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Abstract Partially Concurrent Open Shop Scheduling (PCOSS) is a relax-
ation of the well-known Open Shop Scheduling (OSS) problem, where some
of the operations that refer to the same job may be processed concurrently.
Here we extend the study of the PCOSS model by considering the addition
of limited resources. We deal with the case of preemption PCOSS, where a
few polynomial algorithms are known for its OSS counterpart. The scheduling
problem is equivalent to the problem of conflict graph colouring. The restric-
tion on the number of resources bounds the size of colour classes. We thus study
the problem of bounded vertex colouring and focus on bounds. In particular,
we introduce a new bound for this problem, propose a colouring procedure
that is inspired by this new bound, and show that for perfect graphs with two
resources the procedure attains the bound, and hence is optimal. The model
correlates to a real-life timetabling project of assigning technicians to vehicles
in a garage, with additional resources, such as vehicle lifts.
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1 Introduction

The partially concurrent open shop scheduling (PCOSS) problem deals with
jobs that should be processed by machines [4,5]. It was motivated by a
timetabling problem of assigning technicians (machines) to vehicles (jobs) in
a garage. Similarly to the open shop problem, each machine processes at most
one job at a time. But, for a given job, some of its operations may be processed
concurrently and some may not. A conflict graph represents whether pairs of
operations can or cannot be processed concurrently.

Many studies link between scheduling problems and graph colouring prob-
lems [12,1,13,10]. In our previous work, we have studied the problem of
PCOSS with preemptions by its relation to the problem of conflict graph
colouring [7,8]. For the Unit-Time processing scenario, the problem of min-
imising the makespan is equivalent to the classical problem of colouring the
conflict graph with fewest colours. Similarly, for the integral-preemption sce-
nario and general preemption scenario, minimising the makespan reduces to
w-colouring and fractional w-colouring, respectively, of the weighted conflict
graph with the processing times as its weights. Here, we assume the same prob-
lems with an additional resource for which we have r units at any given time.
The reduction to graph colouring works the same as in the regular PCOSS
with the additional restriction that each colour appears at most in r vertices,
a problem known as the Bounded Colouring problem [6].1

It seems that the Bounded Vertex Colouring problem has so far yet to
receive much research attention. Conversely, a related problem called the Eq-
uitable Graph Colouring Problem (EGC) has been investigated intensively [3].
In the EGC, a graph has to be (fractionally) (w-) coloured so that the sizes of
all colour sets are as equal as possible. In terms of PCOSS, equitable colouring
means that at any time the same number of resource units are busy.

The main contributions of this research are

1. Introducing a new bound for the r-bounded (fractional)-chromatic number
(Section 2).

2. Defining a procedure for r-bounded colouring that combines regular colour-
ing and equitable colouring (Section 3.1).

3. Proving that the above mentioned procedure attains the new bound for
perfect graphs with r = 2 (Section 3.2).

4. Presenting an example with r = 3 for which the bound is not tight (Section
3.3).

2 PCOSS with resources

In a PCOSS problem a set of n jobs and m machines are given. The part
of job j that has to be processed on machine k is called operation (j, k),

1 The maximal number of instances that a colour should appear in the colouring is usually
denoted as k. In the respective PCOSS problem, it is equivalent to the number of available
resources. We will therefore refer to this number as r.
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with pj,k denoting its processing time. In a standard Open Shop Scheduling
(OSS) problem, any two operations that belong to the same machine, or to
the same job, are not allowed to be processed concurrently. The PCOSS model
generalizes this OSS model by allowing some operations (usually of the same
job) to be processed concurrently. The set of operations that are not allowed
to be processed concurrently are described by a conflict graph.

Definition 1 The conflict graph is a graph G = (V,E). Each vertex (j, k) ∈ V
represents an operation,2 with j = 1, . . . , n and k = 1, . . . ,m. Vertices (j, k)
and (i, l) are adjacent if they may not be processed concurrently.

A PCOSS problem is defined by a set of n jobs, m machines, a processing
time matrix PT = [pj,k], and a conflict graph G. The PCOSS problem that
we study in this article is a limited-resource PCOSS. By this, we mean that
each operation needs for its processing one unit of an additional resource. Each
resource unit can be used by at most one operation at a time. The motivation
comes from a vehicle garage, with jobs corresponding to vehicles and machines
to technicians. The possible resource is a garage vehicle lift.

