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A buffering-strategy-based re-optimization approach
to dynamic pickup and delivery problems with time
windows

Farzaneh Karami - Wim Vancroonenburg -
Greet Vanden Berghe

Abstract It is widely believed that the state-of-the-art in the dynamic pickup
and delivery problem with time windows (PDPTW) remains far from reaching
maturity, with there being no unanimous agreement with regard to the meth-
ods and tools required for obtaining high-quality solutions within a reasonable
amount of time. This study proposes a buffering-strategy-based re-optimization
approach for dynamic PDPTWs, applied in a computational study on instances
with different dynamism degrees and urgency levels. This optimization approach
utilizes two heuristics by way of implementing a certain scheduling algorithm:
first a cheapest insertion procedure is employed, before subsequently running a
local search algorithm. The proposed method’s results demonstrate how its per-
formance is impacted by urgency levels, the degree of dynamism associated with
request arrivals and the re-optimization frequency. These findings indicate that
increases in dynamism reduce costs, whereas increases in urgency result in higher
costs. Furthermore, the relative gap to the best found Mixed Integer Linear Pro-
gramming model solution for which all request information is known in advance is
only slightly affected when changing the dynamism degree and urgency level.

Keywords Dynamic pickup and delivery problems - Heuristics - Dynamism -
Urgency

1 Introduction

There is a growing consensus in academic literature that many operational level
optimization problems such as those found in timetabling and scheduling applic-
ations, cannot be dealt with purely from an isolated, static perspective. Planning
decisions are made in the context of earlier-made schedules that still impact the
current decision problem. New information may be revealed dynamically and thus
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prompt re-optimization. For example, in the second International Nurse Rostering
competition [1] the aspect of history was handled by introducing multi-stage nurse
rostering, where decisions need to be made on a weekly basis while accounting for
historic information from previous weeks on employees’ working schedules and
performed shifts. Studies on on-line bus prioritization [3] and dynamic patient-to-
room assignment [13] further exemplify timetabling applications with the need to
address information that is revealed dynamically. Another important area where
such aspects cannot be ignored is logistics.

Logistics represents a backbone service in several application domains’ activit-
ies such as in hospitals, distribution companies and storage warehouses. Logistics
in these areas requires the continuous picking-up of items from one location and
their corresponding delivery to another. Moreover, requests often require handling
before a certain time and thus two time windows can be associated with each
request: a pickup time window and a delivery time window. From a modeling per-
spective, this may be interpreted as the scheduling and assignment of tasks to a
fleet of vehicles while minimizing tardiness and any other relevant objectives.

In many real-life applications, situations occur in which request information re-
garding both the number of requests and their respective locations and time win-
dows is unavailable in advance. Due to the dynamic and uncertain nature of request
arrivals, logistics management falls within the category of dynamic pickup and de-
livery problems with time windows (PDPTWs). Although research regarding the
dynamic PDPTW optimization has grown over the last three decades, unlike the
static PDPTW, state-of-the-art modeling, optimization and solution evaluation
methods are far from reaching high-quality standards [10].

In the dynamic PDPTW, optimization decisions are made using only the data
available at that particular moment in time and are therefore likely to deterior-
ate in quality as new information becomes available. Unserviced requests may be
either rerouted or rescheduled in their current route or relocated to other vehicles
by solving sequences of PDPTWs (re-optimization). The time intervals associated
with re-optimization distinguishes instant from periodic approaches. Instant re-
optimization is performed upon each request’s arrival [2, 14], whereas periodic
re-optimization postpones its processing until a certain criterion is met.

Dynamic PDPTWs optimization methods must be capable of producing high-
quality solutions under time limitations. Possible dynamic PDPTW optimization
methods are those which optimally solve the original problem (exact approaches)
and those which address it heuristically with the goal of producing high-quality
solutions in limited time. While scalability remains a challenge for exact ap-
proaches, local search-based heuristics provide a promising set of features: flex-
ibility, adaptivity and speed, albeit with no guarantee of optimality.

