executed by an engineer of the company at the address
of the client. A task can be a small repair (in case the company is a housing
corporation or an installation company), a damage assessment (in case of an
insurance company), or some other service. We assume in our datasets that
the tasks require between 30 minutes and 60 minutes of service time. Since
tasks are executed at the addresses of the clients, the engineer has a daily shift,
usually starting at the home address of the engineer, visiting approximately
10 clients, and driving to the end destination, which is either the home or the
company address1.

2 The routing phase

For the moment we assume that somehow all tasks are defined. In particular
a task can require a skill, has an (expected) service time, and a time window
defines the earliest start time and the latest start time. Usually, time windows
originate from the so-called ‘block times’ that the company applies to all ser-
vice requests. These block times usually are two to four hours long. If all tasks
have time windows within one day, the routing problem essentially consists
of daily problems. In particular, tomorrow is relevant; we need to finalize the
schedules and inform the field engineers on the routes.

Quite similar to the Maintenance Personnel Scheduling Problem (MPSP)
in [Misir et al (2015)], the tasks assigned to a shift of the engineer must obey
the following constraints:

– Pre-assigned tasks and other appointments should be scheduled as given.
– The field engineer must be skilled for the task.
– A task should start within its time window.
– The expected travel times between the scheduled tasks should be respected.
– The start address and the finish address of a shift can be different; traveling

from the start address to the first task, and traveling from the last task to
the finish address can sometimes partly be done in private time.

– If the shift has a break, the duration of the task or travel is extended with
the duration of the break. In particular, a task or travel cannot start during
the break, but can start before and finish after the break.

– If a task is assigned to a region, the engineer should work in this region.
This region can be a geographical region, but also an administrative region.
An engineer can be assigned to different regions during the week and even
during the day. Multiple regions at the same time are possible.

1 When the routing aspect of a shift with tasks is being discussed, we might use the word
route.

266

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 3

– A task can have a pre-assigned engineer, which must be respected, or a
preferred engineer. Assigning a preferred engineer takes precedence over
minimizing the travel time.

Since the shifts are fixed, the personnel rostering constraints mentioned in
[Misir et al (2015)] are not relevant. The main objective is first: to assign as
many tasks as possible, second: take preferences into account, and third: min-
imize the total travel time. Note that minimizing the travel time reduces the
direct costs, but also might create space for an extra task in a shift. This is
not relevant anymore when we optimize the planning for tomorrow, but for
later days it might create space to assign additional tasks.

3 The call intake process

In the previous section we discussed the routing problem to be solved. As
said there, the routing problem usually split in daily problems, because of the
time windows that are attached to the requests. The assignment of the time
windows is done in the phase we call the ‘call intake process’. This process for
the service planning differs quite of lot from home deliveries, as discussed in
[Strauss et al (2021)] and [Visser (2019)]:

– Often home deliveries are for today or tomorrow. In service planning the
time scale usually is in weeks.

– In home deliveries the requests do not require skills, and can be assigned
to all resources.

– In home deliveries the service durations are short, maybe just 2 minutes.
Hence a shift can contain over 100 tasks in an urban region.

– In home deliveries the client orders via internet, while in service planning
the majority is done via a planner or the customer contact center.

– In service planning the client usually does not pay for the service, hence
giving an incentive to efficient time windows is harder.

Summarizing, we might have more influence on the time window for a request,
and, moreover, it might be important to use this to get a favorable time window
for a request. We can give the company’s planner insight in the differences
in travel times for different time windows; if in a certain week there are no
convenient time windows for both, the client and the service provider, the
planner might switch to the next week, not mentioning (or even not having
available) unfavorable time windows.

In this call intake process, there is a balance between using low travel
times, and filling the shifts of service engineers for the upcoming days. How
eager should we be filling these shifts? If a shift for tomorrow can accommodate
a task, shouldn’t we simply take it, to avoid that a part of the capacity of the
shift is left unused?

Note that the call intake process can be viewed as the construction phase of
a routing problem. Methods that improve this phase can be helpful in the call
intake process. On the other hand, we know that the result of the construction

267

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 Gerhard Post, Stefan Mijsters

phase is not directly related to the result after optimization. Hence, we want
to study these differences as well.

4 Explanatory example

4.1 Set-up

We discuss a small 1-dimension example, to explain the way the call intake
process works, and to show the effect of clustering, which we explain in detail
in Section 7. The example can be analyzed completely.

The set-up is the following:

– There is one engineer at position 0. All incoming tasks can be executed by
this engineer.

– Every day two tasks appear, with equal chance for the positions -1 or 1.
The deadline is three days (tomorrow and the two days after that).

– The engineer can handle two tasks per day, which are either both at posi-
tion 1 (travel time is 2 units), or both or position -1 (travel time again 2
units) or one at position -1, and 1 at position 1 (travel time 4 units).

– The time windows coincide with the days.
– The planning is two tasks behind. That means the following. Today we

do the planning for tomorrow and the two days after tomorrow. However,
there are already two tasks planned for tomorrow and the day after. Since
postponing tasks has no benefits, we have 5 (reasonable) ‘states’:
1. State (1, 1)� (., .): tomorrow the engineer has two tasks at position 1,

nothing planned yet for the day after.
2. State (−1,−1)� (., .): tomorrow the engineer has two tasks at position

-1, nothing planned yet for the day after.
3. State (1,−1)� (., .): tomorrow the engineer has one task at position 1

and one at position -1, nothing planned yet for the day after.
4. State (1, .) � (−1, .): tomorrow the engineer has a task at position 1,

and the day after at position -1.
5. State (−1, .) � (1, .): tomorrow the engineer has a task at position -1,

and the day after at position 1.

