
Solving the Shifts and Breaks Design Problem Using Integer Linear
Programming

Arjan Akkermans · Gerhard Post · Marc Uetz

Abstract In this paper we propose a two-phase approach to the shifts and breaks design problem using integer
linear programming. In the first phase we create the shifts, while heuristically taking the breaks into account.
In the second phase we assign breaks to each occurrence of any shift, one by one, repeating this until no
improvement is found. This approach outperforms the current best known method for shifts and breaks design
on a set of benchmark instances, as well as on real life instances.

Keywords Shift Design · Break Scheduling · Timetabling

1 Introduction

Personnel scheduling was first introduced by Edie [15] and formulated as a set covering problem by Dantzig
[10] in the 1950’s. After its introduction it has received a great deal of attention in the literature and has been
applied to numerous areas such as airlines, health care systems, police, call centres and retail stores [16]. The
interest can be explained by labour cost being a major direct cost component for companies.

In this paper we consider the shifts and breaks design problem which in this specific form was introduced
by Di Gaspero et al [14]. In this problem a set of shifts has to be selected from a set of possible shift types. A
shift is characterised by its starting time and length, such as 09:00 and 8 hours. A selected shift can then be
used on multiple days and with a different number of duties assigned to it on each day. A duty represents shift
with a person assigned to it, and corresponds to a workload to be carried out by a single person. One of the
goals in the shifts design problem is to select a small number of different shifts. This because schedules with
a small number of different shifts are easier from a managerial perspective. Furthermore the number of duties
over the planning horizon must follow a given staffing requirement at any time, which is given as a piecewise
constant function that encodes the number of required duties per unit time. Here we understand ‘to follow’
in the sense that under- and overstaffing is possible yet undesirable. Eventually this will translate into penalty
costs. Figure 1 and Table 1 show, respectively, an example of staffing requirements over a two-day period, and

Arjan Akkermans · Gerhard Post · Marc Uetz
Department of Applied Mathematics
University of Twente
P.O. Box 217, Enschede
The Netherlands

Gerhard Post
ORTEC Optimization Technology
Houtsingel 5, Zoetermeer
The Netherlands

137

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Fig. 1: Example Staffing Requirements

Table 1: Example Shift Types

Abbr. Name Earliest
start

Latest
start

Minimum
length

Maximum
length

M Morning Shift 05:00 08:00 7:00 9:00
D Day Shift 09:00 11:00 7:00 9:00
E Evening Shift 13:00 15:00 7:00 9:00
N Night Shift 21:00 23:00 7:00 9:00

a set of possible shift types. The problem is cyclic hence duties working on a night shift on the last day will
continue to be working on the first time periods of the next planning horizon.

On top of the selected shift design, for each duty an individual break allocation has to be scheduled. Breaks
are restricted by a large number of (legal) regulations and conditions which we will discuss in more detail later.
Roughly said, frequent small breaks are required in the available instances. Obviously, duties are not counted
as contributing to the fulfilment of the staffing requirements during a break, and in fact, also not during the
time period immediately after each break.

2 Problem Description

We use the same problem formulation as Di Gaspero et al [14]. The planning horizon consists of a set of con-
secutive days such as a week. The planning horizon is divided into time periods of a constant length such as
5 minutes. For each time period t the staffing requirement Rt is given. A solution is represented by a set S of
selected shifts, the number of duties assigned to each shift on each day, and a break allocation to each duty.

Shifts must be chosen in accordance with pre-defined shift types. For each shift type the minimum and maxi-
mum values for the starting time and the duration for a shift of the shift type are given. Once a shift is chosen,
the number of duties assigned to each shift on each day has to be determined.

To each duty an individual break allocation must be assigned, which splits a shift into a set of alternating
break and working periods. Clearly, a duty that is on break at a certain time period, does not contribute to
the staffing requirements. The same holds for the period following a break: the reasoning is that the employee
needs some startup time, which makes him not effective in this period. The periods of the duty that contribute
to the staffing requirements are called active.

Various restrictions are set on the break allocation. These represent legal regulations as well as physical
requirements that prevent fatigue. Let us briefly discuss these constrains: Firstly, the total break time of a duty
is fixed. It depends on the length of the duty. The number of breaks of a duty is not fixed, however. Furthermore
all breaks and working periods have a minimum and maximum length. For example, if a break follows a long
working period, which is a working period longer than a certain threshold, then the next break has a longer

138 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

minimum length. Also, the start of a break cannot be too close to the beginning and end of a shift. Finally, a
duty of sufficient length requires a lunch break of a fixed length which has to be scheduled around the middle
of the duty.

The objective function is the weighted sum of overstaffing, understaffing, and the number of selected shifts.
The first two factors can easily be defined by using the active time periods of a duty. Let at to represent number
of duties that are active at time period t. The overstaffing, O, represents the total excess of active duties and the
understaffing, U , the total shortage. They are defined as follows

O = ∑
t∈T

max{at −Rt ,0}, U = ∑
t∈T

max{Rt −at ,0}

Using the weights W1,W2 and W3 to penalise the different solution criteria, and using |S| to represent the total
number of selected shifts, the objective is formulated in the following way.

minimize W1 ·O+W2 ·U +W3 · |S| (1)

3 Previous and Related Work

After the personnel scheduling problem was introduced by Dantzig [10], many different formulations of per-
sonnel scheduling problems have been considered. A recent overview of personnel scheduling is given by
Van den Bergh et al [7]. The authors note that a wide range of solution methods is used to find solutions to
personnel scheduling problems. The two main approaches used are mathematical programming methods such
as linear programming, goal programming, integer programming and column generation, and heuristic meth-
ods such as simulated annealing, tabu search and genetic algorithms. Other approaches include simulation,
constraint programming and queueing.

