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Abstract Multi-objective optimization plays a very important role in the real-world
timetable generation. Due to its exponential nature, traditional approaches rely on
scalarization methods like weighted-sum. Using a set of weights Wx, a weighted-sum
allows to find one solution we define as

P
x-optimal. While such method guarantees to

find a Pareto-optimal solution, it cannot provide a set of solutions with various trade-
o↵s of objectives, which can be very valuable in highly symmetric course timetabling.

We here present a scalarization-based approach to finding set of
P

x-optimal so-
lutions for multi-objective Curriculum-Based Course Timetabling (CB-CTT), one of
the most widely studied course timetabling problems. Our prototype system reads a
CB-CTT instance and then enumerates all solutions of vector format that have a min-
imal sum of penalty cost, which can subsequently be used to select various interesting
solutions from a multi-objective viewpoint. The major feature of our approach is that
it can guarantee not only the minimality but also Pareto-optimality. We establish the
e↵ectiveness of our approach by empirically showing the set of

P
x-optimal solutions

obtained for some CB-CTT instances used in the second international timetabling
competition (ITC-2007).
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1 Introduction

The university course timetabling problem [14,16,6] is one of the representative ap-
plication problems in operations research (OR) and artificial intelligence (AI) which
can be generally defined as the task of assigning a number of lectures to a limited set
of time slots and rooms, subject to a given set of hard and soft constraints. This prob-
lem is formalized as a combinatorial constraint optimization problem where the aim
is to find an assignment of values to variables so that all hard-constraints are satisfied
and the sum of all violated costs of soft-constraints is minimized.

Many real-world university course timetabling problems involve multiple criteria
that can be considered separately but should be optimized simultaneously. In a multi-
objective course timetabling, there usually exists an exponential number of accept-
able solutions called Pareto-optimal solutions. An assignment is considered Pareto-
optimal if there does not exist another assignment that is better for all objectives.
Complete approaches computing the full set of Pareto-optimal solutions do not scale
well for complex problems such as timetabling. A common compromise is to use a
scalarization method, which is the simplest and the most widely used method to find
Pareto-optimal solutions in a multi-objective timetabling problem. Such scalariza-
tion methods e↵ectively transform a problem with multiple objectives into a mono-
objective problem. The optimal solution obtained is then guaranteed to be Pareto-
optimal and to satisfy an utilitarian view where the sum of objectives is optimized.
Various sophisticated approximation algorithms have also been developed for find-
ing feasible solutions, e.g., simulated annealing [10], multi-phase tabu search [6] and
multi-objective evolutionary algorithm [20]. However, they cannot guarantee to find
Pareto-optimal solutions.

The focus of our work is laid on finding a variety of Pareto-optimal solutions to
the university course timetabling problem by using scalarization methods. Timetabling
is a highly symmetrical problem, where the neighborhood of a valid timetable will of-
ten contain a number of other valid timetables. Because of this symmetry, there often
exists a huge number of solution to a timetabling problem, several of which can opti-
mize the weighted-sum. Assume that there exists three criteria/objectives, e.g., room
capacity, minimum working days and isolated lectures, and the aim is to minimize
the sum of all violated costs of these three objectives. Let 8 be the minimal value ob-
tained by using the scalarization method, e.g., 5 for the violated cost of room capacity
and 3 for that of isolated lectures. Now, what happens when there exists several solu-
tions that have the same minimal value, e.g., 2 for first criterion, 5 for the second and
1 for the last. The existing scalarization method cannot capture all these solutions,
since it terminates when one optimal solution has been found. However, from multi-
objective perspective, these solutions can be very di↵erent from each other, o↵ering
various trade-o↵s of objectives and a partial representation of the Pareto front. As far
as we are aware, there is no other work that focuses on providing a set of optimal
solutions for university course timetabling.

In this paper, we propose a new approach for multi-objective timetabling prob-
lems. By treating the violations of each soft-constraint as an objective, we can asso-
ciate a vector of penalties to any timetable. Then, we propose to compute the set of all
utilitarian vectors, o↵ering di↵erent trade-o↵s of objectives while minimizing their
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sum. We call this set the
P

x-optimal front. Solutions in this set are guaranteed to be
Pareto-optimal as well as satisfy utilitarianism, i.e., the sum of the violated costs is
minimal. However, as we will show in this paper, the

P
x-optimal front can be quite

large on some problem instances. Because of the complexity of university timetables,
directly providing too many solutions to the decision makers can be of little interest.
Therefore we also introduce additional criteria to extract specific solutions from theP

x-optimal front in order to provide an interesting set of solutions.
In the experiments,we use Answer Set Programming (ASP) [13,18,2,11] to com-

pute the complete
P

x-optimal front of some popular university course timetabling in-
stances used in the ITC-2007 competition [8]. ASP is an approach to declarative prob-
lem solving, combining a rich yet simple modeling language with high-performance
solving capacities. It is well suited for implementing our approach as it was already
used to compute some optimal solutions for CB-CTT in a previous work [1]. Us-
ing ASP, we are able to compute solutions of many of the benchmark instances and
we show that many trade-o↵s are indeed available, validating the strength of our ap-
proach.