The usual objective considered hereby is the minimisation of the makespan
Cmax. The makespan is the time required to complete the last job, i.e., Cmax =
max{Cj | 1 ≤ j ≤ n}, where Cj is the completion time of job j.

There are two natural bounds for this PCOSS problem:

1. The clique bound: Each clique in the graph represents a set of operations
that cannot be processed concurrently. Therefore, in the unit-time problem,
the clique size bounds the makespan. In the case of general processing
times, the bound is the total weight of the clique. We will denote this
bound by Bc.

2. The resources bound: A resource is needed for any operation. Therefore,
the makepan cannot be less than the total processing time divided by the
number of resources, r. This bound is denoted by Br.

Consider an example with n = 3 (jobs) and m = 5 (machines), a unit time
processing time matrix

PT =




1 1 1 1 1
1 1 1 1 1
1 1 1 1 1


 , (1)

and a conflict graph shown in Figure 1. In this example, Bc = 3 and Br = 15/r.
In the next section, we will explicitly show that for this specific example

and r = 2 or 5 the bounds are achievable. For a general OSS problem, it is
known that when preemption is allowed, the makespan of an optimal schedule
is always max{Bc, Br}, with a polynomial algorithm that achieves this bound
[2,13]. Are these bounds achievable for a general case of PCOSS? The following
example shows that the answer is negative. Let us look at a unit-time PCOSS
problem with r = 2 resources, one job, and a star-shaped conflict graph. In
Figure 2(a), we show such a conflict graph with 5 machines. For this problem,

2 Vertices that represent operations with zero processing times are omitted.
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Fig. 1 An example of a PCOSS conflict graph.

Bc = 2 and Br = 5/2 = 2.5. But, the makespan is larger: when the centered
vertex is processed, only one resource can be used. This operation requires one
unit of time, and the other four operations need two (4/r) more additional time
units. Inspired by this example, we suggest a new bound, called a mixed bound,
denoted Bm. This bound is relevant when the vertices of G = (V,E) can be
divided into two subsets with the following characteristic: the induced graph
G1 = (V1, E1) has a maximal clique of size ω1, and all the n2 vertices in subset
V2 = V \ V1 are connected to all the vertices in the maximal clique in G1.
Figure 2(b) illustrates such a structure. Clearly, for a unit-time problem the
operations of V1 must use at least ω1 time units. In addition, the operations
related to V2 must be processed in an additional n2/r time units. The mixed
bound is given by

Bm = ω1 + n2/r. (2)

Note that when G1 = ∅ then Bm reduces to Br, and when G2 = ∅ it reduces
to Bc. If the processing times are general, then ω1 in Equation 2 denotes the
weight of the maximum clique in G1, and n2 is the total weight of all V2
vertices. For the star-shaped graph Bm = 3, which is achievable. The question
is, what are the instances for which this bound is (polynomially) achievable?
In the next section, we will discuss this question by the relation of the PCOSS
problem with that of bounded graph colouring.

3 PCOSS with limited resources and bounded colouring

The relation between graph colouring and PCOSS scheduling has already been
established [7,8]. A solution to a PCOSS scheduling problem is equivalent to
the problem of colouring the conflict graph, with each colour corresponding
to a unit of time. Vertices (operations) that can be processed simultaneously
are not connected in the conflict graph, and can therefore share the same
colour. In contrast, adjacent vertices must have different colours. Minimising
the makespan in the scheduling problem is equivalent to minimising the num-
ber of colours needed for colouring the conflict graph, i.e., the makespan is
equal to the chromatic number. In case there is an additional limited resource,
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Fig. 2 (a) The resource bound and the clique bound are not achievable for the star shape
conflict graph. (b) A conflict graph structure that defines the mixed bound.

the colouring is bounded, i.e., the size of each colour class3 cannot be larger
than r. Such colouring is called bounded vertex colouring [6]. Before giving
more formal definitions, we shall return to the example of Figure 1. Case
1. Consider r = 5. In this case, the clique bound, Bc = 3, and the resource
bound, Br = 15/5 = 3, are equal. These bounds are achievable as shown by
the proper colouring on the graph by three colours (Figure 3(a)). When the
resource bound is achievable, the optimal schedule corresponds to an equitable
colouring of the conflict graph. Here, each class of colours is exactly of size 5.
Case 2. Consider r = 2. When only two resources are available a colour can-
not appear in more than two vertices. The resource bound Br = 15/2 = 7.5 is
achievable. A possible fractional colouring that attains this bound is shown in
Figure 3(b). Note that a vertex coloured by a fraction of a colour corresponds
to an operation performed in the respective fraction of a time unit.