Efficient methods for solving personnel scheduling problems without breaks are available for some specific
formulations. The constraint matrix in the integer linear programming formulation of Dantzig [10], that de-
scribes a set covering problem, is a consecutive ones matrix if the problem does not contains cyclicity nor
breaks, i.e. all duties are active on a consecutive number of time slots. Matrices with the consecutive ones
property are totally unimodular, as first shown by Veinott and Wagner [29], and hence integer linear programs
containing such a constraint matrix can be solved efficiently by solving the linear programming relaxation.
Bartholdi et al [4] show that personnel scheduling problems with a row circular matrix can be solved effi-
ciently by considering at most a bounded number of flow problems. These row circular matrices follow if all
duties are of the same length and contain no breaks. Furthermore Bartholdi et al [4] show that the formulation
of Dantzig [10] can be slightly changed to allow for problems in which, next to the linear cost for using a
duty, a linear penalty cost for overstaffing and understaffing can be considered for which the efficient solution
methods as discussed still hold.

Even when ignoring the problem of minimizing the number of shifts, the constraint matrix for the shift
design problem has neither the consecutive ones property, nor the circular row property. The constraint matrix
is column circular. Cyclic scheduling problems involving duties without breaks will always have the circular
ones property in the columns. Hochbaum and Levin [18] discuss the hardness of problems with a column cir-
cular matrix, and show the problem to be equivalent to the exact matching problem which is in the complexity
class NRC [25]. It is currently unknown whether the problem is in P.

Aykin [3] studied a problem for a continuous 24 hour workday (cyclical) and giving each duty one half hour
lunch break and two smaller 15 minute breaks. For this problem an integer linear program formulation is
described which differs from the original set cover formulation proposed by Dantzig [10] by requiring three
breaks to be scheduled. Rekik et al [28] considered an extension of the model and tested instances for which
exactly three breaks were required for each duty, having a combined duration of two hours. Furthermore, the
second break was required to be the longest break and the continuous periods in-between two breaks (working

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 139

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

period) was restricted to have a length between one and three hours. For this problem Rekik et al [28] propose
two integer linear program formulations and compare their results with modified versions of integer linear
programming formulations given by Bechtold and Jacobs [5] and Aykin [3]. Rekik et al [28] show that their
model is slightly slower computationally than the formulations in [5] and [3], which is explained by the added
flexibility that their model gives.

The shifts and breaks design problem of the form discussed here was introduced in [14]. The authors state
that to the best of their knowledge the very problem as described in their paper has not been addressed before
in the literature. The authors propose an approach combining local search (LS) and constraint programming
(CP) [2]. Their approach starts off with finding an initial randomly generated solution for the assignment of
shifts. Random LS is employed on a part of the solution, namely a solution which specifies the shifts, the num-
ber of duties for each shift on each day, and the number of breaks for each duty. A CP model is then used to
find a feasible break allocation. Since the authors are the first to tackle the shifts and breaks design problem
there are no results to compare to. The authors use a set of randomly generated instances as well as a set of
real-life instances which are publicly available [11].

The shifts and breaks design problem is the combination of two other problems: the shifts design problem
[26] and the break scheduling problem [6]. Local Search techniques have been applied to both of these prob-
lems. Musliu et al [26] use tabu search [17] to guide their local search for the shift design problem. The authors
state that they rely on local search techniques because the shift design problem is proven to be NP hard [21].
Di Gaspero et al [13] use a hybrid heuristic, which consists of a greedy heuristic followed by a local search
algorithm, which outperforms the previous results. The greedy heuristic is based on the relation of the shift
design problem to a flow problem as described in [21].

Answer Set Programming (ASP) [9] is an exact solution technique and has been applied to the shift design
problem by Brewka et al [9]. ASP is able to find most best known solutions within 60 minutes on instances of
shift design where those solutions have no overstaffing and understaffing. While the execution times are often
not competitive with results from [13], there are instances on which ASP works very well. Solutions found
for the instances in which a solution without overstaffing and understaffing might not exist are not competitive
with results from the literature. The authors state that a combination of ASP together with domain-specific
heuristics is a promising area for further research.

A variation on the shift design problem is studied by Bonutti et al [8]. The authors extend the shift design
problem to have multiple types of skills for employees. The requirements state the required number of employ-
ees at each time period for each skill. This formulation also allows for the possibility of planning one break
around the middle of a shift. Simulated annealing [20] is used to guide the search process.