4.2 Strategy: first possible day

Starting from the 5 states above, we apply the strategy ‘first possible day’.
That means that any task that appears is planned at the first possible day i.e.
the first day with at most one planned task. Note that it not allowed to look
ahead! From a meta point of view, we know that 2 tasks per day will appear
(since that is our set-up), but for the simulation we do not know this. For
example, if we are in State 4, and a task at position -1 appears as first task,
we plan it for tomorrow, even though the next task might be at position 1.

268

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 5

With this strategy we have the following transition matrix between the states;
matrix element (i, j) is the probability that State i moves to State j on the
next day.

0.25 0.25 0.5 0 0
0.25 0.25 0.5 0 0
0.25 0.25 0.5 0 0
0 0.5 0.5 0 0
0.5 0 0.5 0 0

.

We see that in the steady state the States 4 and 5 disappear, because they
do not satisfy the ‘first possible day’ strategy. Moreover, we can calculate that
in the steady state, the States 1 and 2 have a probability 1

4 , and State 3 has
probability 1

2 . From this we obtain the expected daily travel time:

1

4
∗ 2 +

1

4
∗ 2 +

1

2
∗ 4 = 3.

4.3 Strategy: cluster

In the ‘first possible day’ strategy, we do not use the freedom to postpone a
task. Doing this is an example of clustering. Our strategy for the next appear-
ing task at position x is the following:

– If tomorrow has only one task planned, we plan it tomorrow.
– If tomorrow is full, plan it on a day we already visit position x.
– If after tomorrow we don’t visit x yet, plan it on the first empty day.

Again we can calculate the transition matrix, which is now
0.25 0.25 0 0.25 0.25
0.25 0.25 0 0.25 0.25
0.25 0.25 0 0.25 0.25
0 0.5 0 0 0.5
0.5 0 0 0.5 0

.

In this case, State 3 disappears from the steady state, and the other states
all have probability 1

4 . Analyzing the expected daily travel time for this asymp-
totic situation yields:

1

4
∗ 2 +

1

4
∗ 2 + (

1

8
∗ 2 +

1

8
∗ 4) + (

1

8
∗ 2 +

1

8
∗ 4) = 2.5

Hence clustering yields a saving of 16.7% in travel time, while still planning
all tasks within the deadline.

269

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 Gerhard Post, Stefan Mijsters

5 Simulation set-up

The example above is exceptional in the sense that it can be completely an-
alyzed. It the situation we will describe below, this is impossible due to the
huge number of tasks and the complicated 2-dimensional geometry, which is
common in a real life. To study the effect of different strategies we will run
simulations.

To have a realistic situation, we created five datasets for a company with 25
engineers. We generated data for 270 (working) days, with an average of 200
requests per day. These requests are turned into tasks during the call intake
process. This means that a time window is assigned to it, and temporarily an
engineer to assure feasibility of the schedule. The time and engineer of the
assignment can be changed, as long as the time window is respected: the task
should start in its associated time window. We assume an online process, by
which we mean that the requests have to be processed in the order they ap-
pear, without knowledge of the requests later in the list. In more detail, the
data is created in the following way.

5.1 Locations and travel times

All locations are picked randomly from a 100 × 100 grid, all grid points with
equal chance 1

10,000 . The travel time is calculated by the Euclidean distance at
a speed of 1 grid point per minute. The travel time is rounded to the nearest
second. For example traveling from (24, 67) to (44, 50) gives a grid distance of√

202 + 172 = 43.462... minutes, which gives as travel time 43 minutes and 28
seconds, or 2608 seconds.

5.2 Engineers

There are 25 engineers, generated randomly as described below.

– The shift starts and ends at the home location of the engineer. The home
location is generated randomly from the grid.

– All shifts are 8 hours long, no break is considered. Private travel time is
not allowed, i.e. the work starts at the shift’s start time by traveling to the
first task, and ends by traveling back home, where the arrival should be at
or before the shift’s end time.

– There are five skills, and the employees have one to four skills. The fre-
quencies of the skills among the engineers are different; they are 10, 14, 15,
18, and 21, so in total there are 78 resource skills (an average of 3.12 skill
per engineer).

5.3 Requests

The requests have the following properties.

270

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 7

– Each request has a intake day, the day on which it becomes available.
On this day it must be planned to one of the following days (not on the
intake day itself). As explained above, we consider the online situation, by
which we mean this the request also has a sequence number, and requests
should be assigned following the order by the sequence numbers, without
knowledge of upcoming requests.

– Each request has a preferred deadline which lies between 5 and 10 days.
This reflects the situation that a company has internal or external agree-
ments on how many requests should be planned within the preferred dead-
line, for example 80% of the requests. If the preferred deadline is 7 days
and the intake day is 102, then preferably the task should be scheduled
not later than day 109. However, it is allowed to pass the preferred dead-
line by 50%, so by 3 days in this case. It is allowed, but not preferred, to
schedule the task on day 110, 111, or 112. If this is not done, the request
is registered as unplanned, and disappears from our simulation. From the
company’s point of view, an external resource is required to handle this
request.