In this section, we will utilize the equivalence between the PCOSS
scheduling and graph colouring problems by studying some aspects of bounded
graph colouring problems and drawing conclusions regarding the achievable
makespan bounds in the respective PCOSS with limited resources problems.

The following definitions are based on the terms of Hansen et al. [6].

Definition 2 Given a graphG and a number r, an r-bounded vertex colouring
of G is a usual vertex colouring in which each colour is used at most r times.

3 A colour class is the set of all vertices that share the same colour, which corresponds to
operations that are processed concurrently.
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Fig. 3 Colouring of the conflict graph leads to a solution for a unit-time PCOSS with (a)
r = 5 (Cmax = 3). (b) r = 2 (Cmax = 7.5).

Definition 3 The bounded chromatic number χr(G) of a graph G is the
smallest number of colours such that G admits an r-bounded vertex colouring.

The above definitions correspond to a PCOSS with limited resources in
which all processing times are equal (unit time) and no preemption is allowed.
These definitions can be easily adapted to deal with non-unit processing times
with preemption (either integral or general). For the case of integral preemp-
tion (with integral positive processing times), the graph G = (V,E) in the
above definitions is replaced with an integral-weighted graph (with w(v) de-
noting the weight of vertex v ∈ V ), and the colouring is replaced with a w-
proper colouring,4 in which w(v) distinct colours are assigned to each vertex
v ∈ V so that adjacent vertices have no assigned colours in common. The w-
proper colouring and its connection to PCOSS with integral preemption (not
in the context of limited resources) are discussed in detail by Ilani et al. [7,8].
For the case of general preemption, the colouring is replaced with a fractional
colouring when unit processing times are used, or with a fractional w-proper
colouring for non-unit processing times. The fractional bounded chromatic
number of a graph G with a limit of r resources is denoted χ∗r(G).

We proceed to present a procedure for r-bounded colouring of a graph,
which is at the focus of this section. We will then state theoretic properties of

4 Also termed set colouring or multi-colouring in the graph colouring literature.
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this procedure. On the one hand, we will show that when r = 2 the procedure
attains the mixed bound Bm of Section 2 for perfect graphs. On the other
hand, we will give a counter example for r = 3 in which the mixed bound is
unachievable. For didactic reasons, in what follows we will focus on fractional
(non-weighted) colouring (for general preemption with unit processing times),
but these results can also be adjusted to deal with fractional w-proper colour-
ing (for general preemption with non-unit processing times). Specifically, the
r-bounded colouring procedure of the next subsection can also be adjusted to
deal with non-fractional colouring (for integral preemption).

3.1 The r-bounded colouring procedure

The procedure starts by colouring the graph G with χ(G) colours. This colour-
ing is named c. At the next stage of the procedure, the graph G = (V,E) is
partitioned into two disjoint graphs, G1 = (V1, E1) and G2 = (V2, E2), ac-
cording to the following criterion. Vertices in G that belong to colour classes
of size smaller (larger) than r in c, belong to V1 (V2). Colour classes of size
exactly r can belong to either of the two vertex sets. Thus, V1 and V2 form a
disjoint union of V . Let G1 be the induced graph on V1, and accordingly let
G2 be the induced graph on V2.

Note that given the colouring c, its induced colouring c1 on G1 already
admits, by definition, the resource limitation constraint, i.e., c1 is an r-bounded
vertex colouring of G1. In contrast, the induced colouring on G2, c2, is not an
r-bounded vertex colouring of G2, and it therefore requires re-colouring. Given
a colour class of size p > r in c2, we re-colour this colour class with p

r distinct
colours.5 Since vertices that belong to a colour class form an independent set,
such a re-colouring is always achievable. By repeating this re-colouring for
all the colour classes in c2 and by applying a disjoint union of all these re-
colourings, we get an r-bounded vertex colouring c̃2 of G2. The disjoint union
of c1 and c̃2, denoted c̃, is clearly an r-bounded vertex colouring of G.