The rest of the paper is organized as follows. In the next section, the university
course timetabling is introduced. Afterwards, some multi-objective concepts are de-
fined for timetabling and a novel solution criterion called

P
x-optimality is defined.

Next, we discuss additional criteria we can use to isolate interesting solutions from
the
P

x-optimal front. We then experiment our novel approach with university course
timetabling benchmarks from ITC-2007. Just before the concluding section, some
related works are discussed.

2 CB-CTT

In this section, we describe the model of Curriculum-Based Course Timetabling [3]
(CB-CTT) as it was defined for the ITC-2007 competition [15].

CB-CTT models the course timetabling problem that arises in many universities.
In this model, we have a set of curricula that predefines the sets of courses a student
can follow. Then, each course is made of several lectures that will take place every
week. One of the simplification made compared to other models of timetabling is the
omission of student sectioning, where each student has to be assigned to individual
sections of a course. Even with this simplification, CB-CTT is a NP-hard problem.

In this model, we are given sets of:

– time periods: the time horizon is divided into days and time slots per day. A time
period is a pair (day, time slot).

– courses: each course consists of a given number of lectures, is taught by a teacher
and is attended by a given number of students.

– curricula: a curriculum is a set of courses.
– rooms: each room has a maximum capacity.

CB-CTT then consists in finding an assignment of course lectures to rooms while
satisfying a set of hard-constraints:

P

x
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– H1. Lectures: all lectures of each course must be scheduled and they must be
assigned to distinct time slots.

– H2. Conflicts: lectures of courses in the same curriculum or taught by the same
teacher must be all scheduled in di↵erent time slots.

– H3. Room Occupancy: two lectures can not take place in the same room in the
same time slot.

– H4. Availability: if the teacher of the course is not available to teach that course
at a given time slot, then no lecture of the course can be scheduled at that time
slot.

Definition 1 (Valid timetable) A timetable T is valid if it satisfies all hard-constraints.

To be able to compare di↵erent valid timetables, other constraints qualified as soft-
constraints, are used as quality measures:

– S 1. Room Capacity: For each lecture, the number of students that attend the
course must be less than or equal the number of seats of all the rooms that host its
lectures. The penalties, reflecting the number of students above the capacity, are
imposed on each violation.

– S 2. Minimum Working Days: The lectures of each course must be spread into
a given minimum number of days. The penalties, reflecting the number of days
below the minimum, are imposed on each violation.

– S 3. Isolated Lectures: Lectures belonging to a curriculum should be adjacent
to each other in consecutive timeslots. For a given curriculum we account for a
violation every time there is one lecture not adjacent to any other lecture within
the same day. Each isolated lecture in a curriculum counts as one violation.

– S 4. Windows: Lectures belonging to a curriculum should not have time windows
(periods without teaching) between them. For a given curriculum we account for
a violation every time there is one window between two lectures within the same
day. The penalties, reflecting the length in periods of time window, are imposed
on each violation.

– S 5. Room Stability: All lectures of a course should be given in the same room.
The penalties, reflecting the number of distinct rooms but the first, are imposed
on each violation.

– S 6. Student MinMax Load: For each curriculum the number of daily lectures
should be within a given range. The penalties, reflecting the number of lectures
below the minimum or above the maximum, are imposed on each violation.

– S 7. Travel Distance: Students should have the time to move from one building
to another one between two lectures. For a given curriculum we account for a
penalty every time there is an instantaneous move: two lectures in rooms located
in di↵erent building in two adjacent periods within the same day. Each instanta-
neous move in a curriculum counts as one penalty.

– S 8. Room Suitability: Some rooms may not be suitable for a given course be-
cause of the absence of necessary equipment. Each lecture of a course in an un-
suitable room counts as one penalty.

– S 9. Double Lectures: Some courses require that lectures in the same day are
grouped together (double lectures). For a course that requires grouped lectures,
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Table 1 Formulations of CB-CTT

Constraint UD1 [9] UD2 [8] UD3 [4] UD4 [4] UD5 [4]
H1 : Lectures H H H H H
H2 : Conflicts H H H H H
H3 : Room Occupancy H H H H H
H4 : Availability H H H H H
S 1 : Room Capacity 1 1 1 1 1
S 2 : Minimum Working Days 5 5 0 1 5
S 3 : Isolated Lectures 1 2 0 0 1
S 4 : Windows 0 0 4 1 2
S 5 : Room Stability 0 1 0 0 0
S 6 : Student MinMax Load 0 0 2 1 2
S 7 : Travel Distance 0 0 0 0 2
S 8 : Room Suitability 0 0 3 H 0
S 9 : Double Lectures 0 0 0 1 0

every time there is more than one lecture in one day, a lecture non-grouped to
another is not allowed. Two lectures are grouped if they are adjacent and in the
same room. Each non-grouped lecture counts as one penalty.