Break scheduling was first introduced by Beer et al [6]. In their formulation different constraints are given
with different weights to each type of violation and there are no hard constraints. Their formulation uses either
a random assignment of breaks as an initial solution or a solution following from a simple temporal problem
[12]. After the initial solution has been constructed the authors use local search guided by either tabu search,
simulated-annealing, or a minimum conflicts-based heuristic [23]. A memetic algorithm for break scheduling
was proposed by Musliu et al [27]. Memetic algorithms combine population based method with local search
techniques and were first mentioned in [24]. The authors compare their results with the minimum conflicts-
based heuristic as proposed by Beer et al [6]. The algorithms both score best on half of the test instances and
hence conclusions regarding the better algorithm are indecisive. An improved memetic algorithm is given in
[30]. This algorithm obtains best results on all the instances considered by the previous authors. In this ap-
proach a part of the constraints in the break scheduling problem are considered hard and, ignoring the other
constraints which regard the staffing requirements, a simple temporal problem [12] can be formulated. Solu-
tions from this are taken as initial solutions for the memetic algorithm. In this approach memes are defined by
a set of time slots and each duty is assigned to exactly one meme in which most of the timeslots of the duty are.

140 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

The reason for this approach as opposed to the approach used in [27] is that duties have a strong interference
in satisfying the staffing requirements, and therefore it is difficult to find effective crossover operations when a
meme represents a duty. This memetic algorithm is also shown in [31]. In this paper it is also proven that break
scheduling is generally NP-complete, even under the condition that all feasible break patterns of each duty are
given explicitly in the input.

4 The Two-Phase ILP Approach

Solving the shifts and breaks design problem in one stroke is computationally hard, especially because of
the importance to minimize the number of active shifts. For this reason we propose a solution method that is
composed of two stages: the first stage determines which shifts and how many duties will be used, while in the
second stage the breaks are assigned to the duties.

More concretely, our solution approach to the shifts and breaks design problem consists of a two-phase
approach where we use integer linear programming (ILP) to find a solution in each phase. In the first phase the
shifts are designed and the number of duties for each shift and day are determined. The problem that we solve
in the first phase is a variation of shift design in which we have to select a set of shifts while accounting for
break time which has to be allocated in the second phase. This second phase will treated as a series of instances
of the break scheduling problem.

4.1 The First Phase Method

First we give an integer linear program (ILP) formulation of the shift design problem. A compact overview of
this ILP is given in A.2. The first phase will use a modified version of this ILP which we will discuss after
having introduced the shift design ILP.

4.1.1 The ILP for the Shift Design Problem

The shift design problem is made up of time periods, days and shifts. We will use the following variables to
refer to a single element of each set.

– t refers to a single time period.
– d refers to a single day.
– s refers to a single shift.

The time periods and the days are part of the input, but the shifts are not explicitly given. However, we can use
the shift types to determine all possible shifts by noting that all unique shifts of a certain type can be found by
using all unique pairs of starting times and lengths of that shift type. For each possible shift we are then making
the decision of using it or not. In the case that a shift is used, we call it active and we can assign a number of
duties to it on each day. Hereto we use the following variables.

as =

{
1 if shift s is active
0 otherwise

wd,s = the number of duties of shift s starting on day d

If a shift is inactive the number of duties on each day are forced to be 0. To model this constraint we use
the parameter M = maxt{Rt}. Recall that Rt denotes the staffing requirements at time period t. M is an upper
bound on the number of duties which are used in an optimal solution for shift design since using more duties
will lead to unnecessary overstaffing. The following constraints force the number of duties to be 0 in case the
corresponding shift is not active.

wd,s ≤ M ·as ∀d,s (2)

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 141

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Using the number of duties for each shift we can calculate the overstaffing and the understaffing. For this we
need a parameter denoting on which time periods the duties of a shift starting on a specific day are active.
Recall that breaks are not part of the shift design problem. We introduce the following.

ot = the amount of overstaffing at time period t, ot ≥ 0

ut = the amount of understaffing at time period t, ut ≥ 0

As,d,t =

{
1 if the duties of shift s starting on day d are active on time period t
0 otherwise

The following constraints specify, respectively, lower bounds for the understaffing and the overstaffing vari-
ables.

∑
s,d

(
As,d,t ·wd,s

)
+ut ≥ Rt ∀t (3)

ot = ∑
s,d

(
As,d,t ·wd,s

)
+ut −Rt ∀t (4)

The objective function is the weighted sum of overstaffing, understaffing and the number of shifts.

minimize W1 ∑
t

ot +W2 ∑
t

ut +W3 ∑
s

as (5)

4.1.2 Virtual Shifts

In order to design shifts that follow the requirements in the shifts and breaks design problem more closely, we
need to account for the break time which has to be allocated to each duty in the second phase. In order to do
this we construct a virtual shift for each possible shift. These are used to represent a shift while heuristically
accounting for the break time which has to be scheduled. Instead of a binary indicator for denoting whether a
duty will be active at a time period, the virtual shifts can be thought of as representing the probability of a duty
being active at a time period.

In the shift design ILP we used the parameters As,d,t , which were binary and indicated whether duties of
shift s starting on day d were active during time period t. For the virtual shifts we will use the values A∗

s,d,t
which can be any value from 0 to 1. A duty is not active on their breaks and on the first time period following
a break. The total break time required for a shift is given as part of the input by f (s). Before assigning the
breaks we do not know the number of breaks that a duty will have and hence we can not determine the number
of inactive time periods of that duty exactly. However, we can calculate the maximum and minimum number
of breaks of a duty by using the various restrictions on the break allocations. We will use IP(s) to indicate the
number of inactive time periods for a duty belonging to shift s, under the assumption of having as many breaks
as possible. Hereto we use maxB(s) to denote the maximum number of breaks for shift s, which leads to

IP(s) = f (s)+maxB(s) (6)

We use the maximum number of breaks to account for the worst case. Therefore this approach is conservative,
and may lead to scheduling too many duties. This is justified, however, since in most staff scheduling problems,
understaffing is considered to be less desirable than overstaffing.