– Each request has a duration (in minutes), the service time needed for the
task. The durations are taken between 30 minutes and 60 minutes, with
an average of 45 minutes. The distribution is not taken uniformly, but
triangular in the following way. Assume we have N different values. The
extremes (here 30 and 60) have chance m = 1

N2 and the middle value (here
45) has chance M = 2

N + m. The chance for the other values is found
by linear interpolation. The obtained value is rounded to the nearest 5
minutes, so that requests have durations of 30, 35, 40, . . . , or 60 minutes.

– Each request has a location, which is taken randomly from the grid.
– Each request requires a skill, which is chosen uniformly from the 5 available

skills.
– Per day we generate between 180 and 220 requests. These are chosen from

the triangular distribution, which is generated in the same way as for the
request durations.

5.4 Time windows

We turn a request to a task by assigning a time window to it. This time window
prescribes the start time of a task. In our simulations we use time windows of
2 hours. Since a shift is 8 hours long, it intersects with 4 time windows.

5.5 Validation

The data we generate represents more or less one year. We use the first 50
days as warm-up period. Our validation is over the next 200 days. We also
leave out the last 20 days; since we can plan at most 15 days in advance, the
end of period effects are not yet visible in the validation period. The results

271

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

8 Gerhard Post, Stefan Mijsters

in validation period are uniform during the whole period; hence the warm-
up period is sufficient. What we consider are the requests with intake day in
the validation period. In particular we are interested in (the percentage of)
unplanned requests, and (the percentage of) the requests that were planned
outside the preferred deadline.

5.6 Strategies

We investigate the effect of different strategies, and the use of optimization.
For the strategies we consider following ones:

– First possible day. We assign the request to the first possible day. If on
the first possible day there are several possible shifts, we assign it to the
shift and position in which the extra travel time is the lowest. The other
stops remain in the same order. While inserting we have to consider the
time window we try to assign to the request, and the time windows of the
already assigned tasks in the shift.

– Min travel time. If there are several options for a request, we assign it
to the shift in which the extra travel time is the lowest, in the same way
as in First possible day. In case of ties we use the earliest possibility.

– Add at end. We only assign a task at the end of a route. Among all
possibilities we choose the one with lowest travel time from the previous
stop. The travel time back to home is not considered. In case of ties, we
use the earliest possibility.

All strategies first consider shifts within the preferred deadline. If in this period
an option is found, it is always used (though from a higher level, it might be
inefficient).

If no option within the preferred deadline is found, we consider the 50%
extension interval. It is not prescribed to minimize lateness, but again, if there
are options, we will choose one of them.

6 Results for the basic strategies

In this section we present the results of the simulations we executed. We start
with the basic strategies, as described in previous subsection. Based on the
results we try to improve the simulations by different parameters.

We present the results for of all five datasets in one table. The results of
the different datasets are very similar, so there is no added value in presenting
five different tables. Per day there are on average 200 tasks, that means that
each dataset has around 40,000 tasks to validate, in total there are 200,316
tasks. We present the following performance indicators:

– Unplanned. The percentage of the tasks that could not be planned in the
50% extended deadline interval.

272

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 9

– Lates. The percentage of tasks that was planned too late, i.e. not within
the preferred deadline. The percentage is taken relative to all planned tasks.

– Avg late. The average number of days late, among all late tasks.
– Travel. The average travel time in minutes per task, calculated as follows:

the total travel time on the validation days divided by the total number of
tasks scheduled on the validation days; so it represents the travel time per
executed task.

6.1 If late then minimize lateness

Here, we follow the basic strategy, but we try to minimize lateness. That
means: if we cannot find an option within the preferred deadline, then first we
consider the options with 1 day late, and if this returns no result, we look at
2 days late, etcetera. This leads to the following results.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 15.16 82.21 2.03 23.6
Min travel time 15.11 82.18 2.03 23.5

Add at end 14.07 81.60 2.02 23.0

Results with increasing penalty on late days

We see that the ‘First possible day’ strategy and the ‘Min travel time’ per-
form very similar; the simplest strategy ‘Add at end’ performs better in all
respects. Note that the number of unplanned tasks is high, and the number of
tasks that is planned within the preferred deadline is very low. That probably
explains that the first two strategies are very similar. That the third strategy
performs better is at least partly due to being optimistic about extra travel
time, especially if the shift is more or less empty. Before turning to this point,
we want to investigate the effect of minimizing lateness. If the planning is so
tight, it seems reasonable not to care per task about minimizing lateness. We
simply want to avoid unnecessary travel time. That is the subject of the next
subsection.

6.2 If late then don’t care how much

As always, our strategies first try to assign within the preferred deadline, but
if no option is found there, we consider all options in the allowed days late,
and pick the best one. This leads to the table below.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 15.16 82.21 2.03 23.6
Min travel time 13.05 79.57 2.50 22.7

Add at end 10.24 76.63 2.85 20.1

Results with equal penalty on all late days

273

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

10 Gerhard Post, Stefan Mijsters

First we note that for the ‘First possible day’ strategy nothing changes (it
still prefers to minimize lateness). The other 2 strategies clearly benefit from
this relaxation: all performance indicators drop significantly except the average
days late. Still the ‘Add at end’ strategy is clearly better than the others. Based
on this experience we will not penalize extra lateness in further experiments.
For instances in which it is hard to assign all tasks, this is probably always a
good idea. Let’s see what making it easier to start in an empty shift will do.

