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Abstract Fairness introduces an important optimization criterion which needs to be
handled at a reasonable level to generate acceptable timetables for particular entities.
We propose an extension of the fairness measure which truly reflects the preferences
of entities such as teachers or classical curricula. An incremental algorithm for the
fairness measure computation is proposed for inclusion in iterative or constructive
search algorithms. We demonstrate its inclusion into the iterative forward search al-
gorithm. The implementation is available as a part of the complex UniTime system
for course and examination timetabling. We apply our approach on real-life problems
from Masaryk University and show improvements in fairness for teachers at a cost
which is a very reasonable compromise with other objective functions. In addition,
we demonstrate that a weighted inclusion of a fairness criteria allows us to achieve a
proper balance with respect to other objective functions.

Keywords Course Timetabling · Fairness · Multi-objective approach · Timetabling
system · UniTime · Real-world problem · Search

1 Introduction

Fairness plays an important role in acceptance of automated solutions by particular
entities such as nurses, employees, or users. These entities need a proper balance in
handling their preferences. Early studies of fairness come from the area of computer
networks [3] in problems such as fair bandwidth allocation [14]. Particular entities
may be nurses in nurse rostering [7,5] or employees in employee scheduling [16].
Another view comes from job scheduling, where fairness is related to jobs or to users
who submitted their jobs [18,4]. In educational timetabling, fairness has been more
deeply studied in past several years. Recent studies were related to the fairness of
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timetable for particular curricula [8] or for individual students [9]; however, we are
not aware of any work where fairness for teachers has been be considered.

In this paper we will discuss a proposal for measuring fairness and present an im-
plementation incorporating this measure as an extension to the UniTime1 timetabling
system which allows solution of large-scale course and examination timetabling prob-
lems. This system has been applied at many universities world-wide since its initial
development for Purdue University [10,13] in the USA. Our inspiration for further
study of fairness measures comes from a European university, Masaryk University in
the Czech Republic, where four faculties use UniTime for course timetabling. In the
implementation at Masaryk University, teachers play a more important role than in
USA, where many instructors may not be specified in the initial timetabling problem.
Fair consideration of teaching schedules is an important problem directly related to
the overall satisfaction with the generated timetables.

Our intent was to propose a proper fairness measure which could have been eas-
ily included into the existing timetabling system with its objective functions being
weighted differently. It is important that the proposed extension to include a fair-
ness measure can work directly on top of the preferences (or penalties) associated
with particular assignments. Our approach takes into account the preferences asso-
ciated with the actual assignment, as well as those associated with most desirable
assignment, for a class and reflects them in the fairness measure computation. The
computed fairness measure can then be included into a standard objective function
with weighted criteria. An algorithm for incremental computation of fairness is pro-
posed and implemented as a part of UniTime system. Experiments on real-life data
sets from Masaryk University show a significant improvement in fairness, and in time
preferences, at a reasonable cost versus other criteria. This comparison is presented
with respect to timetables generated by the standard UniTime system without a fair-
ness component in the objective function. Real-life data sets are used to introduce
real-life problems with 500 – 600 classes (timetabled events of courses) and 1,700 –
1,900 students with 17,000 – 20,000 course enrollments. About 240 teachers with an
interest in fair assignment of class times are included.

The structure of our paper is as follows. The next section describes the objective
function with multiple criteria but with no fairness criteria included. Sec. 3 discusses
various fairness measures available in the literature. Sec. 4 introduces our proposal of
teacher-oriented fairness and Sec. 5 proposes a proper incremental algorithm for the
fairness measure computation. Sec. 6 presents our experimental problems and results.
The last section provides conclusions resulting from this work.

2 Objective function

The classical approach to solving timetabling problems [13] presents an overall ob-
jective function to be minimized as a weighted sum of particular objectives depending

1 http://www.unitime.org
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on the selected solution s, i.e.,

F(s) =
m

Â
k=1

wk ·Fk(s) . (1)

In course timetabling, particular objective functions may represent time preferences,
room preferences, or the number of student conflicts to be minimized. Student con-
flicts can be established directly by students who individually enroll into particular
courses or by students who were generated in a manner that respects an existing cur-
riculum [12]. We may also need to represent additional soft constraints among classes
(e.g., a lecture class should precede seminar classes, classes should be taught sequen-
tially, a gap among classes is preferred). Given these, we may have the objective
function

F(s) = wstudFstud(s)+wtimeFtime(s)+wroomFroom(s)+wdistrFdistr(s) (2)

where Fstud ,Ftime and Froom denote student conflicts, time preferences, and room pref-
erences, respectively. Fdistr is reserved for those additional soft constraints which are
called distribution preferences in UniTime. All objective functions are weighted by
their corresponding weights.

