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Abstract In this paper we propose a Lagrangian heuristic approach to solve
the integrated timetabling and vehicle scheduling problem. The approach was
developed in a tight collaboration between Universita di Pisa and M.A.I.LO.R,
a company producing software for public transport authorities and operators,
which also provided real-word test instances.
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1 Introduction

Planning of a public transportation system is a complex process that consists
of several phases, such as strategic planning (e.g., network design), tactical
planning (e.g., line planning, timetabling), operational planning (e.g., vehi-
cle/crew scheduling) and real time control. Due to the hardness of the prob-
lem, these phases are usually performed in sequence, in order to reduce its
complexity. In this way the number of vehicles and drivers needed, expensive
resources that need efficient utilization, is determined last. Despite numerous
studies addressing each step individually, to our knowledge, the literature for
integrated approaches is rather scarce, e.g., [1,2,4,3]. In this paper we pro-
pose a Math-heuristic approach to solve the integrated timetabling and vehicle
scheduling problem, with a special focus on buses. The approach was developed
in a tight collaboration between Universita di Pisa and M.A.I.O.R, a company
producing software for public transport authorities and operators, which also
provided real-word test instances.

The system is already fully implemented and functional, and is part of the
MAIOR commercial suite.
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2 Problem description

A public transportation network PTN is given, usually under the form of a
graph where the nodes correspond to stops or depots, and the links correspond
to direct bus transits. A line [ is a path in the PTN between two terminus A
and B; generally, lines run in both directions, i.e., a line is actually a pair of
lines. The frequency of a line specifies how often bus service should be offered,
as measured by the ideal time interval between two subsequent transits at a
specific point, called “pilot node”. The time horizon (one day) is aperiodic and
is divided into time slots, in which the service frequency typically varies.

We assume that the set of lines L is already given, together with the desired
frequencies. Trips are paths, corresponding to lines in the PTN, which have
to be operated at a certain time. Each trip ¢ € C' is characterized by a start
and end time, as well as the arrival time 7, at the pilot node. The problem
takes as input a set of trips C' = U;c 1, C;, partitioned according to the different
lines (Mier,C; = 0), and it can be divided in two parts. The timetabling (TT)
problem consists of selecting, for each line I, a subset of trips C; C O, such
that the corresponding frequencies are as close as possible to the desired ones.
The goal of bus scheduling (BS) is instead to find a cost-minimal assignment
between buses and trips such that each trip is covered by exactly one bus and
the schedule is “feasible”; this entails time compatibility between ending and
starting time of consecutive trips, and the possible impact of regulations.

Overall, this results in the bus routes together with a timetable for each
of the lines. The goal of the integrated problem is to provide a solution that
optimally balances cost (i.e., minimize the number of buses used) and user sat-
isfaction (i.e., minimize the distance between actual and desired frequencies).

3 Solution approach

The TT problem is separable for each [ € L, as frequencies are defined “per
line”. From the trips C; we construct a directed graph GEPT = (NlT T,AZTT),
where the nodes correspond to the trips, plus two nodes OF and O~ repre-
senting the start and the end of the day for the line. Then, we define three
types of arcs: (i) (e1,c¢2), meaning that the two trips can be subsequent trips
of the line; (i1) (O7T,c), meaning that the c¢ trip can be the first of the day,
(7i7) (¢,07), meaning that the c trip can be the last of the day. The cost of a
type (i) arc depends on the difference between the ideal time interval (in the
corresponding time slot) and 7. — 7.1, with a simple formula whose details
are not crucial. The arc exists only if m.o — 7.1 belongs to a given interval,
i.e., pairs of trips “too close” or “too far apart” cannot be chosen. The cost
of a type (ii) and (iii) arc depends on the difference between the starting (re-
spectively, ending) time of the day and 7. The arc exists only if 7. is “close
enough” to the starting (ending) time of the day for the line.

It is trivial to see that GlTT is acyclic; therefore, the TT problem can be
easily solved, for each line I, as an acyclic shortest path (SP) problem.
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The BS problem is not separable, as a single bus route can cover different
lines. We construct a single compatibility graph GPS = (NBS, AP%) having
two nodes ¢~ and ¢t for each trip ¢ € C, that represent the start and the
end of trip ¢, respectively, plus two nodes O and O~ representing buses
leaving and returning to the depot, respectively. Then, we define four types
of arcs: (i) (¢7,cT), meaning that the corresponding trip ¢ is covered by a
bus; (i7) (c¢t,d™), the compatibility arc defined iff the same bus route can
cover trip ¢ and then trip d in sequence; (iii) (d*,07), meaning that the
bus returns to the depot right after completing trip d, and (iv) (OT,c¢7),
meaning that the bus starts trip ¢ right after leaving the depot (and reaching
the corresponding terminus). Finally, a return arc (O~,0%) is added to define
a circulation problem, whose capacity is equal to the fleet cardinality and
whose cost represent the cost of a bus leaving the depot. The cost of a type
(#i) arc depends on the difference between the minimum recovery time (in the
corresponding time slot) and t4- — t.+, with a simple formula whose details
are not crucial. The arc exists only if t;- —t.+ belongs to a given interval, i.e.,
pairs of trips “too close” or “too far apart” cannot be chosen.