Vancroonenburg et al. [14] contribute methods through which hospitals can in-
crease operational efficiency by dynamically allocating transportation tasks to
porters. The proposed solution method integrates different hospital logistics pro-
cesses and helps to reduce waiting times for patients. In their approach, instant
re-optimization is made possible by assuming fast communication technology and
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by applying a two phase heuristic-based scheduling algorithm that is sufficiently
fast. However, the approach actually ignores the computation time which may be
troublesome when urgent requests arrive during computations. Moreover, another
focus was on the dynamism of request arrivals regardless of their urgency. Both
the explicit consideration of computation times (which are never instantaneous)
and requests’ urgency levels in the re-optimization were the motivating factors for
the present study.

Two sets of strategies were proposed for improving the periodic re-optimization
methods’ performance: waiting and buffering. Mitrovié-Minié¢ et al. [9] proposed
two different waiting strategy types: drive-first and wait-first which require vehicles
to either drive immediately or wait as long as possible before driving to their next
destination, respectively. Since this approach is concerned with minimizing travel
time, it does not accommodate request tardiness. In contrast to waiting strategies,
buffering strategies postpone the least urgent requests until the latest possible
time. Pureza and Laporte [11] introduced a new optimization approach for the
dynamic PDPTW which involves random travel times and is based on a combin-
ation of both waiting and buffering strategies. While this approach facilitates the
insertion of future requests while minimizing the travel time and number of lost
requests, request tardiness remains unaddressed.

Appropriate measures and metrics are crucial when assessing the proposed dy-
namic optimization algorithm’s performance. While it is sufficient to only report
the best solution achieved in a static context, in a dynamic context this is not
enough. The primary reason being not only that solution costs at each step (or at
the end of planning horizon) are crucial but also the importance of numerous other
aspects. For example, how well do the methods accommodate continuous modi-
fications? Do frequent request arrivals affect optimization accuracy? Cruz et al.
[4] argue there is no unanimously agreed upon criterion for dynamic optimization
algorithm evaluation. The measures proposed thus far range from being entirely
problem-specific to near-general in nature. A valid performance measurement ap-
proach must be general enough to have the ability to evaluate any dynamic op-
timization algorithm regardless of its exclusive characteristics. However, it should
also be capable of providing insight concerning the overall behavior of an algorithm
and its solution cost.

This paper introduces an efficient optimization method which seeks to organize
sets of dynamic requests, allocate them to available vehicles, and minimize the
requests’ service tardiness while respecting several constraints. This optimization
method utilizes two heuristics by way of implementing a certain scheduling al-
gorithm: first a cheapest insertion procedure (denoted CI) is employed, before
subsequently running a local search algorithm (denoted LS). For evaluating the
behavior of the proposed algorithm, two performance metrics, local gap and global
dynamic gap are employed. These metrics represent the relative gap of the pro-
posed method by comparing its results against those of a Mixed Integer Linear
Programming (MILP) model for which all information is known in advance.
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2 Problem statement

The primary elements and attributes associated with the dynamic PDPTW are:

Location The locations of pickup and delivery requests and their connections are
represented by an undirected complete graph G(V, A,C'). V is the set of vertices
corresponding to all locations. A denotes the set of edges connecting the vertices.
Finally, C': A — R denotes a travel time function, mapping an edge to its travel
time.

Task Each individual pickup and delivery corresponds to a single task.
Service time The time required to perform task i.

Task time window The time window of each task 7 is expressed using two values:
the time window’s beginning and end which are denoted by st; and dt;, respect-
ively.

Request A request corresponds to a transportation demand and is denoted by
r = (i,j) € R, with R representing the set of all requests and i, j € T (T the
set of all tasks). Each request consists of a pickup task 7 at location v; € V and a
delivery task j at location v; € V. A semi-soft time window [st;, dt;) is associated
with pickup task ¢ thereby implying that it may not be scheduled before st;,
however it may be scheduled after dt;. Another time window [st;, dt;) is specified
for delivery task j.

Arrival time This refers to the time at which a request arrives. Each request r’s
arrival time is denoted by a,. It is assumed in this paper that both the pickup and
the delivery tasks associated with a request are known once the request arrives.