It is interesting to investigate the conditions on the graph G and the param-
eter r under which the r-bounded vertex colouring c̃ that the above procedure
yields is optimal (minimal). Such optimality can be ensured if the following
three terms apply: (i) c1 is a minimal r-bounded vertex colouring of G1, (ii) c̃2
is a minimal r-bounded vertex colouring of G2, and (iii) the graph structure is
such that in any optimal r-bounded vertex colouring, no two vertices v1 ∈ V1
and v2 ∈ V2 belong to the same colour class.

The induced colouring c1 is an optimal colouring on G1, otherwise we get
a smaller colouring on G. Following our restriction to fractional colouring,
it is obvious that c̃2 is an optimal r-bounded vertex colouring of G2, since it

obtains the lower bound of |V2|
r colours. In this case, c̃2 is actually an equitable

|V2|
r -colouring. If in addition the graph G1 is perfect and all the vertices of G2

are connected by edges to all the vertices of a maximum-size clique of G1, then

5
⌈ p
r

⌉
distinct colours should be used when non-fractional colouring is applied.

Partially Concurrent Open Shop Scheduling with Preemption and Limited Re-
sources 305

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018



Hagai Ilani et al.

an optimal r-bounded colouring of G must colour V1 and V2 by disjoint sets
of colours. These comprehensions lead to our next result regarding the case of
a perfect graph with r = 2.

3.2 Achieving the mixed bound for r = 2

Given a perfect graph G = (V,E) and the parameter r = 2, we will partition
the graph into subgraphs G1 = (V1, E1) and G2 = (V2, E2) that comply with
those of the above r-bounded colouring procedure, but we will do so according
to a specific construction process. As with the above colouring procedure, we
start by colouring the graph G with χ(G) colours. However, out of all such
possible optimal colourings, we choose the specific colouring c in which the
number of vertices that belong to colour classes of size 1 or 2 is maximal.

According to the colouring procedure, the vertex set V1 contains all the
vertices that belong to colour classes of size 1 (which we hereinafter term
singleton) in c, and may hold some of the vertices that belong to colour classes
of size exactly r = 2. Accordingly, we start with V1 consisting of only the
vertices that belong to singleton colour classes in c, and present an inductive
construction process in which V1 gradually grows. Note that because the initial
V1 contains only singleton colour classes, it must form a clique, or else two or
more of its vertices could share the same colour, and consequently contradict
the optimality of the colouring c. During the inductive construction process
this clique, termed Q (Q ⊆ V1), will also gradually grow. V1(i) and Q(i)
represent the corresponding sets in step i of the induction. The inductive
construction is as follows:

– Base case: V1(0) = {v ∈ V |c(v) is singleton}, Q(0) = V1(0).
– Inductive step: If, in step i, there exist two non adjacent vertices v and
u such that u ∈ Q(i − 1), v /∈ V1(i − 1), and the colour class of c(v) is
of size 2, then let V1(i) = V1(i − 1) ∪ {v, w}, where w is the vertex that
is coloured by the same colour as v, i.e., c(w) = c(v). In addition, let
Q(i) = Q(i− 1) ∪ {w}.
Note that in any step of the construction, V1(i) remains in accordance

with V1 of the r-bounded colouring procedure, since only vertices from colour
classes of size exactly r = 2 are added to V1(i) at each step. Also, due to
the fact that graph G is perfect, Q(i) remains a clique after adding vertex
w. This is because the addition of {v, w} adds a new colour to V1(i), i.e.,
χ(G1(i)) = χ(G1(i−1))+1. In a perfect graph, the chromatic number of every
induced subgraph equals the size of its largest clique. Thus, the increment in
the chromatic number of G1 in step i also increments the size of G1’s largest
clique in step i, which corresponds to the addition of vertex w to the clique
Q(i).

The inductive construction process terminates at some step t when there
do not exist two such vertices u and v that can lead to the construction of step
i = t+ 1. Let the final constructed sets be termed V1 = V1(t) and Q = Q(t).
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Before we can utilize the discussed construction for proving that the mixed
bound Bm can be attained, we need to prove the following lemma:

Lemma 1 For any vertex q ∈ Q there exists a 2-bounded optimal vertex
colouring of V1 such that q is a singleton.

Proof We prove the lemma by induction on the steps i in which the respective
sets Q(i) and V1(i) are generated.

– Base case: In step i = 0, Q(0) = V1(0) consists of only singleton colour
classes according to the original colouring c, which is optimal, so the
lemma’s assertion is correct.

– Induction hypothesis: For any vertex q ∈ Q(i − 1) there exists a 2-
bounded optimal vertex colouring of V1(i− 1) such that q is a singleton.