Clearly, the BS problem can be solved as a minimum cost network flow
(MCF) on GBS but taken alone its optimal solution would be the all-0 flow
since there is no constraint requiring trips to be covered.

All in all, the integrated model combines the BS graph and the TT graphs
(one for each line) to yield the following Mixed Integer Linear Programming
(MILP) model:

min oz + ), Byt W
2 (Giyears Tji = 2 jeans Tij =0 i e NBS )
Yieart Vi = Lgearr Yi = b leL, ie N T (3)
0wy < uy (.)€ A5 (4)
yi; €{0,1} leL, (i.j)e ATT  (5)
Z(i,J’)eB(c) yi] = Te— o+ leLce 6)

In the formulation, (2) and (4) represent the MCF problem, where the
capacities u;; for BS are all one except that of the return arc (O~,0%); (3)
and (5) represent the SP problems, where the deficits b! for TT are all zero
except in the source/sink nodes; (6) are the linking constraints between BS
and TTs, where for each [ € L,c € Cj, the set B(c) contains all arcs of AlTT
entering the node representing c.

Choosing the coefficients o and [ of the objective function is nontrivial,
as correctly doing so is crucial for obtaining a compromise between the two
contrasting objective functions of the problem.

Our solution approach relies on the Lagrangian relaxation of the linking
constraints (6): relaxing (6) we obtain one MCF and |L| SP independent prob-
lems that can be efficiently solved. The Lagrangian dual is solved using a Bun-
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dle method. The algorithm uses the primal information of the relaxations to
guide a fixing heuristic that progressively constructs integer solutions, i.e., the
bus routes.

The idea behind the heuristic is to build the solution in an orderly fashion,
starting from the beginning of the day and moving towards the end of it.
This is done by studying the forward stars (F'S) in the T'T subproblems of
the nodes associated to sources or already fixed trips. Using the value given
to each arc by the continuous solution of the Lagrangian relaxation, we can
determine which trip is more suitable to be the first of the day for a line (if
we are studying the FS of a source node) or the next one (if we are studying
the F'S of an already fixed node).

4 Computational Results

We tested our algorithm on 12 real-world instances provided by MAIOR, with
different number of lines, using an Intel (R) Xeon (R) CPU E5-2420 1.9Ghz,
see Table 1. We consider two versions of our heuristic: “h-Bundle” solves the
Lagrangian dual using the Bundle method, while “h-C1p” solves the continuous
relaxation using the Clp, an open-source LP solver. We call “BSol” (i.e., best
solver), the heuristic that produces the best solution, and “BTS” (i.e., best
time solver) the corresponding time (ranging from a few minutes to 6 hours).
We compare the solution produced by BSol with solutions produced manually
by timetabling experts (“Manual”), as well as using the CPLEX MILP solver
(V12.7) on the full formulation (1)-(6) with time limit corresponding to 1, 2
and 4 times BTS. The results show the percentage gain “X%” of the objective
value of our solutions. On small instances h-Clp performs better, while on
larger instances h-Bundle is often preferable. The obtained solutions are much
better than the manually obtained ones, and the improved quality is perceived
by experts of the field. CPLEX sometimes finds better solutions (“—X%” high-
lighted in bold), but in general the heuristic approach is competitive. Note
that “X+” means that the cost of the solution is X times larger, and “nA”
means that CPLEX could not find any feasible solution within the time limit.
We can conclude that our method is competitive on real-world instances with
respect to both manual solutions and a general MILP solver like CPLEX.
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Table 1 Comparison of solution quality: heuristics, manual and CPLEX.

o.V.
#Lines  Tnstance BSol BTS(s)  Manual vs h-Clp  h-Bundle vs h-Clp  Cplex vs BTS*1  Cplex vs BTS*2  Cplex vs BTS*4
2 2A h-Clp 100 19.04% -4.64% nA -7.88% -7.88%
2B h-Clp 477 35.35% -0.93% 14+ 14+ 0.71%
2cC h-Clp 101 51.78% -0.41% 11+ 8+ 25.72%
2D h-Clp 335 117.93% -3.53% nA nA 4.60%
2K h-Clp 611 202.99% -2.31% 30+ 2.06% -1.50%
2F h-Clp 804 28.84% -5.81% 18+ 0.75% 0.75%
2G h-Clp 762 158.86% -30.17% 53+ o4 -16.23%
4 4A L-Clp 2837 81.38% -3.58% uA 19.61% 19.61%
4B h-Bundle 3156 16.86% 0.46% nA nA 6.11%
4C h-Clp 6947 252.98% -4.39% nA 48.84% 48.61%
4D h-Bundle 11725 80.86% 10.60% nA nA nA
8 8A h-Bundle 26250 68.60% 4.37% nA nA nA

Proceedings of the 12th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT-2018), Vienna, Austria, August 28-31, 2018