Vehicle Vehicles execute tasks. Each vehicle k£ has an availability time window
[stk,dtr) during which tasks may be assigned to it. All vehicles begin and end
their working day from a certain location called depot € V.

Urgency window (UW ) Each request » € R is associated with a parameter
indicating its urgency level, denoted UW, which consists of the time period from
its arrival time until the end of its pickup time window. This definition implies the
smaller UW values correspond to more urgent requests.

uw
® Pickup @ @ Delivery@
t; dt, dt;

Stj

a, time

%]

Figure 1: Pickup and delivery time windows and UW
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FEvents In the dynamic PDPTW, requests arrive dynamically and each vehicle’s
schedule is therefore continuously updated. In this paper, the dynamic PDPTW is
modeled and solved in a discrete event-based framework which involves three event
types: request arrival, vehicle dispatch and vehicle service end. Request arrival: for
each request arrival, a corresponding event is generated; Vehicle dispatch: when a
vehicle departs towards a pickup/delivery location, an event is generated to hold
the data of that vehicle’s current state and its destination; Vehicle service end:
when a vehicle finishes a task and is available once again for performing other
tasks, an event is generated to hold the data of the vehicle’s current state and the
task it has just finished.

Scenario In the dynamic PDPTW, a scenario is defined as a triple (7,¢, P) [5].
Here, 7 is the planning horizon length and P is a fleet of vehicles. Meanwhile, ¢
consists of all request arrival events which are declared between 0 and 7.

Dynamism and urgency The concept of dynamism in the context of the dy-
namic PDPTW was first introduced by Lund et al. [8] as the ratio of on-line to
off-line requests. This ratio was referred to as the degree of dynamism. Later,
this definition was refined by Larsen et al. [6] and different classes of dynamic
applications were distinguished as either weakly, moderately or strongly dynamic.
Recently van Lon et al. [7] have demonstrated that one drawback of this defin-
ition is that by only considering the number of request arrivals and neglecting
their arrival times, it is possible to overlook the different behaviours associated
with these classifications. In their proposed definition, the concept of urgency is
considered independent of dynamism and an entirely separate characteristic. In
addition, their definition is independent of the entire planning horizon length (1),
thereby making it possible to compare scenarios of different durations. In order
to incorporate both characteristics into a single definition, new formal definitions
for dynamism and urgency were proposed by van Lon et al. [7]. In these defin-
itions, dynamism relates to the continuity of request arrivals, whereas urgency
non-intuitively concerns the maximum time available to handle a request.

Tardiness Request time windows are considered semi-soft: a task may not be
scheduled before the start of its corresponding time window, however it may be
scheduled after the end of the time window. For each task 7, the difference between
its completion time Ct; and its time window end is called tardiness and is calcu-
lated as follows: I; = Max(0,Ct; — dt;).

Vehicle overtime Since all requests must be scheduled, vehicles may be assigned
requests which lie outside of their availability windows. Vehicle overtime is the
completion time of the last request performed by the vehicle minus the end of its
availability time window, or 0O if negative.

Travel time For each vehicle, travel time corresponds to the total time it takes
to travel between pickup/delivery locations, in addition to its travel time to/from
the depot.

The objective function seeks to minimize the sum of three components, total
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tardiness, vehicle overtime and total travel time, which are weighted using dif-
ferent coefficients depending on the application/use case.

The fleet of vehicles is assumed homogeneous, all vehicles drive at a constant speed
and their cargo default capacity is infinite (e.g. courier service). Each location can
be reached directly from any other location via its shortest path calculated on
graph G(V, A, C). Each scenario ends when all of its pickups and deliveries have
been handled.

A basic yet common method for solving a dynamic PDPTW is by re-optimization.
This method considers the dynamic PDPTW MILP formulation, proposed by
Savelsbergh and Sol [12], and applies it to the latest updated requests and vehicle
data (taking into account what currently is being executed or has already been
executed). Thus the MILP model is employed and adapted so as to accommodate
the dynamic nature of the PDPTW. For instance, the last-known location of each
vehicle is introduced as its depot for the next re-optimization. Additionally, a new
time window constraint is introduced to update the availability time window of
all currently-dispatched vehicles.