6.3 In an empty shift ignore the travel time back to home

In construction algorithms it is well known that weighing different travels in
different ways can make a difference [Solomon (1987)]. Since we are still in the
range of construction, we expect to see this here as well. So we calculate the
extra travel time in empty shifts as only the time traveling to the task, and
not the way back. The results are presented in the table below.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 13.69 81.11 2.01 22.5
Min travel time 11.14 77.62 2.65 20.4

Add at end 10.24 76.63 2.85 20.1

Results with travel time reduction for empty shifts

For the strategy ‘Add at end’ there is no difference (of course). The other two
strategies clearly benefit from this change. The ‘Min travel time’ strategy is
closing in on the ‘Add at end’ strategy. Before discussing a clustering strategy,
we do a final check if preferring the first days has some influence on the results.
We will keep the empty shift travel time reduction.

6.4 Give travel time reduction to early days

In less challenging planning problems, it might be a good idea to fill the gaps
in shifts of tomorrow, and maybe one or two days after that. However, in our
cases the shifts will be full anyway. Nevertheless, we do a run with reductions
on the travel times: 10 minutes for tomorrow, 6 minutes for the day after, and
2 minutes for the day after that.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 13.69 81.11 2.01 22.5
Min travel time 11.19 77.68 2.66 20.5

Add at end 10.27 76.57 2.85 20.1

Results with empty shift reduction and reduction for early days

As expected the results are almost the same as in Subsection 6.3. For the
‘First possible day’ strategy there is no difference (of course). The results for
the other two strategies are slightly worse, what could be expected as the ‘First
possible day’ strategy is worse; the planning is so tight that it is a waste of
capacity to assign earlier at the expense of higher travel time.

274

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 11

7 Dynamic clustering

Before turning to results with optimization, we want to discuss ‘dynamic clus-
tering’. In VRP clustering is well-known; an early reference is [Beasley (1983)].
In particular in periodic VRP, see [Campbell & Wilson (2014)], clustering
techniques are widely used.

Although the problem here is not periodic, it shares that there is freedom
to decide on which day and time window we place a request. The benefits are
comparable: if we have requests to the north and to the south, it would be nice
to create tasks on one day for the north, and on the other day for the south, see
also Section 4. In periodic VRP it might not be (fully) possible, because some
locations in the north and south have to be visited each day. In our situation,
we have the clients that have preferences. We ignored these, assuming that the
client will accept the proposed time window; in practice the client will have
choice from some, for example three, time windows. From the point of view
of the service provider, it would be wise the limit the possibilities, especially
when the service area is large. The company might do this by assigning its
engineers to geographical regions, making sure that tasks for an engineer are
in an acceptable range.

Nevertheless, the travel times can be rather high, especially if the engineer
is a specialist, serving a large area. In this case it is inevitable that the engineer
has to visit a location ‘A’ far from home in one of the shifts, but we would
like that other tasks in this shift are not too far away from location A. This
strategy we call ‘dynamic clustering’: once one or more tasks are assigned to
a shift, the new task should be close (in travel time) to all already assigned
tasks. This maximum travel time between tasks in a cluster, we call the cluster
diameter. To avoid the risk of partly idle shifts, we do not enforce dynamic
clustering for tomorrow and the day after tomorrow. For any time window
where dynamic clustering is active, we require that a request is added to a
cluster, if possible; only if no cluster is found, an empty shift can be used. In
this way we hope to fill the clusters to its capacity.

It depends on the instance what is the best cluster diameter and what is
the best day to abandon it. After some experiments on our datasets, it turned
out that a diameter of 18 minutes works well. Note that this is around 10%
lower than the average travel time per task in the experiments till now. If the
cluster diameter is too small, we can expect that many requests will remain
unplanned. If the diameter is too high, we can expect less effect from dynamic
clustering.

We keep on using the travel time reductions of 10, 6, and 2 minutes, for
the first three days; i.e. we use the same parameters as in Subsection 6.4. We
can combine dynamic clustering with the strategies described there, because
dynamic clustering only restricts the possible options. The simulations lead to
the following results.

275

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

12 Gerhard Post, Stefan Mijsters

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.68 30.32 1.58 13.7
Min travel time 0.16 18.19 1.93 12.6

Add at end 0.97 27.93 2.17 13.7

Results with dynamic clustering

The improvement is spectacular. In the previous experiments, it seemed that
not nearly all tasks could be scheduled. However, when using dynamic clus-
tering and the ‘Min travel time’ strategy, only 323 out of 200,361 tasks were
not planned. The travel time per task drops by 40%; without clustering the
travel time consumed around 30% of the shift time, but when using clusters
this drops to 21.0%. The conclusion is, that if only construction is applied,
dynamic clustering is the best to do. It remains to investigate the effect of
optimization.

8 Optimization

We will study the effect of optimization, for the situation without or with dy-
namic clustering. In both cases we apply an optimization algorithm per day for
30 second. The algorithm we use is an ALS method [Pisinger & Ropke (2007)],
in the way described in [Curtois et al (2018)]. For the experiments without
clustering, we apply optimization on the first five days; for the experiments
with dynamic clustering we only optimize the first two days; we leave the clus-
ters as they are. The simulation without clustering gives the following results.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.73 28.87 1.67 14.4
Min travel time 0.61 32.35 2.35 13.7

Add at end 3.74 58.58 2.70 13.8

Results with optimization on 5 days, without dynamic clustering

Compared to Subsection 6.4, we see a large improvement. This is not unex-
pected, as optimization in VRPs usually largely improves the solution. Note,
however, that these solutions are worse or at best comparable to the results
in Section 7. That makes us curious about the result with optimization and
dynamic clustering. These are presented in the table below.