3 Fairness Measures

Fairness can be considered as an additional component of an objective function. In
this case, the fairness measure corresponds to one of the Fk(s) in Eqn. 1 and it should
be weighted by a fairness weight w f air to handle its importance appropriately and
possibly normalize it with respect to other criteria.

The fairness of the solution s depends on the set of penalties Pi(s) of particular
entities i for which a fair distribution is necessary. In course timetabling, Pi(s) may
correspond to a penalization for each teacher i or for each curriculum i. However, it is
important to realize that curricula fairness is not so easy to achieve for more complex
timetabling problems. As mentioned, we need to compute a penalty Pi(s) for each
entity i. This can be simply done for teachers as we include penalty information
about all classes (events of the courses) taught by each teacher. It is not so simple for
curricula with elective courses and course sections [12], where students take various
subsets of the classes which are related to one curriculum. In such a complex structure
it is hard to relate fairness of the students directly to the curricula. So, we leave this
consideration for future work.

A common fairness measure used in many areas is the Jain’s fairness index [3].
It has been proposed such that it is independent of size, scale, and units. Its value
always lies between 0 (complete unfairness) and 1 (total fairness). In addition, it is
continuous, meaning that any change in resource allocation is related to a change in
the index.

Jain’s fairness index corresponds to

PJain(s) =
(Ân

i=1 Pi(s))2

n ·Ân
i=1 Pi(s)2 . (3)
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Unfortunately this index is not always proper as a fairness measure because it is
dependent on the relative sizes of individual penalties Pi(s). Generally a higher value
of Jain’s index may not mean a better fairness, but it can be related to a uniform
deterioration for all penalties [5].

A base fairness measure minimizes the quality of the worst individual penalty.

PMax(s) = max
i2{1,...,n}

Pi(s) (4)

Computation of individual penalty may include various types of penalties weighted
by its importance or cost as it was done in [15]. For inclusion into the overall objective
F(s) (Eqn. 1), it could be multiplied by the number of entities n [7,5]. However,
this approach is troublesome when there is some entity with very bad penalty which
cannot be improved. In this case, as it is common for all min-max approaches, a bad
case does not allow for comparison of other penalties. Also two solutions with the
same worst case penalty cannot be distinguished.

Other fairness measures [5,7] can extend it by consideration of both the worst
and the best case

PError(s) = max
i2{1,...,n}

Pi(s)� min
i2{1,...,n}

Pi(s) (5)

or by consideration of the lexicographic approach [8,5]. In this case, permutation of
all individual penalties Pi j(s) sorted in a non-increasing order is taken as a fairness
measure of solution s

PLex(s) = (Pi1(s),Pi2(s), . . . ,Pin(s)) s. t. Pi1(s)  Pi2(s)  · · ·  Pin(s) . (6)

Next, the best (and also the better) solution is obtained by a lexicographic ordering of
penalties PLex(s) for all solutions s. This approach would certainly need some other
reasoning than a simple inclusion into the overall objective function, e.g., a multi-
criteria optimization.

Other classical approach is to minimize the sum of squares of particular penalties

PSS(s) =

s

n

Â
i=1

Pi(s)2 (7)

which emphasizes minimization of very bad cases. It is sometimes presented in the
form [5] where squares of other objective function(s) should be also under the same
root. In any case, (combined) squares of weights easily introduce very different cri-
teria and must be taken with care.

Deviations from the average penalty discussed in [5] has also been proposed as a
criteria for evaluating the fairness of candidate solutions

PDev(s) =
n

Â
i=1

�

�

�

�

�

Pi(s)� 1
n

n

Â
j=1

Pj(s)

�

�

�

�

�

. (8)

Our extension further specifies how particular penalties Pi(s) should be computed
(see next section). This approach allows us to take into account all entities (not just
the worst or the best) and can be simply included as a weighted component of the
overall objective function such as Eqn. 1. Last but not least, there is no necessity to
transform weights which could be directly taken from Eqn. 1 as we will see below.
Given that, we have decided to consider this type of fairness for inclusion in our work.
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4 New Teacher-oriented Fairness

We now propose a new fairness measure which we apply to construct a fair timetable
for teachers. This same measure can also be applied when fairness for curricula
should be achieved as in [8]. In this case, classical curricula containing a set of
courses may be considered in correspondence with the curriculum-based timetabling
problem from the second international timetabling competition ITC 2007 [2].