3 Solution approach

In the dynamic PDPTW request arrivals modify the input element of the next
re-optimization step. To accommodate this modification, a new problem must be
solved. Therefore, any dynamic optimization approach for the dynamic PDPTW
consists of solving a sequence of static sub-problems as re-optimization steps. At
each step, all unserviced requests are either rerouted or rescheduled. The amount
of time between two consecutive re-optimization steps is called a step interval.

In the present study the length of each re-optimization step is referred to as its
execution time and is denoted by ET. This value limits the amount of computa-
tional time available for an algorithm to generate a solution, taking into account
that the earliest decision cannot begin until ET time units after the current step’s
start time. At each step t, every request is in one of the following four states: (1)
unprocessed (URy): the request has arrived but has not yet been scheduled, (2)
currently processing (CP;): the request is scheduled but not-yet-executed, (3)
currently executing (CFE;): the request is currently scheduled and in progress
and (4) finished (F'R:): the request has already been scheduled and its corres-
ponding pickup and delivery tasks have been serviced, so it no longer requires
processing. At time ¢ (the beginning of a step) the set of all requests eligible for
(re)scheduling is UR; U CP;.

3.1 Components

A visual representation of the buffering-strategy-based dynamic optimization al-
gorithm and its components is illustrated in Figure 2. The algorithm is executed
regularly at step intervals ¢77°“ =4 x ET for i = 0,1,2,..., 5. At each step the
set of eligible requests is constructed as input to a scheduling algorithm. Inputs
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Figure 2: A visual representation of the buffering-strategy-based dynamic optim-
ization approach.

only consist of the requests known and unserviced at that moment in time. In par-
allel to the scheduling algorithm’s execution, any new request arrivals are buffered
to be used as input in the next re-optimization step.

The scheduling algorithms are used for assigning vehicles to requests and sequen-
cing them. The services performed by vehicles at each step are called actions.

3.2 The significant role of ET

Since parameter ET affects the number of requests taken as input at each re-
optimization step, a large ET value may postpone some eligible requests for a
significant amount of time, which may consequently contribute towards additional
tardiness. Thus, E'T should be set in accordance with the urgency of request ar-
rivals.

Assume the urgency window of the most urgent request is known (denoted by
UWmin) and the value of ET is set to a value less than or equal to it (ET <
UWnin). As a result, there are no requests with UW smaller than ET in the
requests list. Ideally ET should be set equal to UW,,;, because any smaller value
represents a waste of computational resources. Since in most dynamic applications,
UWiin is unknown in advance, some investigation is required to isolate an ap-
propriate value for ET. Figure 3 illustrates the pickup time window’s relationship
with ET and UW.
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According to van Lon et al. [7] dynamism and urgency are two separate con-

r— —Uw —
‘ Cllr St; dti time
ET ET

Figure 3: A visualization of ET and UW

cepts, each affecting the problem and optimization approach in a different way.
Therefore, in scenarios of the same scale, the value of ET should be larger in those
with less urgent request arrivals but similar dynamicity. The scale is a combination
of the number of vehicles, number of requests and area size. The ET value also
depends on the travel time to the eligible requests with UW,;» or in general to
the scale of the problem. For a fixed number of vehicles and requests, by increasing
the size of area, the average travel time of all requests will also increase. Thus, a
full data investigation is required to isolate an appropriate value for ET.

3.3 Scheduling algorithms

The Cheapest Insertion and Local Search scheduling algorithms are taken and
adapted from [14] and are detailed next:

Cheapest insertion The CI policy inserts eligible requests at each step based
on the current state, with the goal of minimally increasing the objective function
value. Certain constraints such as time windows must be respected to guarantee
feasibility. After deciding on a feasible insertion position in a vehicle’s list of sched-
uled tasks, the start and end times of all tasks from that list are recalculated. This
is performed by iterating over all the tasks contained in the list and updating their
start times' based on the maximum sum of the current decision time, the travel
time to the pickup/delivery location and start of the corresponding time window
st;.