– Inductive step: According to the inductive construction of the clique Q,
in each step i > 0, Q(i) = Q(i − 1) ∪ {w}, where {v, w} forms a colour
class of size 2, and vertex v is not adjacent to some vertex u in Q(i − 1).
According to the induction hypothesis, the lemma’s assertion is correct for
every vertex q ∈ Q(i−1), so what remains to prove is that there exists a 2-
bounded optimal vertex colouring of V1(i) in which vertex w is a singleton.
By the induction hypothesis, there is a 2-bounded optimal colouring of
V1(i − 1), say c′, in which vertex u is a singleton. Now, it only remains
to extend the colouring c′ to V1(i) by setting the colour of vertex v to
c′(u), which in turn leaves vertex w with a new singleton colour in c′. Since
{u, v} forms a colour class of size 2 in c′, we get a 2-bounded optimal vertex
colouring of V1(i) in which vertex w is a singleton, as required. �

Now we turn to our main result.

Theorem 1 The mixed bound Bm = max{χ(G1) + |V2|
r } is tight for perfect

graphs and r = 2.

Proof Let G = (V,E) be a perfect graph with r = 2, and let V1 and V2 =
V \V1 be the vertex sets (and G1 and G2 their respective induced graphs) that
resulted from the inductive construction process presented at the beginning
of this subsection. We re-colour the vertices of V2 in accordance with the
r-bounded colouring procedure of Section 3.1. We claim that the fractional

bounded chromatic number of G is χ∗2(G) = χ(G1) + |V2|
2 , thus proving the

theorem. Following the characteristics of the r-bounded colouring procedure,
it suffices to show that each vertex in the clique Q ⊆ V1 is adjacent to all the
vertices in V2.

Consider two vertices q ∈ Q and v ∈ V2 (after termination of the inductive
construction). According to Lemma 1, there exists a 2-bounded optimal vertex
colouring c′ of V1 in which q is a singleton. Assume that v is not adjacent to
q. In case vertex v belongs to a colour class of size 2, then the inductive
construction would not have terminated, so we get a contradiction. In case
vertex v belongs to a colour class of size larger than 2, then one can re-colour
vertex v with c′(q), which contradicts the maximality (in the number of vertices
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that belong to colour classes of size 1 or 2) of colouring c, which also holds
for any optimal re-colouring of V1, e.g., colouring c′. Thus, we conclude that
every vertex q ∈ Q is adjacent to every vertex v ∈ V2, and so the Bm bound
is attained.

Note that other valid partitions of graph G to G1 and G2 may lead to lower
bounds than Bm, but these looser bounds would not be achievable. This is the
reason for Bm being the maximal of all bounds of this form. �

3.3 Counter example for r = 3

In the previous chapter, we have defined a 2-bounded colouring procedure for
perfect graphs. At the end of the procedure, the graph vertices are partitioned
into two sets: V1 with a maximal clique Q, and V2 whose vertices are all
adjacent to all the vertices in Q. This partition defines a non-trivial mixed
bound, larger than the clique bound and the resource bound, and this bound
is achievable for r = 2. In contrast, as shown in the following example, for a
3-bounded colouring, the mixed bound is not always achievable.

Consider the conflict graph G shown in Figure 4(a). There is no non-trivial
partition of the vertices leading to a mixed bound higher than the resource
bound and the clique bound. So Bm = Bc = Br = 2. As we shall prove in
what follows, an optimal 3-bounded colouring of G is of size 2 1

3 . Hence, the
bounds are unachievable. For this example, the optimal 3-bounded colouring
is obtained by the procedure given in Section 3.1. We start with a unique
minimal colouring (up to isomorphism) of G, shown in Figure 4(b). Figure 4(c)
shows the partition of the vertices into two sets: V1, containing vertices of size
less than r = 3, and V2, with vertices of size higher than 3. In Figure 4(d)
the vertices of V2 are recoloured to obtain a bounded fractional colouring of
size 2 1

3 . In the remainder of the section, we shall prove that the colouring of
Figure 4(d) is indeed optimal.

We use the following definitions and notations:

– Given a graph G we denote by I the set of all independent vertex sets of
G.

– The set of all independent vertex sets that contain a vertex v is denoted
I(v).

