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teaspoon: Solving the Curriculum-Based Course Timetabling
Problems with Answer Set Programming

Mutsunori Banbara - Katsumi Inoue - Benjamin
Kaufmann - Torsten Schaub - Takehide Soh -
Naoyuki Tamura - Philipp Wanko

Abstract Answer Set Programming (ASP) is an approach to declarative problem solving,
combining a rich yet simple modeling language with high performance solving capacities.
We here develop an ASP-based approach to Curriculum-Based Course Timetabling (CB-
CTT), one of the most widely studied course timetabling problems. The resulting teaspoon
system reads a CB-CTT instance of a standard input format and converts it into a set of ASP
facts. In turn, these facts are combined with a first-order encoding for CB-CTT solving,
which can subsequently be solved by any off-the-shelf ASP systems. We establish the com-
petitiveness of our approach by empirically contrasting it to the best known bounds obtained
so far via dedicated implementations.

Keywords Educational Timetabling - Course Timetabling - Answer Set Programming

1 Introduction

Educational timetabling [14,28,36] is generally defined as the task of assigning a number of
events, such as lectures and examinations, to a limited set of timeslots (and perhaps rooms),
subject to a given set of hard and soft constraints. Hard constraints must be strictly satisfied.
Soft constraints must not necessarily be satisfied but the overall number of violations should
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Fig. 1 Architecture of teaspoon.

be minimal. The educational timetabling problems can be classified into three categories:
school timetabling, examination timetabling, and course timetabling. In this paper, we fo-
cus on curriculum-based course timetabling (CB-CTT) [8], one of the most studied course
timetabling problems, as well as post-enrollment course timetabling.

The CB-CTT problems have been used in the third track of the second international
timetabling competition (ITC-2007) [15,32]. A web portal' for CB-CTT has been actively
maintained by the ITC-2007 organizers [10]. The web site has provided necessary infras-
tructures for benchmarking such as validators, data formats, problem instances, solutions
in different formulations (uploaded by researchers), and visualizers. All problem instances
on the web are based on real data from various universities. The best known bounds on the
web have been obtained by various methods including the winner algorithm of ITC-2007:
metaheuristics-based algorithms [1,16,17,24,29], Integer Programming [27], hybrid meth-
ods [33], SAT/MaxSAT [2], and many others.

However, each method has strength and weakness. Metaheuristics-based dedicated im-
plementations can quickly find better upper bounds, but cannot guarantee their optimality.
Although complete methods such as SAT can guarantee the optimality, it is costly to im-
plement a dedicated encoder from the CB-CTT problems in SAT. Integer Programming
has been widely used for CB-CTT solving, but in general it does not scale to large in-
stances in complex formulations. It is therefore particularly challenging to develop a univer-
sal timetabling solver which can efficiently find optimal solutions as well as better bounds
for a wide range of CB-CTT instances in different formulations at present.

Answer Set Programming (ASP; [7,25,35]) is an approach to declarative problem solv-
ing. Recent advances in ASP open up a successful direction to extend logic programming
to be both more expressive as well as more effective. ASP provides a rich language and is
well suited for modeling combinatorial (optimization) problems in Artificial Intelligence and
Computer Science. Recent remarkable improvements in the effectiveness of ASP systems
have encouraged researchers to use ASP for solving problems in diverse areas, such as auto-
mated planning, constraint satisfaction, model checking, music composition, robotics, sys-
tem biology, etc. However, so far, little attention has been paid to using ASP for timetabling.

In this paper, we describe an ASP-based approach for solving the CB-CTT problems and
present the resulting teaspoon system. The feaspoon system reads a CB-CTT instance of a
standard input format [10] and converts it into ASP facts. In turn, these facts are combined
with a first-order encoding for CB-CTT solving, which is subsequently solved by an off-the-
shelf ASP system, in our case clingo 2. Figure 1 shows the teaspoon architecture.