Local search The local search policy represents an iterative application of the
cheapest insertion policy. A set of eligible requests is inserted into the solution at
each step interval using the aforementioned CI method, before the LS algorithm
iteratively applies a simple local-search-based procedure of ejection, move and re-
insertion. At each local-search iteration, a request is randomly selected and ejected
from its corresponding vehicle’s schedule before the CI procedure subsequently in-
serts it into a (potentially different) vehicle’s schedule. The start and end times
of the scheduled tasks associated with these vehicles are updated. A new solution
is accepted only if its cost is lower than or equal to the best known cost from
previous solutions. This iterative search continues until a predefined number of

1 This is the start time of the pickup/delivery service, not the dispatch time to the location.
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maximum non-improving iterations is reached.

This paper assumes step intervals are long enough to enable the search process
to complete. The following stopping criterion must therefore be included so as to
ensure this: iterations must stop either before the next step or after a maximum
number of non-improving iterations is achieved. Additionally, the earliest sched-
uled departure time of a vehicle must occur after ET +t, where t is the last step’s
start time. Earlier scheduled departure times would imply the vehicle knows it
has to depart to a task location before the algorithm has finished its calculations,
which is clearly infeasible.

3.4 Dynamic optimization algorithm

Ultimately, the proposed dynamic optimization algorithm functions according to
the following steps:

1. The entire planning horizon is subdivided into a number of step intervals of
length ET.

2. Based on recent events, previous decisions and actions, a request queue con-
sisting of all eligible input elements is constructed at the beginning of each
stept:=ix ET fori=0,1,2,..., z5.

3. A set of rules is applied which stipulate the conditions under which the schedul-
ing algorithm must make decisions.

4. The scheduling algorithm is executed on the constructed request queue.

5. The scheduling algorithm’s outcomes and actions are stored at each step.

4 Computational study

A computational study is performed to evaluate the dynamic optimization ap-
proach and LS scheduling algorithm. This study focuses on comparing the dy-
namic optimization algorithm’s solution and total actions against the best static
solution found by the MILP model, for which all information is known in advance.

4.1 Performance evaluation criteria

This section proposes two performance metrics for evaluating the behavior of the
proposed algorithm: local gap and global dynamic gap.

Local gap At each step, this gap compares the relative optimality gap of the
LS scheduling algorithm’s local solution against the optimum static solution ob-
tained by the MILP model for the same input. A dynamic algorithm is considered
superior to another if it generates solutions closer to optimality throughout the
entire optimization process. Local gaps (LGs) are calculated for each step i by
LG; = 100 x (W), where OPT(0;) is the cost of either the op-
timum or the best solution found by the MILP model for each request queue 6;,
with Alg(0;) denoting the cost of step i using the LS.
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Global dynamic gap The overall dynamic optimization’s solution is not ne-
cessarily optimal, even though each individual re-optimization may have been
solved to optimality. Since the local gap only allows to draw conclusions regard-
ing the scheduling algorithms’ ability to find good quality solutions to each re-
optimization problem, the global dynamic gap is considered. This compares the
global dynamic solution cost, the cost obtained by the dynamic approach over the
entire scenario by repeatedly applying the scheduling algorithm, against the best
solution obtained by MILP model over the entire planning horizon. To this end,
the global dynamic gap (GDG) is calculated for the entire planning horizon by

GDG = 100 x (%&)}DT(M), where OPT(6') denotes the best static solution
found by the MILP model for all requests ¢, with Alg(6’) denoting the cost of the

solution obtained by applying LS throughout the scenario.

In the context of dynamic optimization, an algorithm performs well if request
characteristics have a minimal impact upon its GDG. To study the impact of step
length on objective value and relative optimality gaps, a set of hypotheses is con-
sidered. These hypotheses concern the extent to which the global dynamic cost
and its relative optimality gap are affected by the dynamism and urgency of re-
quest arrivals. For example, by decreasing dynamism and increasing urgency, the
cost will increase and the GDG will slightly increase. On the contrary, by increas-
ing dynamism and decreasing urgency, the cost will decrease and the GDG will
slightly decrease.