For now we will concentrate on fairness among teachers. First, we need to com-
pute the actual penalty Pi(s) for each teacher i using penalties pk( j,s( j)) for all of
his/her classes j with the placement s( j). Also we will use notation P(s) to refer the
actual penalty for all teachers i. Generally we can try to be fair with respect to all m
objective functions having their weights wk (Sec. 2)

Pi(s) =
ni

Â
j=1

m

Â
k=1

wk pk( j,s( j)) (9)

for teacher i having ni classes. Note that s is understood as a function which gives for
each variable/class j its value/placement s( j). Mostly we are interested in fairness
related to some criteria only. A particular penalty k might be a time preference and a
room preference, which would mean that m = 2.

Pi(s) =
ni

Â
j=1

(wtime ptime( j,s( j))+wroom proom( j,s( j))) . (10)

Alternatively, we might just consider time preferences as the most important and
concentrate on fairness of the class’ times for particular teachers. For this case, we
obtain the actual penalty

Pi(s) =
ni

Â
j=1

wtime ptime( j,s( j)) . (11)

Penalty ptime( j,s( j)) would then be just a time preference corresponding to the as-
signment of the class j to the placement s( j) in time.

Next, we compute the best penalty Pi for the teacher i

Pi = min
a

Pi(a) (12)

which can be achieved for any possible assignment a 2. This can be easily computed
based on the best time and/or room preferences available for each class because we
can simply take sum of the best preferences (rather than minimize sum of prefer-
ences). The notation P then refers to the best penalties for all teachers i.

Based on the best and actual penalty, we can compute the final penalty Pi(s) for a
teacher i with ni classes

Pi(s) =
�

Pi(s)�Pi
�

/ni . (13)

2 Note that assignments are just all possible value combination for all variables, they do not need to
satisfy any constraints.
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Again P(s) denotes the final penalties for all teachers i.
This final penalty may be applied in any fairness measure defined in Sec. 3. More

specifically, we will describe an efficient algorithm for the deviation-based fairness
measure PDev(s). In this case, the objective function can be an extended version of
Eqn. 2

F(s) = wstudFstud(s)+wtimeFtime(s)+

+wroomFroom(s)+wdistrFdistr(s)+w f airPDev(s) . (14)

We will demonstrate some of the important features of the final penalty in the
following example.

Example 1 Consider the teacher i who has 3 classes. The first class in our solution s
has a preferred time assignment with a preference ptime(1,s(1)) = �4 and discour-
aged time assignments having the preference 4. Two other classes do not have any
preferences, i.e., their time preferences correspond to 0. Next, we select the preferred
value for the first class and any of values for the remaining classes. In this case, the
best penalty is Pi = �4 + 0 + 0 and the actual penalty is Pi(s) = 4 + 0 + 0. The final
penalty corresponds to Pi(s) = (4� (�4))/3 = 2.66.

We can see that our fairness measure is simply established on preferences available in
the problem definition. Taking into account the best penalty allows us to differentiate
cases when teachers have different expectations about preferences of their classes.
We just compare the desire of teacher (reflected in the best penalty) with the achieved
quality (reflected in the actual penalty). In addition, taking an average value for all
classes of one teacher allows us to obtain comparable values for final penalties which
can be directly included in the fairness measures presented in Sec. 3.

5 Incremental Algorithm

To more easily understand the process of incremental computation of the fairness
measure, we present our algorithm as a part of the iterative forward search proce-
dure (IFS) [13] which is applied in UniTime for iterative computation of the solution
(Fig. 1). It demonstrates how the fairness measure is incrementally computed during
the search. Nonetheless a similar incremental computation can be directly applied in
other iterative or constructive algorithms such as local search algorithms [17] or look
ahead search [1].