– A (regular) fractional colouring of G is a function c : I → R+ such that for
each vertex v,

∑
I∈I(v) c(I) = 1. Each colour is identified by an independent

set I with c(I) > 0.
– Given a fractional colouring c, we denote by Colc(v) the set of colours that

appear in v, i.e., Colc(v) = {I|I ∈ I(v), c(I) > 0}. For example, given the
colouring of Figure 4(d), Colc(v1) = {{v1, v3, v5}, {v1, v3, v6}, {v1, v5, v6}}.
To show that the conflict graph colouring given in Figure 4(d) is indeed

optimal we will first show that there is an optimal fractional 3-bounded colour-
ing for which both v2 and v4 are coloured the same, i.e., a colouring with
c({v2, v4}) = 1.
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Given the conflict graph of Figure 4(a), let c be an optimal 3-bounded
colouring of G with c({v2, v4}) maximal. Suppose indirectly that c({v2, v4}) <
1. If so, there must be non-empty independent sets: I ∈ Colc(v2)\{v2, v4} and
J ∈ Colc(v4) \ {v2, v4}. Without loss of generality suppose that c(I) > c(J).
Consider a new fractional colouring c′ defined by c′({v2, v4}) = c({v2, v4}) +
c(J), c′(J) = 0, c′(I) = c(I)−c(J), c′((I

⋃
J)\{v2, v4}) = c((I

⋃
J)\{v2, v4})+

c(J), and c′(X) = c(X) for any other independent set X. Clearly c′({v2, v4}) >
c({v2, v4}) in contradiction to the maximality of c({v2, v4}).

Finally, since v2 and v4 are coloured the same, and each of the other four
vertices are connected to either v2 or v4, these four vertices must be coloured
by colours different from the colour of v2 and v4. So at least 4

3 more colours
are needed. Hence, the colouring of Figure 4(d) is optimal.
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Fig. 4 (a) A conflict graph G with unachievable bounds for r = 3. (b) An optimal colouring
of G. (c) Partitioning of the vertices into V1 and V2. (d) An optimal fractional colouring of
G.

4 Discussion

In this paper, we have revisited the PCOSS problem – a natural generalization
of the known open shop scheduling problem. We have previously studied two
variants of PCOSS, with and without preemption. PCOSS without preemp-
tion is equivalent to the problem of conflict graph orientation [4,5]. Therefore,
even for a single job, this is an NP-hard problem. Conversely, PCOSS with pre-
emption is equivalent to a colouring problem, which may be easier to solve [7,
8]. For example, when the conflict graph is known to be perfect, the problem
is polynomially solvable. In this paper, we have presented a variant of PCOSS
with preemption and an additional limitation of r resources. We started with
the issue of bounds. For an open shop scheduling problem with preemption
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two natural bounds exist, the clique bound and the resource bound – and the
maximal bound among these is polynomially achievable [2,13]. However, for
PCOSS these bounds may not always be achievable. Therefore, our first con-
tribution is a new bound, which is a combination of the clique and resource
bounds. Our second contribution is a procedure for r-bounded vertex colour-
ing that combines regular colouring and equitable colouring. We proceeded to
show that a specific implementation of this procedure yields an optimal frac-
tional bounded colouring for perfect graphs and r = 2, which constitutes our
third contribution. The bound is generally not achievable for r = 3.

The equivalence of the bounded colouring problem with r = 2 and the
regular matching problem was mentioned by Hansen et al. [6] and Janssen
and Kilakos [9]. It will be interesting to make the connection between the
bound Bm for a 2-bounded colouring problem and the known bounds in the
duality theorem for fractional matching [11]. It is interesting to study the
relation between the polyhedral approach used to prove a MinMax theorem
for the 2-bounded (fractional) chromatic number and our purely combinatorial
approach.

Our starting point for the study of bounded colouring was the PCOSS
model, and the timetabling problem of assigning technicians in a garage that
inspired it. Limited resources, such as vehicle lifts, are common elements in
many realistic problems, and having the ability to deal with them brings us one
step closer to solving full-scale complex problems. In a previous work [8], we
have presented a special variant of a PCOSS, termed uniform PCOSS, dealing
with a problem where all of the jobs share the same conflicts. The conflict
graph is then a Cartesian product between a one-job conflict graph (G1) and
a complete graph of size m (the number of machines). The main question is
how the efficient solvability of the colouring of G1 affects the hardness of the
entire model. It is a matter for further research to ask analogous questions for
the PCOSS with resources, i.e., bounded colouring.
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