4.2 Datasets

The present computational study employs a dataset created by the generator in-
troduced by van Lon et al. [7]. This dataset consists of different configurations of
dynamism degrees and urgency levels for request arrivals. In doing so, it enables
evaluating the proposed approach in various distinct situations.

The generator was employed to generate scenarios with five different degrees of
dynamism 20%, 40%, 50%, 80% and 90% and five different levels of urgency 5,
15, 25, 35 and 45 minutes. Five instances were produced for each possible setting
of these dynamism degrees and urgency levels resulting in 125 scenarios in total.

For example, to generate instances with different degrees of dynamism, consider
A = {00,01,...,0)c)—2} = {ar; — ars|lj = i+ 1 AVri,r; € €}, which represents
the sequence of inter-arrival times for requests and | A | := |e| — 1. The perfect
inter-arrival time required for 100 percent dynamism is FT‘

One possible example sequence is A, = {0.1,2,0.1,2,0.1,2,0.1,2,0.1} which in-
cludes five small bursts with intervals 0.1 and 2 units (Figure 4-left). By chan-
ging this order, another possible sequence for request inter-arrival time is A, =
{0.1,0.1,0.1,0.1,0.1,2,2, 2,2} which has one big burst of request arrivals at the
beginning and four individual request arrivals (Figure 4-right). Based on van Lon’s
definition, dynamism is measured by 1 — g%’ Zf’, for which the numerator is the

i=0 "1

sum of all deviations of an inter-arrival time relative to the 100 percent case (the
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deviation of an entire scenario) and for which the denominator is the maximum
deviation for a scenario. Thus, Figure 4-left represents 50% dynamism and Figure
4-right depicts a degree of dynamism equal to 27.5%.

I W 1 1

1 T -
> 4 6 '8 10 Time o 2 4 6 8 10 Time

Figure 4: Ten request arrival events which exhibit 5 inter-arrival times of 0.1 and
4 inter-arrival times of 2 [7].

Regarding the study by van Lon et al. [7] the pickup/delivery task time windows
have been randomly generated while respecting the constraints on different request
urgency levels (UW is expressed in minutes) and the announce times.

Simulations were run for a total of 10 vehicles with an assumed 50 km/h velocity.
The service time of each task is 5 minutes and the entire planning horizon’s length
is one day.

4.3 Computational results

Computational experiments were performed on a computer with an Intel Xeon,
E5-2640, 2.60GHz processor with 16GB of RAM memory running Linux Ubuntu
16.04.3. The MILP formulation was solved by Gurobi 7. The scheduling algorithm’s
runtime was limited to ET for each step interval. The proposed dynamic optimiz-
ation approach was applied within a simulation environment, implemented in Java
1.8.

In order to evaluate the scheduling algorithm, its local and global performance
were assessed by calculating LG; at each step as well as the GDG after the final
step. To assess the local performance at each step first, the scheduling algorithm
was executed on the constructed request queue and the resulting cost in addition
to all actions were stored. The MILP model was subsequently executed on the
same request queue and its results were also stored. This provided the necessary
data for assessing local performance. To assess the global performance, each scen-
ario was solved using the MILP model with all information known in advance. All
these simulations were performed using the same ET.

Local gap Figure 5 presents two boxplot graphs. The left boxplot indicates the
local solution gap obtained by LS for scenarios with different urgency levels (UW
values), wherein each box aggregates local solutions of 15 instances with three
different dynamism degrees and the same urgency level. The right boxplot presents
the local solution gap for all dynamism degrees, where each box aggregates local
solutions of 25 instances with five different urgency levels and the same dynamism
degree. Although scenarios may differ considerably from each other, it is possible
to aggregate them in Figure 5. From this figure it can be concluded that in high
urgency instances (the smaller the UW value, the more urgent the request) better
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local solutions on average can be obtained. This is expected because of the small
number of requests in the eligible request list, which makes the LS more effective.
It also reveals how the maximum of the local gaps decreases when dynamism
increases or urgency decreases. Its small increment on non-urgent scenarios may
be explained by the increased total number of eligible requests at each step which
may demand for more computation time to achieve a tighter gap.