Recall that breaks cannot be scheduled near the beginning and end of a shift. Denote by α and β the num-
ber of time periods where the shift is guaranteed to be active at the start and at the end of the shift, respectively.
Outside these time intervals a duty might be inactive depending on the break schedule. We simply ‘divide’ the
rest of the breaks evenly over the remaining time periods of the duty. We use R∗

s to denote the ratio of inactive
periods to active periods of shift s, excluding the first α and last β time periods, so

R∗
s =

IP(s)
s.length−α −β

(7)

142 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Fig. 2: Shift and Virtual Shift

That said, we define the parameters A∗
s,d,t , which can be interpreted as the probability of a duty being inactive

on time period t, as follows

A∗
s,d,t =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if t is not part of the duties of shift s starting on day d
1 if t is in the first α time periods of the duties of shift s starting on day d
1 if t is in the last β time periods of the duties of shift s starting on day d
1−R∗

s otherwise

(8)

Figure 2 shows the effect of working with a virtual shift (with 10 duties).

4.1.3 The ILP for the First Phase

The shift design ILP can be adapted in various ways to incorporate the virtual shifts. It is possible to simply
change the parameters As,d,t to A∗

s,d,t . Preliminary tests showed that this approach gives decent results, however
a drawback is that the actual flexibility of being able to choose the break allocation is not taken into account.
Intuitively, simply working with virtual instead of actual shifts may be overly pessimistic.

With an eye on the fact that understaffing is generally less desirable than overstaffing, we work with virtual
shifts in a slightly ‘asymmetric’ way, by adapting the constraints that express under- and overstaffing.
For understaffing we simply use the constraint (3):

∑
s,d

(
As,d,t ·wd,s

)
+ut ≥ Rt ∀t (9)

In other words, we count understaffing only in the case that there are not enough duties even without the breaks.
In such a case understaffing would indeed be inevitable.

Overstaffing at a time period, however, will be penalized only if there are too many duties when using the
virtual values A∗

s,d,t as defined by the virtual shifts.

ot ≥ ∑
s,d

(
A∗

s,d,t ·wd,s
)
+ut −Rt ∀t (10)

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 143

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Therefore, we only count overstaffing if there are too many duties using the virtual shifts. This updated ILP
accepts without penalty all overstaffing and understaffing, as long as the number of present workers is between
the number specified by the shifts and the virtual shifts.

Using only these two constraints, it is possible that overall too few duties are scheduled since the the con-
straints allow a duty to be always active. To tackle this issue, we enforce that over a certain number C of
consecutive time periods the sum of the staffing requirements are fulfilled using the virtual shifts. Note that we
abuse notation by allowing the index t + i to be greater than the number of time periods (n). In this case t + i
should be read as (t + i) mod n.

C

∑
i=1

(
∑
s,d

A∗
s,d,t+i ·wd,s

)
≥

C

∑
i=1

Rt+i ∀t (11)

As this equation is a hard constraint, we chose C experimentally and rather large. Our experiments suggested
to work with the value C = 25, expressing the idea that understaffing at a certain time period can be resolved
by borrowing overstaffing from ‘adjacent’ time periods.

4.2 Second Phase Method

Here we give a description of the algorithm used to allocate the breaks. This algorithm uses a break scheduling
ILP which considers the break allocation for a single duty at a time and takes the other break allocations as
fixed. This ILP is given in Appendix A.3. For an extensive description of this ILP we refer to [1].

The algorithm for the second phase is a greedy algorithm. The duties on each day as determined by the first
phase are used to determine the initial number of active duties at each time period, where at the start of phase
two, all duties are active from the start to the end of the duty (i.e., no breaks are scheduled). Then the duties
are considered in a fixed but random order, and a break allocation is calculated for each duty consecutively by
using the break scheduling ILP. Note that this alters the number of active duties at some of the time periods, and
hence the objective function. This greedy procedure continues as long as it is possible to improve the solution
by changing the break allocation of a single duty, and terminates at a local optimum.

5 Computational Results

The website [11] contains a set of instances that was used to test our method. The instances consist of two sets,
referred to as ‘First Set’ and ‘Second Set’ in Tables 2 and 3. Both sets contain 30 randomly generated instances.
These instances were created by ‘reverse engineering’ as follows: The staffing requirements are generated from
a solution with a randomly generated set of active shifts and duties. Hence, there is a ‘best known’ solution
which provides an exact coverage of the requirements.

The third set of 5 instances is based on a real world example. For these instances a good solution in which
there is no overstaffing and understaffing is very unlikely to exist. The real life instances are smaller than the
randomly generated instances with respect to the total staffing requirements. For the real life case the average
value for the sum of the staffing requirements over all time periods equals 10,193, for the randomly generated
instances this number is 16,535. However, the given shift types for the real life instances allow more shifts. For
these instances the total number of possible shifts is 8645, while the randomly generated instances allow for
2800 possible shifts. Due to the higher number of possible shifts for the real life instances our method did not
obtain satisfactory results when solving an ILP containing all possible shifts for these instances. To overcome
this challenge we only considered shifts at a time granularity of 15 minutes for the real life instances. This
reduces the number of possible shifts from 8645 to 1075 shifts, but might cut out the optimal solution.