Strategy Unplanned (%) Lates (%) Avg late Travel

First possible day 0.00 5.75 1.19 13.1
Min travel time 0.01 9.80 1.86 11.9

Add at end 0.23 16.36 2.07 12.0

Results with dynamic clustering and optimization on 2 days

The results improve, but not as much as without using clusters. We could have
expected this, because all tasks in a route are already close together, and tasks
in other routes probably are at some distance. In view on the number of tasks

276

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

On the call intake process in service planning 13

planned and the preferred deadline, the ‘First possible day’ strategy works the
best; all 200,361 tasks are planned, and only 5.75% of the tasks is outside the
preferred deadline. However, if reducing travel time is important, the strategy
‘Min travel time’ could be used. In this case only 23 tasks are not planned,
the lateness is higher, but the travel time per task is lower, saving 4075 hours
of travel time.

9 Conclusion

We discussed the call intake process for service planning. We described several
methods on how to choose time windows for the requests. We ran a simulation
on rather complex data. On this data we noted that giving preference to
empty routes, dynamic clustering and intermediate optimization are important
aspects; in our simulations the results improve considerably.

This simulation is a simplified model of reality. First there is the client:
the best time window for the company might not be feasible for the client,
which might worsen the results. However, some preliminary tests with random
choices among the options available, show that this effect is limited. It will not
change the validity of the discussions in the previous sections.

Another aspect is the homogeneity of the data. First, the geometry is very
simple, as well as the expectations for the task properties. In a real situation
the service area might be split in regions, and the engineers work only in some
of the regions. This restricts the options for the requests, but ensures that if
there is only one available engineer, the engineer will not drive two hours to
the other side of the service area and two hours back. Experiments show that
removing the region restriction during optimization can have a positive effect
on the results.

Another aspect of the geometry is that population densities can vary in the
regions we consider. In such cases it might be beneficial to decrease the cluster
diameter for an engineer working in highly populated regions. It is difficult to
predict what choice is the best, but in practice we can monitor the results,
and adjust the parameters accordingly.

Finally, there is the planner’s acceptance. Especially looking at a single
route, it is important that the route is optimal at all times. Since we usually
there are not more than 10 tasks in a shift, we can guarantee optimality, by
solving a dynamic program, see [Held & Karp (1962)]. We call this method
Optimized Best Fit (OBF). Each (shift/time window)-combination can be
solved in a few milliseconds, making it feasible to combine the strategies with
optimization per shift. OBF did not improve the results in our experiments.
For the same reason of planner’s acceptance, we always use the reductions on
the first days. In times that the workload is low, for sure it is preferable to
fill the upcoming days. The experiments above show that the‘First possible
day’ strategy competitive with the ‘Min travel time’ strategy even when the
planning is tight.

277

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

14 Gerhard Post, Stefan Mijsters

The method OBF with dynamic clustering supports several companies us-
ing PCA’s product Marlin, see [PCA]. It helps them in easily providing good
options to their clients, and reduces the effort of planning as well as the total
travel time, thus improving the productivity.

References

[Beasley (1983)] J.E. Beasley, Route first—cluster second methods for vehicle routing,
Omega 11, 403–408, (1983).

[Caceres-Cruz et al (2014)] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A.
Juan, Rich vehicle routing problem: Survey, ACM Computing Surveys 47, 1–28, (2014).

[Campbell & Wilson (2014)] A.M. Campbell and J.H. Wilson, Forty years of periodic ve-
hicle routing, Networks 63, 2–15, (2014).

[Curtois et al (2018)] T. Curtois, D. Landa-Silva, Dario, Y. Qu, and W. Laesanklang, Large
neighbourhood search with adaptive guided ejection search for the pickup and delivery
problem with time windows, EURO Journal on Transportation and Logistics 7, 151–192,
(2018).

[Held & Karp (1962)] M. Held and R.M. Karp, A dynamic programming approach to se-
quencing problems, Journal of the Society for Industrial and Applied Mathematics 10,
196–210, (1962).

[Misir et al (2015)] M. Misir, P. Smet, and G. Vanden Berghe, An analysis of generalised
heuristics for vehicle routing and personnel rostering problems, Journal of the Operational
Research Society 66, 858–870, (2015).

[PCA] See https://pca.nl/en/functionalities/service-and-maintenance-planning/.
[Pisinger & Ropke (2007)] D. Pisinger and S. Ropke, A general heuristic for vehicle routing

problems, Computers & Operations Research 34, 2403–2435, (2007).
[Solomon (1987)] M. Solomon, Algorithms for the vehicle routing and scheduling problems

with time window constraints, Operations Research 35, 254–265, (1987).
[Strauss et al (2021)] Arne Strauss, Nalan Gülpınar, Yijun Zheng, Dynamic pricing of flex-

ible time slots for attended home delivery, European Journal of Operational Research 294,
1022–1041, (2021).

[Visser (2019)] Thomas Visser, Vehicle Routing and Time Slot Management in Online Re-
tailing, EPS-2019-482-LIS, (2019).