We first explain the basic iterative forward search as it is written in blue (light in
black/white print). The algorithm runs in cycles (Ln. 8–18) with the goal to improve
the quality of the current timetable/solution s and to return the best solution s0 at
the end (Ln. 19). In each cycle, one class/variable is selected (Ln. 10) as well its
new placement/value (Ln. 11). This new assignment v/d may possibly conflict with
some existing assignments which are computed in Ln. 12. These are removed and
the class v is assigned its new placement d (Ln. 13). This is certainly just the base
structure of the algorithm, more details about fundamental heuristics involved can be
found in [10,13].
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1: function FAIRIFS(P , F) {problem P , objective function F}
2: j = 0
3: s = /0 {current timetable}
4: so = /0 {the best timetable}
5: compute = false
6: PDev(s) = 0
7: P = COMPUTEBESTPENALTY(P)
8: while CANCONTINUE(s, j) do
9: j = j +1
10: v = SELECTVARIABLE(P ,s) {class v to be assigned}
11: d = SELECTVALUE(P ,s,F,v) {placement d to be assigned to v}
12 : Y = HARDCONFLICTS(P ,s,v/d) {classes to be unassigned in Y}
13 : s = s\Y [{v/d} {update current timetable s}
14: if compute then PDev(s) = INCREMENTFAIRNESS(P , s,v,d,Y )
15: else if s is complete then
16: compute = true
17: PDev(s) = COMPUTEFAIRNESS(P , s)
18: if F(s) < F(so) then so = s
19: return so

Fig. 1 Fairness measure computation within the iterative forward search (the blue/light text represents the
original IFS, the black text presents a new fairness measure computation)

Now we can describe how to compute the fairness measure (see the black rows
in Fig. 1). Input of the algorithm remains the same, the function F now includes in
its sum the component for the fairness measure w f airPDev(s) (Eqn. 14). Initially the
fairness measure PDev(s) is set to 0 (Ln. 6). This value is used to compute F(s) be-
fore the current timetable s is complete because the fairness measure may be rather
unrealistic before all classes are assigned. Next we can compute for all teachers i the
best penalty Pi (Ln. 7) because it remains the same through all computations (de-
tailed description given later along with Fig. 2). The fairness measure PDev(s) is first
computed when a complete solution s is found (Ln. 15–17). In following iterations,
the fairness measure is incrementally maintained only (Ln. 14). Detail descriptions
of both functions will be given subsequently.

The function computing the best penalty is presented in Fig. 2. In summary, the
best penalty for the teacher i is the sum of the smallest penalties for all his/her classes.
For each class v, we compute the best (smallest) penalty (Ln. 3–7). It is computed

1: function COMPUTEBESTPENALTY(P)
2: forall teachers i in P do Pi = 0
3: forall classes v in P
4: p = •
5: forall placements d of v do
6: q = Âk wk pk(v,d)
7: if q < p then p = q
8: forall teachers i of class v do Pi = Pi + p
9: return P

Fig. 2 Function for computation of the best penalty Pi for all teachers i
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such that all possible placements of the class are scanned (Ln. 5–7), the penalty is
retrieved for each of them and the smallest value is maintained in p. In the next step,
the computed smallest class penalty p is added to the best penalties of all teachers i
of the current class v (Ln. 8).

The function computing the actual penalty for the first complete solution s is pre-
sented in Fig. 3. These initial actual penalties P(s) are computed in a similar manner

1: function COMPUTEACTUALPENALTY(P , s)
2: forall teachers i in P do Pi(s) = 0
3: forall classes v in P
4: let v/d 2 s
5: p = Âk wk pk(v,d)
6: forall teachers i of class v do Pi(s) = Pi(s)+ p
7: return P(s)

Fig. 3 Function for computation of the best penalty Pi for all teachers i

to the best penalty P (Fig. 2) where we just take the penalty of the current class
placement v/d (Ln. 4–5).

Fig. 4 explains initial computation of the fairness measure. Given the actual penal-

1: function COMPUTEFAIRNESS(P , s)
2: P(s) = COMPUTEACTUALPENALTY(P,s)
3: forall teachers i with ni classes do Pi(s) =

�

Pi(s)�Pi
�

/ni
4: Pavg = 1

n Ân
i=1 Pi(s)

5: return Ân
i=1 |Pi(s)�Pavg|

Fig. 4 Initial computation of the fairness measure

ties P(s) from Ln. 2, we can compute the final penalty Pi(s) for each teacher i (Ln. 3).
In the next step, the average value of the final penalty Pavg among all teachers is
computed (Ln. 4) and it is consequently applied in computation of the fairness mea-
sure PDev(s) to be returned (Ln. 5).