Results for the randomly generated instances are shown in the Tables 2 and 3. For each instance we display the
objective value of the two-phase approach and compare it to the results of Di Gaspero et al [14]. Next we show

144 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

the best known solution which was used to construct the instances. We also list the time taken (in minutes) by
our two-phase approach. Results of the real life instances are shown in Table 4. For these instances we included
the values for overstaffing, understaffing and the number of shifts. The ‘LB-1’ column shows a lower bound
to the shifts and breaks problem using the shifts and number of duties provided by the first phase. A lower
bound for the best possible objective value can be obtained by scheduling as many breaks as possible at time
periods on which there is overstaffing. Therefore in the best case scenario, the penalty function for the number
of shifts is exactly known since the first phase has already designed the shifts. For understaffing, the best case
is that no additional understaffing is created by scheduling the breaks. For this penalty value we only take into
account unavoidable understaffing which is the total understaffing in case that no breaks are scheduled. For the
overstaffing, the best case would be when a maximum number of breaks is scheduled for each duty (to get rid
of as much overstaffing as possible). The penalty value for overstaffing is the difference between sum of total
active duties with as many breaks as possible, and the sum of the requirements. The tables show that in the
randomly generated instances, the lower bound is on average 5.1% better when compared to the objective value
found by our two-phase approach. For the real life instances this is 5.7%. Di Gaspero et al [14] use a time limit
of 60 minutes per instance to find their solutions. We allow a time limit of 30 minutes for the first phase and a
time limit of 30 minutes for the second phase. For the first phase these 30 minutes are always used. The average
optimality gap in the first phase for the randomly generated instances is 0.50 (with standard deviation 0.10),
for the real life instances this number is 0.86 (with standard deviation 0.02). A time limit of 30 minutes was
also used for the second phase. Therefore a running time of lower than 60 minutes means that the second phase
converges before the allocated 30 minutes are used, this is the case in 40 of the randomly generated instances
and for 3 of the real life instances.

The algorithm for shifts and breaks design was written in C++ using Microsoft Visual Studio 2013 [22]. The
integer linear programs were solved using the commercially available optimisation package Cplex [19]. The
algorithm was performed on a PC with an Intel i7-4702MQ quad core processor with 2.2Ghz and 8GB RAM
memory.

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 145

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Table 2: Results First Set
Inst. Objective Time

LB-1 2P-ILP Hybrid Best
1-1 3176 3284 10540 480 42
1-2 5226 5360 14904 600 40
1-3 2960 3108 15330 600 48
1-4 7066 7410 18652 960 56
1-5 4260 4494 11656 480 42
1-6 2726 2830 8756 420 37
1-7 4662 4872 10042 540 48
1-8 5276 5450 14210 600 53
1-9 4236 4440 12120 600 51
1-10 5902 6150 15804 660 60
1-11 2060 2076 n.a.1 120 39
1-12 2776 2944 8360 360 51
1-13 3738 3898 12306 420 60
1-14 6464 6760 18146 780 60
1-15 2520 2548 4774 180 34
1-16 6220 6506 15820 900 48
1-17 7006 7348 18402 1080 59
1-18 5130 5428 16668 720 58
1-19 4408 4772 13582 720 60
1-20 4582 4838 16794 540 60
1-21 4286 4396 10188 480 43
1-22 1872 1944 9816 300 37
1-23 5632 5822 13626 600 45
1-24 4208 4456 11730 480 42
1-25 5896 6254 18436 960 54
1-26 5440 5644 16286 660 48
1-27 3960 4362 18484 480 60
1-28 4256 4398 9952 540 40
1-29 5720 5906 13646 720 51
1-30 3352 3368 8604 300 39
Av. 4501 4702 13367 576 49

Table 3: Results Second Set
Inst. Objective Time

LB-1 2P-ILP Hybrid Best
2-1 5064 5380 14002 720 52
2-2 5420 5594 12866 720 60
2-3 5944 6694 13858 720 60
2-4 5088 5282 12780 720 58
2-5 5144 5400 12962 720 60
2-6 5822 6696 16214 720 60
2-7 6362 6816 17044 720 49
2-8 5606 5756 13684 720 44
2-9 5844 6110 14932 720 47

2-10 5878 6206 17972 720 58
2-11 6312 6648 n.a.1 960 48
2-12 6816 7082 16028 960 52
2-13 6638 6908 17446 960 57
2-14 6268 6552 18636 960 60
2-15 6794 7268 19032 960 60
2-16 6810 7370 18950 960 60
2-17 6700 6944 15754 960 53
2-18 6516 7022 18616 960 60
2-19 6660 6980 19456 960 60
2-20 6782 7256 18688 960 54
2-21 8354 8804 18890 1200 60
2-22 6928 7328 19804 1200 58
2-23 7818 8390 17236 1200 58
2-24 6810 7228 18178 1200 59
2-25 6974 7428 19198 1200 60
2-26 7514 8046 19662 1200 60
2-27 8076 8948 20200 1200 60
2-28 7584 7816 16414 1200 60
2-29 7558 8530 18574 1200 60
2-30 7658 8012 24462 1200 58
Av. 6591 7016 17294 960 57

Table 4: Results Real Life Instances
Instance Overstaffing Understaffing Shifts Objective Time