The high-level approach of ASP has obvious advantages. First, the problems are solved
by general-purpose ASP systems rather than dedicated implementation. Second, the elabo-

! http://tabu.diegm.uniud.it/ctt/
2 ASP system clingo is a monolithic combination of the grounder gringo with the solver clasp.
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ration tolerance of ASP allows for easy maintenance and modifications of encodings. And
finally, it is easy to experiment with advanced techniques in ASP solving such as core-
guided optimization, domain heuristics, and portfolios of prefabricated expert configura-
tions [20]. However, the question is whether the high-level approach of teaspoon matches
the performance of dedicated systems. We empirically address this question by contrasting
the performance of feaspoon with the best known bounds on the CB-CTT web portal.

From an ASP perspective, we showed in previous work [6] that ASP’s modeling lan-
guage is well-suited for course timetabling by providing a compact encoding for CB-CTT.
However, at the same time, we observed that a simple branch-and-bound optimization strat-
egy is insufficient to decrease the upper bounds of large instances in complex formulations.
In this paper, we provide insights into how more advanced solving techniques can be used
to overcome this practical issue. The ASP encoding implementing CB-CTT solving with
teaspoon is an extension of our previous encoding with the following features: (a) a collec-
tion of optimized encodings for soft constraints, (b) easy composition of different formula-
tions, (c) support for multi-criteria optimization based on lexicographic ordering, (d) reusing
legacy timetables with multi-shot ASP solving.

Our encoding is given in the gringo 4 language [19]. Although we provide a brief in-
troduction to ASP and its basic language constructs in Section 3, we refer the reader to the
literature [7,21] for a comprehensive treatment of ASP.

2 Curriculum-based Course Timetabling

The basic entities of the CB-CTT problem are courses, rooms, days, and periods per day.
A timeslot is a pair composed of a day and a period. A curriculum is a group of courses
that shares common students. The CB-CTT problem is defined as the task of assigning all
lectures of each course into a weekly timetable, subject to a given set of constraints: hard
constraints (H;—Hy, see below) and soft constraints (S;—Sg9). The former must be strictly
satisfied. The latter are not necessarily satisfied but the sum of their violations should be
minimal. From the viewpoint of violations, the soft constraints can be divided into two
types: the soft constraints with constant cost (S3 and S7—So) and the soft ones with calculated
cost (5152 and S4—Se). The difference is that for those with constant cost only one penalty
point is imposed on each violation, whereas many penalty points calculated dynamically
in accordance with each violation are imposed for those with calculated cost. A feasible
solution of the problem is an assignment in which all lectures are assigned to a timeslot and
a room, so that the hard constraints are satisfied. The objective of the problem is to find a
feasible solution of minimal penalty costs. The following definitions are based on [10].

— H;. Lectures: All lectures of each course must be scheduled, and they must be assigned
to distinct timeslots.

— H>. Conflicts: Lectures of courses in the same curriculum or taught by the same teacher
must be all scheduled in different timeslots.

— Hj3. RoomOccupancy: Two lectures cannot take place in the same room in the same
timeslot.

— Hy,. Availability: If the teacher of the course is unavailable to teach that course at a
given timeslot, then no lecture of the course can be scheduled at that timeslot.

— S1. RoomCapacity: For each lecture, the number of students that attend the course
must be less than or equal the number of seats of all the rooms that host its lectures.
The penalty points, reflecting the number of students above the capacity, are imposed on
each violation.
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S2. MinWorkingDays: The lectures of each course must be spread into a given min-
imum number of days. The penalty points, reflecting the number of days below the
minimum, are imposed on each violation.

S3. IsolatedLectures: Lectures belonging to a curriculum should be adjacent to each
other in consecutive timeslots. For a given curriculum we account for a violation every
time there is one lecture not adjacent to any other lecture within the same day. Each
isolated lecture in a curriculum counts as 1 violation.