After the fairness measure is initially computed it is iteratively maintained during
the search (Fig. 1) by function in Fig. 5. We take into account the fact that the fairness
measure can be changed only due to the distinct assignment of one or more classes
which were in the given search step assigned (one class denoted by v, Ln. 10, Fig. 1)
and unassigned (from none to several classes taking a part in Y , Ln. 12, Fig. 1). This
means that the final penalty value can be only changed for teachers who participate in
the changed classes. More precisely, when a class v is assigned a new placement d, its
penalty is added to the actual penalties of all teachers of the class (Ln. 3) and the fi-
nal penalty is updated for these teachers (Ln. 4). A similar computation is completed
when some classes are unassigned, we just need to handle changes for teachers of
all these classes. In this case, the actual penalties are decreased by a penalty for the
placement g of unassigned class c (Ln. 6) and the corresponding final penalties are
updated (Ln. 7). The average final penalty Pavg is computed in Ln. 8. No incremental
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1: function INCREMENTFAIRNESS(P , s,v,d,Y )
2: forall teachers i of class v (i has ni classes) do
3: Pi(s) = Pi(s)+Âk wk pk(v,d)
4: Pi(s) =

�

Pi(s)�Pi
�

/ni
5: if Y 6= /0 then forall teachers i of classes c/g in Y do
6: Pi(s) = Pi(s)�Âk wk pk(c,g)
7: Pi(s) =

�

Pi(s)�Pi
�

/ni
8: Pavg = 1

n Ân
i=1 Pi(s)

9: return Ân
i=1 |Pi(s)�Pavg|

Fig. 5 Function incrementally recomputing the fairness measure

computation is necessary in this step, it is not computationally demanding. Incremen-
tal computation would actually introduce rounding errors which is undesirable. Last
but not least, the fairness measure PDev(s) is computed and returned in Ln. 9.

6 Evaluation

6.1 Data Sets

Real-life data from the Faculty of Informatics at Masaryk University has been used in
all experiments. Particular data instances are described in Table 1 where we can see
the most important data attributes. For each of the four semesters, there is information
about the number of classes (timetabled events of courses), teachers, rooms3 and
students. Student pre-enrollments play an essential role in constructing the timetable,
i.e., the enrollment-based timetabling problem [6] has been solved and the number of
enrollments is presented.

Table 1 Parameters of particular data sets

Semester Classes Teachers Rooms Students Enrollments
Spring 2014 500 250 31 1,773 17,581

Autumn 2014 594 240 32 1,857 20,520
Spring 2015 511 229 28 1,650 16,845

Autumn 2015 603 247 34 1,894 20,003

The fairness measure was applied to construct fair timetables with respect to times
of classes for particular teachers because the time is always a very important charac-
teristic for teachers at the faculty. This means that the fairness measure relies on the
actual penalty computed using Eqn. 11.

6.2 Results

Experiments have been run on a machine with dual core i5 2.5 GHz processor and
8 GB of RAM, using MS Windows 7 Professional, JDK 1.7 and CPSolver 1.3.58

3 Changing number of rooms is due to the reconstruction completed just before the autumn 2015.
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without the support for parallel solver runs (one thread has been used). Average re-
sults of the 10 runs each taking one hour are presented.

6.2.1 Different Fairness Weight

The first experiment presented in Table 2 shows changes in the fairness measure PDev

based on the changes of the fairness weight w f air. Evaluation also shows percentile
satisfaction of time preferences Ftime, room preferences Froom, distribution prefer-
ences Fdist and the number of student conflicts Fstud . Results for this experiment are
computed for the Autumn 2015 data instance having the largest number of classes.

Table 2 Experiments with different fairness weight for Autumn 2015

w f air Ftime Fstud Fdist Froom PDev

(%) (%) (%) (%)
– 77.30 877.7 91.72 74.30 –
1 81.34 868.4 92.10 71.32 -14.7
3 84.66 905.1 90.95 71.41 -25.3
5 87.94 919.3 90.21 72.23 -46.5
7 88.86 927.7 91.72 70.83 -53.0
9 90.30 946.6 91.00 70.66 -58.3