%%é I
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Figure 5: Local gaps (LGs) on scenarios with different levels of urgency (UW
values) 5, 15, 25, 35 and 45 minutes and three degrees of dynamism 20%, 50%
and 90%. In the left boxplot, each box aggregates LGs for scenarios with three
different dynamism degrees and the same urgency level. The right boxplot presents
the LGs for scenarios with five different urgency levels and the same dynamism
degree. The average gap for each boxplot is represented by ‘e’.

Global solutions The proposed dynamic optimization algorithm is analyzed based
on the experimental results regarding whether or not the proposed optimization
method’s cost and GDG depend on the degree of dynamism and the urgency level
of incoming requests. Figures 6(a)-6(c) and 7(a)-7(c) illustrate the experimental
results concerning cost and GDG, respectively.

Figure 6(a) illustrates how for any level of urgency (UW value) the cost will de-
crease by increasing the degree of dynamism. Also, Figure 6(b) demonstrates how
the solution cost will decrease by decreasing the urgency level of request arrivals
for any dynamism degree. Figure 6(c) illustrates how instances with low dynamism
degrees and high levels of urgency are the most challenging and costly instances
for the proposed dynamic algorithm to solve.

Figures 7(a)-7(c) illustrate the primary achievement of the proposed approach.
The observation is that GDG is only slightly affected by the dynamism and ur-
gency of request arrivals. Regarding GDG behavior, by increasing the dynamism
degree for a low level of urgency, decreases in the GDG continue until a certain
degree of dynamism is reached. For high urgency levels, the GDG increases for
high degrees of dynamism while staying within the range of 15%-37%. The main
reason why this gap slightly increases for very high degrees of dynamism is the
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Figure 6: Solution cost using the LS. Figure (a) illustrates that the cost will de-
crease by increasing the degree of dynamism. Figure (b) demonstrates that the
solution cost will decrease by decreasing the UW value. Figure (c) illustrates
how often instances of varying degrees of dynamism and urgency levels are the
most /least costly.

more significant role data uncertainty plays when increasing the dynamism. An-
other reason for that is increasing the queue length. A longer queue may require
more computation time than the time limit (E7T) to achieve the same gap. Thus,
request queue length and computation time limit (ET') function as two interre-
lated parameters primarily responsible for affecting the GDG. If ET is too small
then a large gap is likely introduced. On the other hand, if ET is too large then
the request queue length may increase which in turn will also result in large gaps.

5 Conclusions and future work

Almost all real-world logistics problems are subject to an information release over
time, necessitating repeated decision making over time. Although over the last
two decades significant research effort has been allocated to dynamic optimization,
there is no agreed groundwork of methods and tools for comprehensive algorithm
analysis in dynamic optimization. This paper helps to remedy this deficiency.

The proposed buffering-strategy-based optimization approach for the dynamic
PDPTW is designed to take advantage of special problem structures and therefore
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Figure 7: GDGs result using the LS. Figures (a) and (b) demonstrate that GDGs
in the scenarios with different urgency levels and dynamism degrees are slightly
affected by variations of these two request arrivals characteristics.

better utilize heuristic methods. Particular attention was given to on-line high-
quality solution construction, not only at each step (local perspective) but also
at the end of the planning horizon (global perspective). To evaluate the proposed
approach, the gap between the best found MILP cost and the heuristic-based dy-
namic optimization cost was studied from both local and global perspectives.

It was also shown how urgency levels, dynamism degrees of request arrivals, and
re-optimization frequency all impact cost and the relative gap to the best found
MILP solution for which all information is known in advance. Results indicated
how any increase in dynamism results in decreased costs, whereas any increment in
urgency will have the opposite effect. In addition, it is noteworthy that the relative
gap is only slightly affected by any changes regarding the degree of dynamism or
the urgency of request arrivals.