Using those soft-constraints, we can represent the quality of a timetable T as a vector
of penalties V(T ) = (v1, v2, . . . , v9) where vi is the number of penalties for constraint
S i (1  i  9). Then, if we know the preferences of the decision makers, we can
associate a weight to each soft-constraint such that the lower the weight, the lower
the importance of the constraint. A weight of 0 corresponds to completely ignoring
the constraint.

Various formulations of the problem uses di↵erent weights, as seen in Table 1. In
the table, lines represent constraints and columns represent the various formulations
(UD1 to UD5). A ”H” in a cell indicates that the formulation uses the constraint as
a hard-constraint. A number in a cell indicates the weight associated with the soft-
constraint. UD1 is the first set of weights proposed for the CB-CTT problem [9] and
only considers three soft-constraints. UD2 is the set of weights proposed for the ITC-
2007 competition [8], where they extend UD1 with one additional soft-constraint.
UD3, UD4, and UD5 [4], were proposed in a latter work in order to o↵er variations of
the original problem by considering 4 new soft-constraints. Those five formulations
are the most commonly studied and are the ones we will use throughout this paper.
In real applications however, those formulations might not be directly used since
di↵erent universities might want to consider di↵erent constraints and weights.

Using a formulation UDx with the associated set of weights Wx, we can transform
a vector a penalties V(T ) into a weighted vector Vx(T ).

Definition 2 (Weighted-Vector) Given a timetable T and a set of weights Wx corre-
sponding to formulation UDx, we have the corresponding weighted-vector Vx(T ) =
(v1 ⇥ w1, v2 ⇥ w2, . . . , v9 ⇥ w9) with vi 2 V(T ).

The most common approach to the CB-CTT problem aims at finding a solution
such that the sum of values in its corresponding weighted-vector is minimized. We
call such solution a

P
x-optimal solution and it is the typical result to scalarization

methods.

P

x
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Definition 3 (
P

x-Optimal solution) Given a valid timetable T and a formulation
UDx, we say T is

P
x-optimal if it minimizes

X

vi2Vx(T )

vi

Most existing works on timetabling stop at this stage, after finding one solution for a
given set of weights. However, due to the highly symmetrical nature of timetabling
problems, there might exists several

P
x-optimal solution. In the next section, we

propose to find more than one solution by considering a subset of all the
P

x-optimal
solutions.

3 Set of Solutions

In the previous section, we showed how to evaluate the quality of a timetable when
preferences over the soft-constraints are known. Each timetable can be associated
with a single value and most works on timetabling will find one timetable minimizing
this value.

There are two issues with this approach, (i) it only provides the decision makers
with one possibility and (ii) it overlooks the various trade-o↵s of penalties available.
In timetabling and many other decision problems, two solutions that might appear
equivalent for a given criteria (same weighted-sum) might actually be very di↵erent
in the eyes of the decision makers. For example, there might exists three vectors
{9, 1}, {5, 5} and {1, 9} that share the same sum (10) but with very di↵erent trade-o↵s
of objectives.

In this section, we will consider how to provide more than one solution to the
Curriculum-Based Course Timetabling (CB-CTT) problem by improving upon the
weighted-sum criterion.

3.1 Pareto Front

For a given CB-CTT, each timetable can be associated with a weighted-vector of
penalties. By considering each penalty as an objective to optimize, we can introduce
the concept of Pareto-optimality for timetables.

Definition 4 (Pareto Dominance) Given two vectors V and V 0, we say that V Pareto
dominates V’, denoted by V � V 0, i↵ V is partially less than V 0, i.e., (i) it holds
vi 2 V  v0i 2 V 0 for all i, and (ii) there exists at least one i such that vi 2 V < v0i 2 V 0

Definition 5 (Pareto-Optimal Solution) A timetable T is Pareto-optimal for UDx if
there does not exist another timetable T 0 such that Vx(T ) � Vx(T 0).

The penalty vectors corresponding to those Pareto-optimal timetables form what is
called the Pareto Front.

Definition 6 (Pareto Front) The Pareto Front is the set of vectors we can obtain
from all Pareto-optimal solutions.
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Table 2 Example of Solutions

Penalties
S 1 S 2 S 3 S 5

T1 5 0 3 2
T2 6 1 0 3
T3 7 1 1 5
T4 2 1 2 2
T5 5 0 3 5

By finding one solution for each possible vector of the Pareto front, we can provide
every interesting trade-o↵ of penalties. However, finding the Pareto front of complex
problems is often too di�cult. In the worst case, each assignment can be Pareto-
optimal and with large problems such as CB-CTT, we can have thousands of vari-
ables to assign to thousands of pair room/period. The number of solutions being ex-
ponential, using complete methods becomes unrealistic on large problem instances.
Because of this complexity, it is important to consider techniques that can quickly
provide an approximation of the Pareto front. We thus propose to find a subset of the
Pareto front while still complying with the weighted-sum criterion.