278

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Optimising Scheduling of Hybrid Learning using
Mixed Integer Programming

Matthew Davison1, Ahmed Kheiri2, Konstantinos Zografos2

1 STOR-i Centre for Doctoral Training, Lancaster University, Lancaster, UK
m.davison2@lancaster.ac.uk

2 Department of Management Science, Lancaster University, Lancaster, UK
{a.kheiri,k.zografos}@lancaster.ac.uk

Keywords: University Timetabling · Hybrid Learning · Mixed Integer Pro-
gramming

1 Introduction
The COVID-19 pandemic artificially reduced the already limited capacity of
physical spaces at universities. It forced a greater use of hybrid learning, which is
a mode of teaching that combines online and in-person elements. Previous studies
dealt with limited capacity by controlling the quantity and flow of students on
campus [5] or on the areas surrounding campus [1]. Other studies investigated
what policy changes allow a better use of resources [2].

Online classes are one way to reduce demand for physical space. Universities
in the future will likely continue to offer a mix of online and in-person classes be-
yond the pandemic [3]. Since students and staff typically prefer to attend classes
in-person, this motivates the need to limit the number of classes held online,
whilst still taking advantage of their ability to reduce the demand for physical
space. More specifically, the problem is to investigate how universities can max-
imise the number of courses that they offer, whilst simultaneously limiting the
number of online classes that are used to achieve this. This timetabling problem
differs to the classic timetabling problem in that the input is a list of classes, but
not all classes need to be assigned. Solutions to this problem identify how many
courses could be offered, which is useful information for universities planning
semesters. The preliminary model presented in this paper illustrates one way of
solving this particular problem.

2 Model Formulation
Timeslots are lengths of time that have a start and end. In this problem we
assume these are five minutes long. Timesets are defined as a subset of the set
of all timeslots. These are used to better model complicated arrangements. For
example, a timeset could describe a two hour class meeting every other week.
Table 1 provides the notation for the sets used within the formulation of the
model.

We define the matrix A where the entry Ar1,r2 is equal to the number of
timeslots it takes to travel from room r1 to room r2. In particular, for d a non-
negative integer, Ar1,r2 = d represents a travel time of 5d minutes.

279

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

2 M. Davison et al.

Table 1. Key notation. The first six sets are primarily used to describe elements of
the problem, the last seven sets are primarily used in the construction of constraints.

S Set of timeslots
T Set of timesets. Each t ∈ T is a subset of S
R Set of rooms
C Set of classes
K Set of courses
Lk Set of sections for course k. Each l ∈ Lk is a subset of C
Ru

r Set of timeslots when room r ∈ R is unavailable
Rc Set of rooms suitable for class c ∈ C
Tc Set of timesets suitable for class c ∈ C
RG Let G ⊆ C. RG := ∩c∈GRc

CG Let G ⊆ C. CG := {(c1, c2) ∈ G×G : c1 ̸= c2}
Rc

r Let r ∈ R. Rc
r := {c ∈ C : r ∈ Rc}

Os Let s ∈ S. Os := {a ∈ T : s ∈ a}

The set C contains all classes regardless of if they can be held online, in-
person or both. The online space is modelled as a room that is always available
and can host multiple classes at the same time. Let r∗ represent this online
space. A class, c ∈ C, can be held online if and only if r∗ ∈ Rc. For r∗ assume
that Ar∗,r∗ = 0 and Ar∗,r = d∗ for all r ∈ R \ r∗ where d∗ is a fixed number
of timeslots. For this paper, we assume any class can happen online and that
d∗ = 0.

2.1 Definition of variables

One set of variables used in this problem are binary variables indicating if a class
is assigned to a particular room and timeset. They are defined as follows:

xc,r,t =

{
1 Class c ∈ C is held in room r ∈ R in timeset t ∈ T ,
0 Otherwise.

The second set of variables are binary variables that indicate if a class uses
a room, or if a class uses a timeset. They are defined as follows:

yc,r =

{
1 Class c ∈ C is held in room r ∈ R,
0 Otherwise.

yc,t =

{
1 Class c ∈ C is held in timeset t ∈ T ,
0 Otherwise.

These variables are related to each other by linking constraints:

yc,r =
∑
t∈T

xc,r,t, ∀r ∈ R, c ∈ C,

280

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Optimising Scheduling of Hybrid Learning 3

yc,t =
∑
r∈R

xc,r,t, ∀t ∈ T, c ∈ C.

We also define binary variables to indicate if courses are offered:

gk =

{
1 Course k ∈ K is offered,
0 Otherwise.

Parameter arrays Defined in Table 2, parameter arrays are fully determined
by a given problem instance. They are used to indicate if a group of resources
satisfy a particular condition, thus indicating what constraints to include in the
model corresponding to that instance.

Table 2. Definition of each parameter array. t, t1 and t2 are in the set T . r, r1 and r2
are in the set R

Array Description

D0 A matrix where D0[r, t] is equal to one if room r is unavailable at some
point during timeset t, zero otherwise

D1 An array where D1[r1, r2, t1, t2] is equal to one if there is not enough time
between t1 and t2 to travel between r1 and r2, zero otherwise

D2 A matrix where D2[t1, t2] is equal to zero if the first meeting in t1 concludes
before the start of the first meeting in t2, one otherwise

D3 A matrix where D3[t1, t2] is zero if the meetings in t1 and t2 do not occur on
overlapping weeks and days, if any meeting in t1 and t2 occurs on the same
day and week then D3[t1, t2] is equal to the number of timeslots between
the start of the earliest meeting and end of the latest

D4 A matrix where D4[t1, t2] is equal to zero if t1 and t2 start at the same time
of day, one otherwise

D5 A matrix where D5[t1, t2] is equal to zero if t1 completely overlaps t2 in the
times of day they meet or vice versa, one otherwise

D6 A matrix where D6[t1, t2] is equal to zero if t1 meets on a subset of days
that t2 does or vice versa, one otherwise

D7 A matrix where D7[t1, t2] is equal to zero if t1 and t2 do not meet on any
of the same days, one otherwise

D8 A matrix where D8[t1, t2] is equal to one if t1 overlaps t2, zero otherwise.