Hybrid 2P-ILP Hybrid 2P-ILP Hybrid 2P-ILP Hybrid 2P-ILP LB-1 2P-ILP
2fc04a 2636 1224 173 5 23 30 8382 4298 4050 56
3fc04a 2732 1227 130 1 21 36 8024 4624 4398 57
4fc04a 2710 1081 94 4 21 32 7620 4122 3896 56
50fc04 2636 1130 180 4 29 29 8812 4040 3744 60
51fc04 2890 1343 209 0 23 32 9250 4606 4360 60
Average 2720 1201 157 3 23 32 8418 4338 4090 58

1 The authors did not report a solution

146 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

6 Conclusion

We proposed an integer linear programming approach for the shifts and breaks design problem, which obtains
better results on all instances when compared to the best results available in the literature. Note that the integer
linear program of the first phase can also be used to solve the instances of shift design problem, which are all
solved to optimality within the time limit of 30 minutes. These result are shown in Appendix A.1.

Since we were not able to solve the ILP in the first phase to optimality we are not sure of the performance of
our algorithm in case the optimal solution for this ILP would have been be found. For the randomly generated
instances, for which a solution that exactly matches the staff requirements is known, the average objective value
of our solutions are more than 5 times higher than the cost of the solution that exactly match the requirements.
Based on the solution of the first phase, we can estimate a lower bound for the final solution, see the ‘LB-1’
columns in the Tables 2, 3, and 4. Note that the realized objective is just a few percent higher than this lower
bound ‘LB-1’. In other words, the results can be improved significantly, and to do this, the first phase should
generate ‘better’ solutions.

Above we observed that the second phase works practically very well in the two-phase approach that
we propose. However, applying phase two solely on instances of break scheduling problem turned out to be
less effective than the memetic algorithms of [30], when starting with the shifts and duties that were used to
construct the instances.

The low understaffing is partly a consequence of the choice made in Constraint (11) where we did not al-
low any understaffing over 25 time periods as measured by the virtual shifts. Although this requirement seems
rather weak, it creates solutions with almost no understaffing. We experimented with soft variants of Constraint
(11), which led to inconclusive results. The main reason seems to be that obtaining good lower bounds for the
problem is more difficult, leading to increased computation times, and worse solutions on several instances, as
well as large improvements on other ones.

We decomposed the shifts and breaks design problem in two phases, a first phase where we decide on the
shifts and the number of duties, and a second phase in which we decide where we place the breaks. The first
phase is in a sense the hardest to handle, as the information is incomplete. We believe that the virtual shifts
work well, because of the high flexibility of the breaks; in that case the assumption that in the middle of a shift
there is a uniform distribution on the probability of a time being a break time is reasonable. A more detailed
analysis could make this more precise, and might or might not improve the quality of the solutions. This is a
point for further investigations.

Another approach, used often in personnal scheduling problems, is a column generation approach. Usually
a column is a schedule for an employee, but it this case an approach where each separate duty, with breaks
assigned, is a column might be more appropriate. Note, however, that due to minimizing the number of shifts
in use, the columns are very dependent on each other. In what way to overcome this issue is another interesting
topic to investigate.

References

1. Akkermans A (2017) A two-phase approach to the shifts and breaks design problem using integer linear
programming. Master’s thesis, University of Twente, URL http://essay.utwente.nl/74147/

2. Apt K (2003) Principles of Constraint Programming. Cambridge University Press, New York, NY, USA
3. Aykin T (1996) Optimal shift scheduling with multiple break windows. Management Science 42(4):591–

602
4. Bartholdi JJ, Orlin JB, Ratliff HD (1980) Cyclic scheduling via integer programs with circular ones. Op-

erations Research 28(5):1074–1085
5. Bechtold SE, Jacobs LW (1990) Implicit modeling of flexible break assignments in optimal shift schedul-

ing. Management Science 36(11):1339–1351

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 147

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

6. Beer A, Gartner J, Musliu N, Schafhauser W, Slany W (2010) An AI-based break-scheduling system for
supervisory personnel. IEEE Intelligent Systems 25(2):60–73

7. Van den Bergh J, Beliën J, De Bruecker P, Demeulemeester E, De Boeck L (2013) Personnel scheduling:
A literature review. European Journal of Operational Research 226(3):367 – 385

8. Bonutti A, Ceschia S, De Cesco F, Musliu N, Schaerf A (2016) Modeling and solving a real-life multi-skill
shift design problem. Annals of Operations Research 252:365–382

9. Brewka G, Eiter T, Truszczynski M (2011) Answer set programming at a glance. Commun ACM
54(12):92–103

10. Dantzig GB (1954) A comment on Edie’s “Traffic Delays at Toll Booths”. Journal of the Operations
Research Society of America 2(3):339–341

11. Database and Artificial Intelligence Group, Vienna University of Technology (2017) Shift design and
break scheduling benchmarks. URL http://www.dbai.tuwien.ac.at/proj/SoftNet/Supervision/Benchmarks/,
accessed: 04-04-2017

12. Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artificial Intelligence 49(1):61 – 95
13. Di Gaspero L, Gärtner J, Kortsarz G, Musliu N, Schaerf A, Slany W (2007) The minimum shift design

problem. Annals of Operations Research 155(1):79–105
14. Di Gaspero L, Gärtner J, Musliu N, Schaerf A, Schafhauser W, Slany W (2010) A hybrid LS-CP solver for

the shifts and breaks design problem. In: 7th International Workshop on Hybrid Metaheuristics, Springer,
Heidelberg, Lecture Notes in Computer Science, vol 6373, pp 46–61