3.2
P

x-Optimal Front

Since the weighted-sum is the state of the art approach for CB-CTT, we can assume
that a timetable that is

P
x-optimal is a good solution. However, there might exists

more than one such solution, potentially o↵ering very di↵erent trade-o↵s between
penalties. Finding the set of all

P
x-optimal solutions would allow to o↵er a set of

good timetables to choose from. The user can then select one of the possible choices
by considering his preferred trade-o↵ of objectives, or even criteria that were not
originally formulated in the problem. Since those solutions minimize the weighted-
sum of the penalties, they are all Pareto-optimal, meaning that there exists no other
timetable strictly better for all objectives.

Property 1 (Pareto-Optimality of
P

x-Optimal Solutions) A vector V that is
P

x-optimal
is also Pareto-optimal for UDx.

Due to the size and high symmetry of CB-CTT problems, there might exists a huge
number of timetables that share the same penalty vector. In our work, we are focusing
on providing various penalty trade-o↵s and do not care about providing more than one
timetable for each possible vector. Thus, we will focus on the subset of the Pareto
front we can find using

P
x-optimal solutions.

Definition 7 (
P

x-Optimal Front) The
P

x-optimal front is the set of vectors that can
be obtained by

P
x-optimal solutions.

3.3 Example

Let us now review all the concepts introduced in this section using a simple example.

P

x
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Example 1 (CB-CTT) Let us consider an example of CB-CTT that accepts five valid
timetables T1, T2, T3, T4 and T5 whose penalty vectors are shown in Table 2, where
column S i contains the penalty for soft-constraint S i and line Ti contains the vector
V(Ti).

First, let us consider formulation UD2. We consider the four objectives S 1, S 2,
S 3 and S 5 with weights 1, 5, 2 and 1 respectively. By applying the set of weight to
each vector, we obtain the following weighted vectors: V2(T1) = {5, 0, 6, 2}, V2(T2) =
{6, 5, 0, 3}, V2(T3) = {7, 5, 2, 5}, V2(T4) = {2, 5, 4, 2} and V2(T5) = {5, 0, 6, 5}.

Based on the definition of Pareto-optimality, this problem has three Pareto-optimal
timetables when using UD2: T1, T2 and T4. T3 is not Pareto-optimal since it is dom-
inated by T2 ({6, 5, 0, 3} � {7, 5, 2, 5}) and T5 is dominated by T1 ({5, 0, 6, 2} �
{5, 0, 6, 5}).

The Pareto front for this problem is the set of vectors obtained from Pareto-
optimal solutions: {{5, 0, 6, 2}, {6, 5, 0, 3}, {2, 5, 4, 2}}.

Now if we consider the weighted sum of each vector, we can find two
P

2-optimal
solutions, T1 and T4. Those timetables minimize the sum of weighted penalties with
a sum equal to 13 (5 + 0 + 6 + 2 = 13 for T1 and 2 + 5 + 4 + 2 = 13 for T4). T2 is notP

2-optimal since its corresponding sum is not minimal(6 + 5 + 0 + 3 = 14).
We can then say that the

P
2-optimal front of this problem is {{5, 0, 6, 2}, {2, 5, 4, 2}}.

Let us now consider formulation UD1. This time we only consider three objec-
tives S 1, S 2, S 3 with weights 1, 5, 1 respectively. We obtain the following weighted
vectors: V1(T1) = {5, 0, 3}, V1(T2) = {6, 5, 0}, V1(T3) = {7, 5, 1}, V1(T4) = {2, 5, 2}
and V1(T5) = {5, 0, 3}.

We now have four Pareto-optimal timetables: T1, T2, T4 and T5.Only T3 is not
Pareto-optimal since it is still dominated by T2 ({6, 5, 0} � {7, 5, 1}).

The Pareto front for this problem is the set of vectors obtained from Pareto-
optimal solutions: {{5, 0, 3}, {6, 5, 0}, {2, 5, 2}}.

Now if we consider the weighted sum of each vector, we can find two
P

1-optimal
solutions, T1 and T5. Those two timetables minimize the sum of weighted penalties
with a sum equal to 8 (5 + 0 + 3 = 8). T2 and T4 are not

P
1-optimal since their

corresponding sum are not minimal (6 + 5 + 0 = 11 for T2 and 2 + 5 + 2 = 9 for T4).
When we consider the

P
1-optimal front, we only care about the vectors and not

the assignment (timetable). Since here both T1 and T5 share the same vector, we have
the
P

1-optimal front {{5, 0, 3}}.
Next, we will consider additional criteria that we can use to identify solutions

from the
P

x-optimal front with interesting properties.

4 Subset of the
P

x-Optimal Front

With the
P

x-optimal front, we can provide a set of solutions to a decision maker.
While we can expect this set to be much smaller than the Pareto front, its size might
still prove too large to handle for a human. A typical university timetable being made
of thousands of lectures assigned to thousands of rooms and periods, if a human
wants a good understanding of the di↵erent timetables, it is imperative to present him
with a limited set of solutions. In the case of multiple decision makers, proposing
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a large number of alternatives can also results in each decision maker preferring a
di↵erent timetable. Thus we believe it is important to consider additional criteria
when proposing a set of solutions.