2.2 Constraints

There are various constraints that need to be included within any university
timetabling model. Some are more specialised so that the timetable adheres
to university policy or allows students and staff to travel comfortably between
classes. In this section, some constraints included within our model are described.

281

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

4 M. Davison et al.

Most of these constraints have been proposed in the existing timetabling litera-
ture [4] and what is presented in this paper is our approach to modelling these
constraints.
Classes can only be assigned at most a single room and a single timeset∑

t∈T

∑
r∈R

xc,r,t ≤ 1, ∀c ∈ C.

Classes can only be assigned compatible rooms and times To ensure
only compatible rooms and times are used, for each c ∈ C add the following
constraints: ∑

r∈R

xc,r,t = 0, ∀t ∈ T \ Tc.∑
t∈T

xc,r,t = 0, ∀r ∈ R \Rc.

Classes should not happen in a room when that room is not available∑
t∈T

∑
r∈R

D0[r, t]xc,r,t = 0, ∀c ∈ C.

In-person classes should not use the same room at the same time∑
c∈Rc

r

∑
t∈Os

xc,r,t ≤ 1, ∀r ∈ R \ r∗, s ∈ S.

Group of classes should occur in the same room Let G be a set of
classes that must occur in the same room. For each r ∈ RG define a binary
variable sGr that takes the value one if every class in G uses room r and zero
otherwise. Add the following constraints:∑

c∈G

yc,r = |G|sGr , ∀r ∈ RG,∑
r∈RG

sGr ≤ 1,

yc,r = 0, ∀r /∈ RG, c ∈ G.

Attending a group of classes Staff and students have collections of classes
they must attend. Denote a collection of classes as G. For each (c1, c2) ∈ CG add
the following constraints:

D1[r1, r2, t1, t2](xc1,r1,t1 + xc2,r2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 , r1 ∈ Rc1 , r2 ∈ Rc2 .

Group of classes should occur in a certain order Let G be a sequence of
classes that should occur in order, meaning that the first meeting of a class should
completely finish before the start of the next class. Suppose G = (c1, c2, . . . , ck),
then for each pair (ci, ci+1) where i ∈ {1, . . . , k−1} add the following constraints:

D2[t1, t2](yci,t1 + yci+1,t2) ≤ 1, ∀t1 ∈ Tci , t2 ∈ Tci+1 .

282

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Optimising Scheduling of Hybrid Learning 5

Group of classes should be grouped within a period of time Let G
be a set of classes that should all happen within H timeslots if they happen on
the same day and week. For each (c1, c2) ∈ CG add the following constraints:

I(D3[t1, t2] > H)(yc1,t1 + yc2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 ,

where I is an indicator function that takes the value one if D3[t1, t2] > H holds
and zero otherwise.
Timing constraints All timing specific constraints have the same form.
Suppose G is the set of classes the constraint applies to. For each (c1, c2) ∈ CG

add the following constraints:

D[t1, t2](yc1,t1 + yc2,t2) ≤ 1, ∀t1 ∈ Tc1 , t2 ∈ Tc2 ,

where D is the appropriate parameter array for that constraint. Table 3 describes
a constraint on a group of classes and the associated parameter array.

Table 3. Constraints and associated parameter array

Constraint Associated D

Classes should start at the same time D4

Classes should occur during the same time of day D5

Classes should occur on the same days of the week D6

Classes should occur on the different days of the week D7

Classes should not overlap in time D8

Course structure constraints Courses can be split into sections that teach
identical content. Sections are a collection of classes and it is possible for two
sections of the same course to share classes. We define binary variables to indicate
if a course section is offered:

hk,l =

{
1 Section l ∈ Lk of course k ∈ K is offered,
0 Otherwise.

For a given course, k ∈ K, a section l ∈ Lk can be offered only if all of the
classes in that section are offered. This is modelled by the following constraints:

hk,l ≤
1

|l|
∑
c∈l

∑
t∈T

∑
r∈R

xc,r,t, ∀l ∈ Lk, k ∈ K,

where |l| is the number of classes in a section. A course is only offered if there is
at least one section being offered. This is modelled by the following constraints:

gk ≤
∑
l∈Lk

hk,l, ∀k ∈ K.

283

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

6 M. Davison et al.

2.3 Objectives

There are many objectives in the timetabling literature. In this section some of
the objectives that could be used within this model are presented.

Maximise number of courses offered

max z1 =
∑
k∈K

gk,

Maximise number of classes held

max z2 =
∑
c∈C

∑
t∈Tc

∑
r∈Rc

xc,r,t.

Whilst courses are important, offering as many classes as possible provides
flexibility within these courses.

Minimise number of classes held online

min z3 =
∑
c∈C

∑
t∈Tc

xc,r∗,t.