The first row of Table 2 shows results of the runs where no fairness is applied
and the standard UniTime timetabling solver is used for the timetable construction.
This serves as a basis for our comparisons. Other rows show results of the runs where
fairness weight w f air was subsequently strengthened to emphasize fairness more. It
is good to see that increasing the fairness weight subsequently improves the fairness
measure PDev. We can see the percentile improvements of this value with respect to
the base experiment (first line) where fairness measure was computed but not opti-
mized. However, we need to carefully check satisfaction of other criteria. It is not
surprising that Ftime is getting better with a bigger w f air because the fairness is estab-
lished on the fairness for time of classes. The consequence is an improvement of Ftime
as well. While improving PDev and Ftime, other criteria are shown to worsen, this is
always the cost of improvement in the quality of remaining criteria. Selection of the
best weight would always be related to the policies of particular school or university
and implemented by the person responsible for timetable creation. We have decided
to select w f air = 5 for further experiments because satisfaction of criteria Fstud , Froom
and Fdist is reasonable and there is a significant improvement of both PDev and Ftime.

6.2.2 Results for All Data Sets

Having set the weight w f air we can now present experimental results for all data in-
stances. Results are available in Table 3 with the same structure as before. In addition,
standard deviations are presented in the table. We can see that results are comparable
for all data sets, with similar results as for the first experiment having been obtained.
The fairness as well as time preferences are significantly improved compared to the
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run of the standard UniTime solver. Quality of remaining criteria was worse but the
change still looks like a reasonable compromise.

Table 3 Results for all data sets with no fairness and with the fairness weight equal to 5

Semester w f air Ftime Fstud Fdist Froom PDev

(%) (%) (%) (%)
Spring 2014 – 68.7±1.4 629.3±14.8 90.8±0.4 85.9±2.6 –

5 81.5±1.5 660.4±13.6 91.3±1.4 84.8±1.9 -43.8±3.0
Autumn 2014 – 76.9±1.4 1,110.9±36.0 92.8±1.7 81.9±2.7 –

5 86.7±1.0 1,179.1±46.1 87.6±1.8 81.9±2.3 -41.5±2.6
Spring 2015 – 76.2±1.2 853.9±12.4 91.0±2.0 88.8±2.0 –

5 85.1±1.0 894.9±11.9 91.1±1.8 86.1±3.0 -40.0±3.4
Autumn 2015 – 77.3±1.3 877.7±22.5 91.7±1.2 74.3±5.4 –

5 87.9±1.5 919.3±42.6 90.2±2.0 72.2±4.6 -46.5±11.6

7 Conclusion

Fairness plays an important role in acceptance of generated timetables. This has been
realized in many recent studies with the main emphasis on fairness [8,7,5,16]. Our
approach allows us to establish fairness for entities in educational timetabling as well
as in other problems where different preferences or penalties of entities are compared.
To our knowledge, there are no earlier studies of fairness for teaches who were of the
main interest in this work.

We proposed an incremental algorithm for inclusion of our fairness measure ex-
tension based on deviations. It can be included in any search with subsequent changes
such as local search or backtracking-based search. Experiments on recent real-life
data from Masaryk University in the Czech Republic show significant improvement
in the proposed fairness measure at a reasonable cost in other criteria. Even more
there is a significant improvement in the satisfaction of time preferences.

We included our algorithm into the UniTime system where it is available from
version 4.1. It also means that source code of our implementation is fully available in
this open source system as a part of the CPSolver library. The solution with the new
fairness criteria will be presented to timetablers at universities using UniTime such
as Masaryk University and Purdue University for potential use in practice.

In course timetabling, the most interesting future work is related to fairness for
more complex entities, such as curricula, where the structure is not so clear. In the
presence of course sections and elective courses, it is still an unsolved problem. Also
it could be valuable to consider the fairness for individual students, which relates to
student scheduling and sectioning problems [11]. Extension of the approach towards
other problems where particular entities (nurses, employees, or users) have several
different interests (their shifts, works, or jobs) could be certainly considered.

Acknowledgements We would like to thank to Tomáš Müller for his consultations and help with inclusion
of the code into UniTime distribution.
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References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Di Gaspero, L., McCollum, B., Schaerf, A.: The second international timetabling competition (ITC-

2007): Curriculum-based course timetabling (track 3). Tech. Rep. QUB/IEEE/Tech/ITC2007/-
CurriculumCTT/v1.0, University, Belfast, United Kingdom (2007)

3. Jain, R.K., Chiu, D.M.W., Hawe, W.R.: A quantitative measure of fairness and discrimination for
resource allocation in shared computer systems. Tech. Rep. DEC-TR-301, Digital Equipment Copo-
ration (1984)
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