The solutions provided by a
P

x-optimal front already satisfy an utilitarian crite-
rion [22], guaranteeing a minimal sum of penalties. We will now propose two addi-
tional criteria we can consider to isolate specific solutions from the

P
x-optimal front.

4.1 Egalitarianism

With egalitarianism, instead of focusing exclusively on the weighted-sum, the goal is
to obtain a balanced solution where penalties are spread as much as possible between
the objectives (soft-constraints). To find the most egalitarian solutions from the

P
x-

optimal front, we use a lexicographic ordering [22]. Basically, we want to find the
largest minimum value. This requires to arrange a vector V in an increasing order,
denoted V<. We then define the following ordering:

Definition 8 (Lexicographic ordering) Given two vectors V and V 0 of size m, we
say that V lexicography precedes V’, denoted by V �lex V 0, i↵ there is a i 2 {1, . . . ,m}
such that V<i < V 0<i and, if i > 1, then 8 j 2 {1, . . . , i � 1},V<j = V 0<j .

The most egalitarian vector from the
P

x-optimal front is the one that is preceded
by all others in the lexicographic ordering, which tends to maximize the minimum
value of its vector. With CB-CTT, this solution will tend to have the most balanced
penalties, which can be interesting if many small constraint violations are considered
better than a few constraints being violated numerous times. For other models of the
timetabling problems, egalitarianism can be used to find fair solutions [17], for exam-
ple to have penalties spread between di↵erent school departments, di↵erent teachers,
di↵erent classes, . . . .

Example 2 (Egalitarianism) Let us consider the same example as Example 1 with the
problem shown in Table 2. Without applying any weight, we can order the five vectors
of penalty using the lexicographic ordering. First, let us reorder each vector V(Ti) into
V<(Ti). We obtain V<(T1) = {0, 2, 3, 5}, V<(T2) = {0, 1, 3, 6}, V<(T3) = {1, 1, 5, 7},
V<(T4) = {1, 2, 2, 2} and V<(T5) = {0, 3, 5, 5}. Here, V(T2) lexicography precedes all
other vectors. Its first value (corresponding to the minimum) in V<(T2) is 0, which is
inferior to the first value in V<(T3) and V<(T4) (0 < 1), thus V(T2) �lex V(T3) and
V(T2) �lex V(T4). Its first value is equal to the first value in V<(T1) and V<(T5), but
then the next value (1) is inferior (2 for T1 and 3 for T5), thus we have V(T2) �lex

V(T1) and V(T2) �lex V(T5). We can say that T2 is the less balanced of the solutions.
The most balanced solution, said to be egalitarian, is T4 as it is lexicography

preceded by all the other vectors. Its minimum value of 1 is larger than the minimum
value of T1, T2 and T5 and we can write V(T1) �lex V(T4), V(T2) �lex V(T4) and
V(T5) �lex V(T4). Its minimum value of 1 is the same as T3, but then the next value
(2) is larger than in T3 (1), thus V(T3) �lex V(T4). We can say that T4 is the most
balanced vector and is the egalitarian solution here.

P

x
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4.2 Constraint Satisfaction

Another aspect we can consider is the maximization of the number of completely
satisfied soft-constraints. No violation of some objectives can be a good selling point
for a decision maker and it is easy to explain the di↵erent with another timetable that
does not satisfy the same constraints.

This focus on satisfying as many soft-constraints as possible could be simply
expressed in the original problem. However, if we focus on the satisfaction of the
objectives, instead of their optimization, we can end up with bad solutions that have
a huge amount of violations on a few objectives.

Here, since we work from the
P

x-optimal front, we always have a minimal sum
of weighted penalties.

In the next section, we will present experimental results and show the interest of
those criteria.

5 Experiments

In this section, we first present our method to enumerate all vectors in the
P

x-optimal
front before showing some results obtained on instances from the ITC-2007 compe-
tition [8].

5.1 Method

To conduct those experiments, we used an encoding of the CB-CTT with Answer set
programming (ASP) that was shown to be a promising approach for timetabling [1],
o↵ering an e�cient way to find one

P
x-optimal solution of a problem.

ASP is a form of declarative programming mostly used to solve NP-hard prob-
lems. An ASP problem is made up of rules that represents conditions to be satisfied
and facts that are known to be true. An ASP solver will encode such problem into a
logic program before searching for some stable models, corresponding to solutions
of the original problem.

We represent the CB-CTT problem as a set of rules and a problem instance is a
set a set of fact such as the number of days, period per days, courses, teachers, . . . We
can then search for a timetable that satisfies all the rules from the hard-constraints
and that minimizes the sum of penalties from the soft-constraints.

While in theory it is possible to enumerate all valid timetables, in practice, due to
the symmetry of CB-CTT, it is too complex and the enumeration takes too much time.
Thus we focus on the vector of penalties and only find one corresponding timetable.

In the method we used, we find
P

x-optimal solutions one by one. For each newly
found vector of penalty, we extend the original problem by adding a rule forbidding
the same vector to be a solution. This method ends when there exists no more solution
to our extended problem, meaning that we found the complete

P
x-optimal front.