Different aspects of the proposed dynamic optimization approach are currently
being studied. Future research directions may include further investigating the
sensitivity of the cost and relative gap with regard to the objective weights and
ET, adapting of existing approaches for large-scale real-life applications and gen-
erating an efficient exact approach for calculating their lower bounds. Another
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promising direction involves developing a robust optimization approach for the
dynamic PDPTW.

Acknowledgements W. Vancroonenburg is a postdoctoral research fellow at Research Found-
ation Flanders - FWO Vlaanderen. Editorial consultation provided by Luke Connolly (KU
Leuven).

References

10.

11.

12.

13.

. Ceschia, S., Thi Thanh Dang, N., De Causmaecker, P., Haspeslagh, S., Schaerf,

A.: Second International Nurse Rostering Competition (INRC-II) — Problem
Description and Rules —. ArXiv e-prints (2015)

Chang, M.S., Chen, S.R., Hsueh, C.F.: Real-time vehicle routing problem with
time windows and simultaneous delivery/pickup demands. Journal of the
Eastern Asia Society for Transportation Studies 5, 2273—-2286 (2003)

Cogill, R., Marecek, J., Mevissen, M., Rudové: Online problems in timetabling:
Bus priority at signalised junctions. In: Proceedings of the 11th international
conference on the practice and theory of automated timetabling, Udine, Italy,
23-26 August, pp. 81-94 (2016)

Cruz, C., Gonzalez, J.R., Pelta, D.A.: Optimization in dynamic environments:
a survey on problems, methods and measures. Soft Computing 15(7), 1427—
1448 (2011)

Gendreau, M., Guertin, F., Potvin, J.Y., Séguin, R.: Neighborhood search
heuristics for a dynamic vehicle dispatching problem with pick-ups and deliv-
eries. Transportation Research Part C: Emerging Technologies 14(3), 157-174
(2006)

Larsen, A., Madsen, O., Solomon, M.: Partially dynamic vehicle routing—
models and algorithms. Journal of the Operational Research Society 53(6),
637-646 (2002). DOI 10.1057 /palgrave.jors.2601352. URL https://doi.org/
10.1057/palgrave. jors.2601352

van Lon, R.R., Ferrante, E., Turgut, A.E., Wenseleers, T., Vanden Berghe,
G., Holvoet, T.: Measures of dynamism and urgency in logistics. European
Journal of Operational Research 253(3), 614-624 (2016)

Lund, K., Madsen, O.B.G., Rygaard, J.M.: Vehicle routing problems with
varying degrees of dynamism (tech. rep.). Lyngby, Denmark: IMM, The De-
partment of Mathematical Modelling, Technical University of Denmark (1996)
Mitrovi¢-Minié, S., Krishnamurti, R., Laporte, G.: Double-horizon based heur-
istics for the dynamic pickup and delivery problem with time windows. Trans-
portation Research Part B: Methodological 38(8), 669685 (2004)

Psaraftis, H.N., Wen, M., Kontovas, C.A.: Dynamic vehicle routing problems:
Three decades and counting. Networks 67(1), 3-31 (2016)

Pureza, V., Laporte, G.: Waiting and buffering strategies for the dynamic
pickup and delivery problem with time windows. INFOR: Information Systems
and Operational Research 46(3), 165-175 (2008)

Savelsbergh, M.W., Sol, M.: The general pickup and delivery problem. Trans-
portation Science 29(1), 17-29 (1995)

Vancroonenburg, W., De Causmaecker, P., Vanden Berghe, G.: Patient-to-
room assignment planning in a dynamic context. In: Proceedings of the 9th

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28-31, 2018



272 Farzaneh Karami, Wim Vancroonenburg and Greet Vanden Berghe

International Conference on the Practice and Theory of Automated Time-
tabling, Son, Norway, 28-31 August, pp. 193-208 (2012)

14. Vancroonenburg, W., Esprit, E., Smet, P., Vanden Berghe, G.: Optimizing
internal logistic flows in hospitals by dynamic pick-up and delivery models. In:
Proceedings of the 11th international conference on the practice and theory
of automated timetabling, Udine, Italy, 23-26 August, pp. 371-383 (2016)

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28-31, 2018