15. Edie LC (1954) Traffic delays at toll booths. Journal of the operations research society of America
2(2):107–138

16. Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: A review of applica-
tions, methods and models. European Journal of Operational Research 153(1):3 – 27

17. Glover F, Laguna M (1999) Tabu search. In: Du DZ, Pardalos PM (eds) Handbook of Combinatorial
Optimization: Volume1–3, Springer US, Boston, MA, pp 2093–2229

18. Hochbaum DS, Levin A (2006) Cyclical scheduling and multi-shift scheduling: Complexity and approxi-
mation algorithms. Discrete Optimization 3(4):327 – 340

19. IBM (2017) IBM ILOG CPLEX Optimization Studio 12.7.1
20. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science

220(4598):671–680
21. Kortsarz G, Slany W (2001) The minimum shift design problem and its relation to the minimum edge-cost

flow problem. Tech. Rep. DBAI-TR-2001-46, Technische Universität Wien
22. Microsoft (1980) Microsoft Visual Studio Community 2013, Version 12.031101.00 Update 4
23. Minton S, Johnston MD, Philips AB, Laird P (1992) Minimizing conflicts: a heuristic repair method for

constraint satisfaction and scheduling problems. Artificial Intelligence 58(1):161 – 205
24. Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts - towards

memetic algorithms. Technical Report, California Institute of Technology
25. Mulmuley K, Vazirani U, Vazirani V (1987) Matching is as easy as matrix inversion. Combinatorica

7(1):105–113
26. Musliu N, Schaerf A, Slany W (2004) Local search for shift design. European Journal of Operational

Research 153(1):51 – 64
27. Musliu N, Schafhauser W, Widl M (2009) A memetic algorithm for a break scheduling problem. In: Proc.

8th Metaheuristic International Conference (MIC 2009), Hamburg, Germany
28. Rekik M, Cordeau JF, Soumis F (2010) Implicit shift scheduling with multiple breaks and work stretch

duration restrictions. Journal of Scheduling 13:49–75
29. Veinott AF, Wagner HM (1962) Optimal capacity scheduling-i. Operations Research 10(4):518–532
30. Widl M, Musliu N (2010) An improved memetic algorithm for break scheduling. In: Blesa MJ, Blum C,

Raidl G, Roli A, Sampels M (eds) Hybrid Metaheuristics: HM 2010, Lecture Notes in Computer Science,
vol 6373, Springer, Berlin, pp 133–147

31. Widl M, Musliu N (2014) The break scheduling problem: complexity results and practical algorithms.
Memetic Computing 6(2):97–112

148 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

Appendix

A.1 Results Shift Design

Comparison of ILP formulation of shift design problems solved with the commercial solver Cplex[19] and the
greedy min-cost max-flow + Local Search heuristic (Gr) proposed by Di Gaspero et al [13]. Table 5 shows the
objective of the (previous) best known solution and running time of ’Gr’ to reach it. For our ILP approach we
show the optimal objective value and the running time to find and prove it. Table 6 shows the results of both
approaches using a running time of 1 second.

Table 5: Shift Design Comparison Set 1
Inst. Objective Time (Seconds)

Gr ILP Gr ILP
1-1 480 320 1 2
1-2 300 212 40 21
1-3 600 374 2 2
1-4 450 340 109 165
1-5 480 319 2 2
1-6 420 213 1 1
1-7 270 237 7 1
1-8 150 147 11 149
1-9 150 149 9 29
1-10 330 289 84 141
1-11 30 30 1 1
1-12 90 81 4 3
1-13 105 105 4 9
1-14 195 187 61 425
1-15 180 170 0 1
1-16 225 209 152 1552
1-17 540 394 288 283
1-18 720 447 7 6
1-19 180 177 31 54
1-20 540 353 2 2
1-21 120 119 2 7
1-22 75 75 4 4
1-23 150 150 22 100
1-24 480 343 1 6
1-25 480 352 n.a.2 168
1-26 600 347 9 5
1-27 480 393 2 3
1-28 270 222 4 32
1-29 360 289 10 58
1-30 75 75 2 2
Average 318 237 30 108

Table 6: Shift Design Comparison Set 3
Inst. Objective

Gr ILP
3-1 2386 318
3-2 7691 845
3-3 9597 924
3-4 6681 1427
3-5 9996 551
3-6 2077 1892
3-7 6087 642
3-8 8861 725
3-9 6036 2527
3-10 3002 462
3-11 5491 1024
3-12 4171 3514
3-13 4662 3131
3-14 9661 701
3-15 11445 1112
3-16 10734 638
3-17 4729 3011
3-18 6692 893
3-19 5157 2677
3-20 9175 1845
3-21 6054 4674
3-22 12870 2063
3-23 8390 699
3-24 10418 741
3-25 13252 847
3-26 13118 1042
3-27 10081 1034
3-28 10604 887
3-29 6690 1045
3-30 13724 1011
Average 7984 1430

2 Authors were not able to find the best known solution using the Gr algorithm

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 149

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

A.2 ILP Shift Design

Sets
Time Periods t
days d
shifts s
Variables
as Binary variable indicating whether shift s is active
wd,s Integer variable indicating how many workers will be working on shift s on day d
ut Will denote the understaffing at time period t
ot Will denote the overstaffing at time period t
Parameters
Rt The requirement at time period t
As,d,t Binary, indicating if the duty starting on day d of shift s is active on time period t
W1 Penalty cost for overstaffing
W2 Penalty cost for understaffing
W3 Penalty cost for the number of shifts
M Is used as a large constant, here it is the maximum demand at any time period