Because the time to find a new solution can be very long, we can note that it is
possible to stop at anytime during our method and then use the

P
x-optimal solutions
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Table 3
P

4-optimal front for comp17 (with optimal weighted sum of 21)

# S 1 S 2 S 4 S 6 S 9
1 0 13 0 8 0
2 0 11 3 7 0
3 0 12 2 7 0
4 0 11 1 9 0
5 0 12 1 8 0
6 0 11 2 8 0
7 0 10 3 8 0
8 0 10 2 9 0
9 0 9 3 9 0

10 0 13 2 6 0
11 0 13 1 7 0

# S 1 S 2 S 4 S 6 S 9
12 0 12 0 9 0
13 0 11 0 10 0
14 0 12 3 6 0
15 0 9 4 8 0
16 0 10 4 7 0
17 0 11 4 6 0
18 0 14 1 6 0
19 0 14 0 7 0
20 0 15 0 6 0
21 0 10 1 10 0

found so far. In the best case, we stopped during the last step which is only used to
prove that we indeed found the complete

P
x-optimal front. Else, we only have an

incomplete
P

x-optimal front that can still be used and might still provide a number
of interesting trade-o↵s.

5.2 Results

We now present results obtained by using our method on some instances proposed for
the International Timetabling Competition of 2007 [8]. There is a total of 21 instances
of various complexity. The solving of some of those instances are still open with anyP

x-optimal solutions yet to be found.
Table 3 shows the

P
4-optimal solutions of instance comp17. For the formulation

UD4, comp17 is a di�cult instance that had no known
P

4-optimal solutions until
now. As we can see, this instance has 21

P
4-optimal solutions, minimizing the sum

of penalties at 21. While soft-constraints S 1 and S 9 are always fully satisfied, we can
observe di↵erent trade-o↵s over the 3 other objectives. S 2 varies between 9 and 15,
S 4 varies between 0 and 4, and S 6 varies between 6 and 10. Those di↵erent trade-o↵s
can be very interesting to a decision maker and we can notice some clear di↵erences
between the available vectors. Most notably, some vectors can completely satisfy the
constraint S 4. As we discussed in the previous section, it can sometimes be preferable
to completely satisfy one more objective at the cost of increasing the penalty of two
others (vector #1 with penalties {0, 13, 0, 8} for example). We also point out the vector
#15 with penalties {0, 9, 4, 8, 0}, which is the most egalitarian vector, o↵ering a good
balance between S 2, S 4 and S 6.

Table 4 shows the
P

4-optimal solutions of instance comp04. As we can see, this
instance has 13

P
4-optimal solutions, minimizing the sum of penalties at 13. Like in

comp17, soft-constraints S 1 and S 9 are always fully satisfied. However, the variations
of the three others objectives are quite di↵erent, especially S 4 which only varies be-
tween a penalty of 0 and 1. We can thus notice that for each vector where S 4 = 1, we
can find a very close vector where S 4 is completely satisfied (vector #2 {0, 9, 1, 3, 0}
and #1 {0, 10, 0, 3, 0} for example). If we value the complete satisfaction of the objec-
tives, we can consider ignoring vectors that violates S 4 but are very close to vectors
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Table 4
P

4-optimal front for comp04 (with optimal weighted sum of 13)

# S 1 S 2 S 4 S 6 S 9
1 0 10 0 3 0
2 0 9 1 3 0
3 0 8 0 5 0
4 0 9 0 4 0
5 0 7 0 6 0
6 0 10 1 2 0
7 0 7 1 5 0

# S 1 S 2 S 4 S 6 S 9
8 0 8 1 4 0
9 0 11 0 2 0
10 0 6 0 7 0
11 0 12 0 1 0
12 0 11 1 1 0
13 0 6 1 6 0

where S 4 = 0. However, if we care more about having a good balance between the
penalties, the best solution here would be the vector #13 {0, 6, 1, 6, 0}. This vector,
while providing the most balance, still greatly favors S 2 and S 6 compared to S 4,
showing that we cannot always find a perfectly-balanced solution.

Previous approaches that focus on finding one solution usually produce only one
of the vectors we show here. In light of the many possible trade-o↵s and the clear
di↵erences between two

P
x-optimal solutions, we showed the importance to present

those alternatives to a decision maker.
Table 5 shows the runtime, the size of the

P
x-optimal front as well as the optimal

sum of penalties for some instances and formulations. Due to the very long time it
takes to compute the

P
x-optimal front, we have yet to produce results for all possible

instances and formulations and for this experiment, we limited the time to find a new
solution (or prove unsatisfiability) to 6 hours. Each line in the table represent data for
a given instance and formulation. The size represent the size of the

P
x-optimal fronts

and sum represents the sum of penalties for the vectors found. Total time represents
the total CPU time it took to find the complete

P
x-optimal front. Unsat time is the

duration of the last step of our method, which requires to prove that with the added
constraints, the problem is no longer satisfiable, meaning that we found the completeP

x-optimal front.
While we were able to solve many instances using our method, we were only

able to completely find
P

x-optimal front for the formulation UD4. Because UD4
uses an additional hard-constraint, the number of valid timetables is greatly reduced
compared to other formulations, making it possible to find a new

