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1 A Dual-Objective Course-Timetabling Model

We present results in the development of a course-timetabling system that
will be used to construct the complete schedule for the 2017-2018 academic
year at Rollins College. Our system builds on a previous system that was used
to construct the Fall 2011 schedule for the Science Division classes at Rollins
College [Wehrer and Yellen(2014)].

The approach is based on a weighted-graph model. The endpoints of each
edge correspond to course pairs that are likely to have students and/or faculty
in common or require a common resource. Each edge has two weights that
correspond to the two objectives of our model. The first, dubbed the conflict
penalty, is incurred when the endpoints are assigned overlapping timeslots.
The second weight, the proximity penalty, is incurred when the endpoints are
assigned timeslots having a large gap on the same day. The overall objective
is to find a coloring that minimizes a linear combination of the two penalties
(currently 25 · conflict + 1 · proximity) incurred across all edges.

Our presentation includes a description of a mixed-integer programming
(MIP) formulation [To↵olo(2015)] for the vertex-coloring problem and a de-
tailed comparison between the optimal solutions it produces and those ob-
tained by various heuristic approaches. We also report on our results exper-
imenting with genetic algorithms (GA) to adjust the relative weights of our
heuristics, and di�culties encountered in scaling both the exact algorithm and
the heuristic approaches.
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In addition to testing on the actual course-scheduling problem at Rollins,
we are comparing performance on a series of randomly generated instances
created from the actual Fall 2015 schedule that was constructed manually by
the college registrar. Using an actual schedule as a seed for the randomization
was motivated by the desire to create test problems that are similar to the
actual timetabling problem. We intend to make these datasets available for
the timetabling research community

2 Approximate Scheduling Algorithms

The system that created the Fall 2011 Science Division schedule was based on a
one-pass approximate algorithm that used a combination of various heuristics
to assign timeslots and rooms. The heuristics include the total penalty of the
schedule so far (i.e., the partial coloring of the graph) and a projection of the
di�culty of coloring the remaining uncolored vertices.

The one-pass strategy is limited in that it generates only one path to a
complete coloring without backtracking. [Rickman and Yellen(2014)] extended
the one-pass system by incorporating a beam search approach that maintains
a fixed-size priority queue of partial colorings [Bisiani(1987)]. At each step, the
beam search selects the most promising partial coloring from the queue and
expands it by generating a set of successor colorings, each of which includes
one more colored vertex. If each expansion step selects m vertices and assigns
each vertex one of n colors, the total number of successors (i.e., the branching
factor) is mn.

Heuristics are used in various components of the beam search: ordering the
priority queue; setting the branching factor; and selecting the child nodes that
are generated during each expansion. The weights for the di↵erent heuristics
were tuned using an evolutionary local search algorithm [Norvig(1992)]. The
tuned beam search achieved the same result as the optimal MIP scheduler on
the Fall 2011 Science Division problem.

3 Comparing Exact and Approximate Approaches

In preparation for constructing the complete schedule for Rollins College for
the 2017-2018 academic year, we obtained the complete College schedule for
Fall 2015, including records on student cross-enrollments in each pair of courses.
The complete schedule contains 711 individual course sections with more than
300 instructors meeting in 157 distinct meeting times (e.g., MWF 8:00-8:50,
MW 8:00-9:15, etc.). Using this data, we generated a set of 10 test problems
by randomizing the acceptable timeslots, acceptable rooms, and student cross-
enrollment weights between pairs of courses. The randomized problems were
constructed by extending the original Fall 2015 schedule in such a way that
every course has at least one valid timeslot and room assignment.

Table 1 summarizes the performance of the exact MIP scheduler (using the
Gurobi solver [Gurobi(2016)]) on the 10 randomized problems based on the
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Table 1 Results of the MIP scheduler on the set of 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(minutes)

1 12503 0 1 52 0 110
2 13386 0 2 40 0 9
3 14050 0 4 46 0 179
4 13456 0 1 50 0 13
5 15088 0 6 38 0 8
6 15100 0 5 42 0 73
7 15236 0 5 35 0 70
8 15101 0 5 43 0 8
9 14027 0 4 32 0 4
10 13971 0 2 40 0 15

Fall 2015 schedule. The optimal scheduler is able to place every course in an
acceptable room and avoids creating any heavy conflicts. The average penalty
over the 10 problems is 14138.

While the performance of the MIP scheduler on the 10 problems is good,
but there are still compelling reasons to investigate heuristic schedulers. In
particular,

– The run time of the MIP is highly variable: four of the 10 problems require
over an hour to solve and one requires almost three hours.

– The e�ciency of the scheduler depends on the power of the underlying
MIP solver, but not all organizations performing scheduling have access to
commercial packages like Gurobi.

– Our experience and discussions with the college’s registrar have shown that
the course schedule will need a series of edits after its initial construction.
In 2011, this editing process was enhanced by re-running the scheduler to
evaluate the impact that each potential change would have on the overall
schedule. Even the fastest MIP run times in Table 1 are too slow to support
this process.

The initial version of the one-pass system used a two-step process when
scheduling each course, first selecting the most suitable timeslot, then selecting
an acceptable open room at that timeslot. We found that this approach failed
to construct good solutions on the 10 randomized problems. We obtained
significant improvement by switching to an approach that assigns a timeslot-
room pair to a course in a single step. We then further improved the system’s
performance by applying evolutionary search to tune the parameter settings
in the timeslot-room selection heuristics.

Table 2 summarizes the results for the one-pass system on the set of 10
randomized problems. The average penalty over the 10 problems is 18488.
The resulting schedules have no heavy conflicts, and only four courses are left
without rooms out of the almost 7000 courses considered across the set of
10 problems. The one-pass system is fast–our current Python implementation
constructs the entire 700-course schedule in under three seconds.
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Table 2 Results of the one-pass scheduler on the set of 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(seconds)

1 17130 0 2 58 0 2
2 17295 0 4 55 0 2
3 16941 0 5 48 0 2
4 18406 0 2 50 1 3
5 19274 0 6 56 1 3
6 19145 0 7 54 0 2
7 18621 0 5 54 0 2
8 21122 0 5 50 2 3
9 18844 0 6 38 0 2
10 18102 0 2 49 0 2

Table 3 Results of the beam search scheduler on the set of 10 randomized problems

Problem Total
penalty

Heavy
conflicts

Medium
conflicts

Light
conflicts

Unassigned
rooms

Run time
(seconds)

1 15299 0 1 59 0 135
2 16838 0 3 53 0 125
3 17153 0 4 50 0 159
4 16135 0 2 46 0 139
5 19680 0 6 49 1 135
6 18973 0 6 55 0 145
7 18304 0 5 36 0 135
8 20084 0 6 44 0 148
9 16944 0 4 32 0 139
10 17246 0 2 59 0 121

The beam search scheduler is slower than the one-pass approach, but its
optimal performance on the Fall 2011 Science Division schedule led us to apply
it to the 700-course problem. Table 3 reports results on the 10 randomized
problems for a version of the beam search scheduler that adapts the vertex
and timeslot-room selection heuristics from the one-pass system. The heuristics
for selecting the partial coloring to expand at each step have been tuned using
evolutionary local search. The average over the 10 problems is 17665, which
is within 25% of the optimal result obtained by the MIP scheduler, and all
courses except one receive an acceptable room.
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