Ideally, there would be no need for online classes but it cannot be ignored
that they can help increase z1 because they are not subject to physical space
limitations, a common limit to teaching capacity.

Minimise cost of assignment

min z4 =
∑
c∈C

(∑
r∈Rc

Pc,ryc,r +
∑
t∈Tc

Pc,tyc,t

)
,

where Pc,r and Pc,t are non-negative penalties for assigning class c ∈ C to room
r ∈ Rc and timeset t ∈ Tc respectively. The exact value of these penalties are
subjective in practice. They could represent:

– Actual monetary cost of using the resource.
– Approximation of preference (low penalty indicating higher preference).
– Arbitrarily large penalties to deter solution from using a resource.

Weighted objective approach

max z = w1z1 + w2z2 + w3z3 + w4z4,

where w1 and w2 are non-negative weights, and w3 and w4 are non-positive
weights. By properly tuning these weights the model is able to determine an
optimal mix of in-person and online teaching.

284

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

Optimising Scheduling of Hybrid Learning 7

3 Results
To verify that this model produces feasible timetables, three instances from
the 2019 International Timetabling Competition (ITC-2019) were used [4]. De-
scribed in Table 4 is the number of classes, timesets and rooms for each instance.

The problem defined in the ITC-2019 involves creating a complete timetable
and allocating students to classes based on their course requests. Our model
does not consider student allocation nor requires a complete timetable to be
constructed. Therefore, in this experiment, we maximise z2 only. Using this so-
lution, it is possible to evaluate z3 and z4.

For our experiments we used an internal computing node running CentOS
Linux with an Intel Xeon E5-2699 v3 CPU running at 2.30GHz and 528GB of
RAM. The model was implemented in Python 3.5 and solutions were found using
the commercial solver Gurobi 9.0, which successfully produced valid timetables.
Table 4 provides information about each solution.

Table 4. The problem instances and quantities of key features. In the “Type” col-
umn, “T” indicates “test” instances and “C” indicates “competition” instances. The z3
recorded is the number of classes that does not require a room, which we treat as
“online-only” classes. The z4 recorded here is the same value reported by the ITC-2019
validation tool [4]

Instance Type |K| |C| |T | |R| z2 z3 z4 Time (s)

lums-sum17 T 19 20 93 62 20 0 73 0.003
bet-sum18 T 48 127 50 46 127 6 3502 0.011
tg-fal17 C 36 711 1645 23 711 15 9610 58757.559

As can be seen from Table 4 in all three instances |C| = z2 meaning that our
solutions are optimal for this objective. Since we are offering all possible classes,
it is clear that it is possible to offer every course.

Acknowledgements We gratefully acknowledge the support of the EPSRC
funded EP/S022252/1 STOR-i Centre for Doctoral Training.

References
1. Al-Yakoob, S.M., Sherali, H.D.: A mixed-integer programming approach to a class

timetabling problem: A case study with gender policies and traffic considerations.
European Journal of Operational Research 180(3), 1028–1044 (2007). https://doi.
org/https://doi.org/10.1016/j.ejor.2006.04.035

2. Barnhart, C., Bertsimas, D., Delarue, A., Yan, J.: Course Scheduling Under Sudden
Scarcity: Applications to Pandemic Planning. Manufacturing & Service Operations
Management 24(2), 727–745 (2022). https://doi.org/10.1287/msom.2021.0996,
https://doi.org/10.1287/msom.2021.0996

3. Lederman, D.: What’s the future of the physical college campus? In-
side Higher Ed (2021), https://www.insidehighered.com/news/2021/07/16/
whats-future-physical-college-campus

285

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/https://doi.org/10.1016/j.ejor.2006.04.035
https://doi.org/10.1287/msom.2021.0996
https://doi.org/10.1287/msom.2021.0996
https://doi.org/10.1287/msom.2021.0996
https://www.insidehighered.com/news/2021/07/16/whats-future-physical-college-campus
https://www.insidehighered.com/news/2021/07/16/whats-future-physical-college-campus

8 M. Davison et al.

4. Müller, T., Rudová, H., Müllerová, Z.: University course timetabling and Interna-
tional Timetabling Competition 2019. Proceedings of the 12th International Con-
ference on the Practice and Theory of Automated Timetabling (PATAT 2018) pp.
5–31 (2018)

5. Vermuyten, H., Lemmens, S., Marques, I., Beliën, J.: Developing compact course
timetables with optimized student flows. European Journal of Operational Re-
search 251(2), 651–661 (2016). https://doi.org/https://doi.org/10.1016/j.
ejor.2015.11.028

286

Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling - PATAT 2022 - Volume III

https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028
https://doi.org/https://doi.org/10.1016/j.ejor.2015.11.028

	Exam Scheduling With Hardship Minimization
	Scheduling of an underground mine by combining logic-based Benders decomposition and a priority-based heuristic
	Solving an Industrial Oven Scheduling Problem with a Simulated Annealing Approach
	Scheduling Satellite Timetables using DCOP
	Three-phase Curriculum-Based University Course Timetabling with Student Assignment
	Planning for high-speed railways in the Czech Republic
	Introduction
	Problem description and file format
	Competition rules
	Competition timeline and results
	Real-world university course timetabling at the International Timetabling Competition 2019
	ITC 2019: Results Using the UniTime Solver
	Sustainable energy aware industrial production scheduling
	Optimising Scheduling of Hybrid Learning using Mixed Integer Programming