P
4-optimal solution

within the 6 hours limit.
For other formulations, we are only able to solve instances with a unique

P
x-

optimal solution.
Regarding the runtime, it will greatly vary based on the complexity of the instance

and the formulation used. Additionally, since we solve the same problem several
times, adding a constraint after each newly found vector, we can expect that the higher
the size of the

P
x-optimal front, the longer the time it takes to completely find it. It

results that some instance were solved in less than one second (comp11 for UD1, UD2
and UD3) while others took up to 30 minutes (comp10 for UD2) and even around 94
hours (comp17 for UD2 and UD4). We can see from the unsat time column that for
some instances, the majority of the time is taken to prove that there does not exist
anymore vector belonging to the

P
x-optimal front (comp04 for UD5 for example).

While having the complete
P

x-optimal front can be important, it can also be ignored
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Table 5 Results for finding the
P

x-optimal front on various instances

instance formulation size total time (s) unsat time (s) sum
comp04 UD3 1 1.8 0.92 2
comp04 UD4 13 764.02 593.66 13
comp04 UD5 1 12705.82 12664.52 49
comp06 UD2 1 1290.64 1102.6 27
comp06 UD3 1 7.26 3.78 8
comp07 UD1 1 48.22 9.72 3
comp07 UD2 1 18206.52 11129.4 6
comp07 UD3 1 214.38 0.98 0
comp07 UD4 4 19966.38 241.94 3
comp08 UD3 1 16.18 7.12 2
comp08 UD4 14 2316.62 1343.14 15
comp08 UD5 1 2610.72 2524.4 55
comp10 UD1 1 2.8 1.42 2
comp10 UD2 1 1565.24 925.84 4
comp10 UD3 1 2.96 0.8 0
comp10 UD4 6 106.48 12.4 3
comp11 UD1 1 0.28 0.12 0
comp11 UD2 1 0.4 0.14 0
comp11 UD3 1 0.72 0.32 0
comp11 UD4 1 3.38 1.08 0
comp11 UD5 1 838.66 0.58 0
comp14 UD3 1 1.86 0.58 0
comp14 UD4 2 55.04 31.4 14
comp16 UD1 1 4207.06 4203.16 11
comp16 UD2 1 48.04 13.8 18
comp16 UD3 1 4.18 2.56 4
comp16 UD4 3 127.5 60.96 7
comp17 UD3 1 6.8 3.78 12
comp17 UD4 21 341,681.21 42,963.86 21
comp18 UD3 1 1.14 0.44 0
comp20 UD1 1 767.78 389.74 2
comp20 UD2 1 763.46 210.4 4
comp20 UD3 1 371.94 0.92 0

if a decision needs to be taken within a short amount of time. Using our method as an
anytime approach, we can provide a set of

P
x-optimal solutions more quickly but at

the cost of potential incompleteness.

5.3 Results with neutral weights

Choosing weights for each soft-constraint can be a di�cult task for a decision maker,
and the impact of those weights is hard to estimate in advance. Thus, it might some-
times be better to start by considering the neutral case where no preferences are given
and where the decision maker simply needs to provide the constraints to take into ac-
count. We evaluated this case and ran experiments where we put the weights of the
considered soft-constraints to 1, showing the results in Table 6. Because UD4 already
used weights of 1, we focus on the other formulations and are able to find interestingP

x-optimal fronts on a few instances.
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Table 6 Results for finding the
P

x-optimal front on various instances (using weights of 1)

instance formulation size total time (s) unsat time (s) sum
comp04 UD1 8 84,216.68 83,929.64 12
comp04 UD2 8 71,468.52 71,434.84 12
comp04 UD3 1 2.04 1.00 1
comp04 UD5 1 25.64 13.28 13
comp07 UD1 4 168.46 30.52 3
comp10 UD1 2 3.38 1.41 2
comp10 UD2 2 1,883.54 552.79 2
comp10 UD3 1 2.94 0.82 0
comp11 UD1 1 0.28 0.12 0
comp11 UD2 1 0.86 0.14 0
comp11 UD3 1 0.98 0.32 0
comp11 UD5 1 1,121.50 0.58 0
comp16 UD1 1 5.24 2.82 5
comp16 UD2 1 33.56 7.66 5
comp16 UD3 1 13.18 11.32 2
comp17 UD2 5 337,888.42 336,166.34 19
comp17 UD3 2 42.72 14.69 6

Table 7
P

2-optimal front for comp04 (with weights of 1, optimal sum of 12)

# S 1 S 2 S 3 S 5
1 0 10 2 0
2 0 9 3 0
3 0 11 1 0
4 0 8 4 0

# S 1 S 2 S 3 S 5
5 0 7 5 0
6 0 12 0 0
7 0 6 6 0
8 0 5 7 0

For comp04, we were able to find
P

x-optimal front of size 8 for both UD1 and
UD2 (with weights of 1) and we show the corresponding

P
2-optimal front in Table 7

In this case, S 1 and S 5 are both completely satisfied and the 8 solutions o↵er di↵erent
trade-o↵s between S 2 and S 3. Only one vector (#6 with penalties {0, 12, 0, 0}) can
completely satisfy three of the soft constraints and there exists one well balanced
vector (#7 with penalties {0, 6, 6, 0}).