Constraints

wd,s ≤ M ·as ∀d,s

∑
s,d

(
As,d,t ·wd,s

)
+ut ≥ Rt ∀t

ot = ∑
s,d

(
As,d,t ·wd,s

)
+ut −Rt ∀t

as ∈ {0,1} ∀s

wd,s ∈ N0 ∀d,s

ot ,ut ≥ 0 ∀t

Objective
minimize W1 ∑

t
ot +W2 ∑

t
ut +W3 ∑

s
as (12)

150 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

A.3 ILP Break Scheduling Single Duty

Sets
Time Periods t = {1, ...,Length}, t∗ = {1, ...,Length+1}
Breaks b = {1, ...,Mbreaks}
Parameters
Dt The demand for staffing at time period t
Mbreaks The maximum number of different breaks+1
T bt The total amount of break time required
Length Length of the duty s, in number of time periods
Bminl (Bmaxl) Minimum (maximum) length of a break
Mlwp Minimum long working period
Lbml Long break minimum length
W pminl (W pmaxl) Working period minimum (maximum) length
Ebs (Lbs) Earliest (latest)break start;breaks can start this many time periods after (from) shift start (end)
L Binary, indicating whether a lunch break is required
Elbs (Llbs) Earliest (Latest) lunch break start
Lbl Lunch break length
W1 (W2) Penalty cost for overstaffing (understaffing)
M Used as a sufficiently large constant. Equal to the number of time periods in the duty
Variables
ab Binary variable indicating whether the bth break is active
al

b Binary variable indicating whether break b needs to be long
lb Binary variable indicating whether break b is the lunch break
bl

b The length (in time slots) that the bth break takes
bs

b First time slot on which break b is active
wpb Indicates the length of the bth working period
zs

t∗,b Binary indicating if the first time period of the bth break is the t∗th time period
ze

t∗,b Binary indicating if the last time period of the bth break is the t∗th time period
zt,b Binary3 indicating if the duty is on its bth break during time period t
zb

t,b Binary3 indicating if time period t is before the start of the bth break
za

t,b Binary3 indicating if time period t is after the end of the bth break
xt Binary3 indicating if the duty is working during a time period t
ut , ot Understaffing, Overstaffing in time period t

Constraints

ab ≤ ab−1 ∀b ∈ B\{1}
al

b + lb ≤ ab ∀b

∑
b

bl
b = T bt

M · (1−ab)+bl
b ≥ Bminl ∀b

bl
b ≤ Bmaxl · (ab)+M · (lb) ∀b

al
b ·Lbml ≤ bl

b ∀b

bs
b ≥ Ebs ∀b

3 These variables can be relaxed to continuous variables on [0,1]. By the binary restriction on zs
t,b and ze

t,b the variables are forced
to be either 0 or 1.

Solving the Shifts and Breaks Design Problem Using Integer Linear Program-
ming 151

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

bs
b ≤ Length−Lbs+(1−ab) · (1+Lbs) ∀b

bs
b ≥ (Length+1) · (1−ab) ∀b

wp1 = bs
1 −1

wpb = bs
b − (bs

b−1 +bl
b−1) ∀b ∈ B\{1}

wpb ≤W pmaxl ∀b

wp1 ≥W pminl

M · (1−ab−1)+wpb ≥W pminl ∀b ∈ B\{1}
wpb −Mlwp+1 ≤ al

b ·M+ lb ·M+(1−ab) ·M ∀b

Mlwp−wpb ≤ (1−al
b) ·M ∀b

∑
b

lb = L

(1− lb) ·M ≥ Lbl −bl
b ∀b

(1− lb) ·M ≥ bl
b −Lbl ∀b

(1− lb) ·M ≥ Elbs−bs
b ∀b

(1− lb) ·M ≥ bs
b −Llbs ∀b

∑
t∗

zs
t∗,b = 1 ∀b

∑
t∗

t∗ · zs
t,b = bs

b ∀b

∑
i=1>Length+1

zs
i,b = zb

t,b ∀t,b

∑
t∗

ze
t∗,b = 1 ∀b

∑
t∗

t · ze
t∗,b = bs

b +bl
b −1+(1−ab) ∀b

∑
i=1<t−1

ze
i,b = za

t,b ∀t,b

zt,b + za
t,b + zb

t,b = 1 ∀t,b

1− xt ≥ ∑
b

zt,b ∀t ∈ T

1− xt ≥ ∑
b

ze
t−1,b ∀t ∈ T \{1}

1− x1 ≤ ∑
b

z1,b

1− xt ≤ ∑
b

zt,b +∑
b

ze
t−1,b ∀t ∈ T

xt −1+ut ≥ Dt ∀t

ot −ut − xt +1 =−Dt ∀t

ab,al
b, lb ∈ {0,1} ∀b

zs
t,b,z

e
t,b ∈ {0,1} ∀t,b

ot ,ut ≥ ∀ t

Objective

minimize W1 ∑
t

ot +W2 ∑
t

ut (13)

152 Arjan Akkermans, Gerhard Post and Marc Uetz

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28�31, 2018