6 Related Works

Curriculum-Based University Timetabling has been the subject of numerous publica-
tions in the last decade. As far as we are aware, no existing works have considered a
subset of the Pareto front and only a few works have used multi-objective approaches.
We now present some of those related works.

The first work proposes a multi-objective evolutionary algorithm for university
class timetabling [7]. By optimizing two objective functions, the authors show that
better results can be obtained compared to mono-objective optimization. Such ap-
proach produces trade-o↵ solutions between di↵erent objective functions, but with
no guarantee of optimality. Compared to our work, all the solutions we provide are
Pareto-optimal (and also optimal for the usual weighted-sum).
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The second work apply multi-objective methods to university timetabling [12] by
comparing the weighted-sum to a reference point based approach, using local search
algorithms. Using a reference point allows to search for a timetable as close as pos-
sible to an ideal solution. This work shows that the weighted-sum o↵ers very unbal-
anced vectors and that giving a higher weight to one objective does not guarantee it
will be better optimized. Compared to the weighted-sum, the reference point allows
much more balanced vectors in practice but with no guarantee of obtaining the most
egalitarian solution.

The third work considers fairness for CB-CTT [17]. While it does not treat each
soft-constraint as a single objective, it considers trade-o↵s between the quality of the
timetable (weighted-sum) and its fairness. The fairness is defined between di↵erent
university department and the goal is to spread the constraint violations equally be-
tween the di↵erent departments. They first compute a timetable with the best quality
possible, and then search for interesting trade-o↵s with the fairness, with fairer solu-
tions usually being of lesser quality.

The final work uses Integer Programming to perform a lexicographic optimization
of the objectives [19]. They consider each soft-constraint independently and optimize
them one by one. The first solution obtained minimizes the first objective. Then, a
second solution minimizes the second objective without increasing the first one. This
is repeated for all objectives. This approach is quite e↵ective to find a good timetable,
but there exist a bias toward the first objectives optimized as there does not always
exist another solution that improve the next objective without increasing the previous
ones.

Those works use some multi-objective techniques but either do not o↵er a set
of solutions or cannot guarantee their optimality. Our approach has the advantage
to comply with the most used solution criteria for CB-CTT (minimization of the
weighted-sum) while o↵ering more than one solution to choose from.

7 Conclusion

In this work, we proposed a new approach to the Curriculum-Based Course Timetabling.
Approaching the problem as a multi-objective one, we wanted to provide several
timetables to choose from. Thus, we defined a subset of the Pareto Front we calledP

x-optimal front. This subset contains all vectors that minimize a weighted-sum of
penalties, the weighted-sum being the most used criteria for CB-CTT. In compar-
ison, the majority of previous works using this criteria only provide one solution.
We showed in our experiments however that two vectors minimizing a weighted-sum
can be very di↵erent. Those di↵erences are very important to a decision maker and
should not be ignored. While this paper focuses on CB-CTT, we believe our approach
can be applied to many other timetabling problems. Additionally, we proposed sim-
ple ways to isolate solutions from the

P
x-optimal front. One interesting criteria is

egalitarianism, where we search for a good balance between all objectives. Another
consideration can be the satisfaction of as many objectives as possible. Usually, fo-
cusing on those criteria is made at the cost of the overall quality of the solution. Here,
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since we first focus on utilitarianism and then consider additional criteria, we always
keep the guarantee of minimizing the sum of objectives.

In future works, we want to develop more e�cient methods to compute a set
of solutions for timetabling problems. We plan on using asprin [5], a tool that was
recently proposed for expressing preferences in Answer Set Programming. Using
this tool, we could directly specify the desired set of solutions (for example the

P
x-

optimal front) and compute it in one shot. In addition to an increased in e�ciency, a
number of new criteria could easily be implemented and will be the topic of future
research.

We also plan on considering other subsets of the Pareto front that do not focus
on the utilitarian criterion (minimizing a weighted-sum). It can be important in some
cases to consider solutions where the sum of penalties is not minimal but where the
trade-o↵s are more interesting. For example if the objectives represent penalties with
di↵erent teachers, it can be more important to have the most egalitarian solution so
that no teacher can feel jealous about other teachers.

Another approach that could be interesting to study is the search for a subset of
representative solutions [21]. Since the Pareto front is often too hard to compute and
too large to analyze by a human, it would interesting to be able to provide a subset
that best represents the complete Pareto front. While the

P
x-optimal front provide a

subset of solutions with various trade-o↵s, more extremes solutions that are not
P

x-
optimal could also be included in order to represents all the alternatives available.
Finally, we will also apply our approach to other timetabling or scheduling problems
as they often involve multiple criteria.
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