S4. Windows: Lectures belonging to a curriculum should not have time windows (peri-
ods without teaching) between them. For a given curriculum we account for a violation
every time there is one window between two lectures within the same day. The penalty
points, reflecting the length in periods of time window, are imposed on each violation.
S5. RoomStability: All lectures of a course should be given in the same room. The
penalty points, reflecting the number of distinct rooms but the first, are imposed on each
violation.

Se. StudentMinMaxLoad: For each curriculum the number of daily lectures should be
within a given range. The penalty points, reflecting the number of lectures below the
minimum or above the maximum, are imposed on each violation.

S7. TravelDistance: Students should have the time to move from one building to an-
other one between two lectures. For a given curriculum we account for a violation every
time there is an instantaneous move: two lectures in rooms located in different building
in two adjacent periods within the same day. Each instantaneous move in a curriculum
counts as 1 violation.

Sg. RoomSuitability: Some rooms may be not suitable for a given course because of
the absence of necessary equipment. Each lecture of a course in an unsuitable room
counts as 1 violation.

So. DoubleLectures: Some courses require that lectures in the same day are grouped
together (double lectures). For a course that requires grouped lectures, every time there
is more than one lecture in one day, a lecture non-grouped to another is not allowed.
Two lectures are grouped if they are adjacent and in the same room. Each non-grouped
lecture counts as 1 violation.

The formulation is defined as a specific set of soft constraints together with the weights

associated with each of them. In ITC-2007, the CB-CTT problem is formulated as a combi-
natorial optimization problem whose objective function is to minimize the weighted sum of
penalty points. Until now five formulations have been proposed: UD1-UDS5. UDI is a basic
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formulation [16]. UD2 is a formulation used in ITC-2007 [15]. To capture more different
scenarios, UD3, UD4, and UDS5 are proposed recently [10]. These new formulations focus
on student load (UD3), double lectures (UD4), and travel cost (UDS), respectively. Table 1
shows the weights associated with each soft constraint for all formulations. The symbol ‘H’
indicates that the constraint is a hard constraint. The symbol ‘-’ indicates that the constraint
is not included in the formulation.

3 Answer Set Programming

Answer Set Programming (ASP; [7,25,35]) is a popular tool for declarative problem solving
due to its attractive combination of a high-level modeling language with high-performance
search engines. In ASP, problems are described as logic programs, which are sets of rules of
the form

ag :- aj,...,y,00t aut1,...,0n0t a,

where each a; is a propositional atom and not stands for default negation. We call a rule
a fact if n = 0, and an integrity constraint if we omit ag. Semantically, a logic program
induces a collection of so-called answer sets, which are distinguished models of the program
determined by answer sets semantics; see [25] for details.

To facilitate the use of ASP in practice, several extensions have been developed. First
of all, rules with first-order variables are viewed as shorthand for the set of their ground in-
stances. Further language constructs include conditional literals and cardinality constraints
[35]. The former are of the form a:by, ... ,b,, the latter can be written as s{cy,...,c,}t,
where a and b; are possibly default-negated literals and each c; is a conditional literal;
s and t provide lower and upper bounds on the number of satisfied literals in the car-
dinality constraint. The practical value of both constructs becomes apparent when used
with variables. For instance, a conditional literal like a(X) :b(X) in a rule’s antecedent ex-
pands to the conjunction of all instances of a(X) for which the corresponding instance of
b(X) holds. Similarly, 2 {a(X):b(X)} 4 is true whenever at least two and at most four in-
stances of a(X) (subject to b(X)) are true. A useful® shortcut are expressions of the form
N = {ci,...,c,} that binds N to the number of satisfied conditional literals c ;. Finally, ob-
jective functions minimizing the sum of weights w; of conditional literals c; are expressed
as #minimize{w;:cy,...,Wyicy}. ?

4 The teaspoon Approach

We begin with describing teaspoon’s fact format of CB-CTT instances and then present an
ASP encoding for solving the CB-CTT problems.

Fact Format. Listing 1 shows a tiny instance toy.ectt written in the ‘.ectt’ format,
a standard input format of the CB-CTT instances [10]. ASP facts representing toy.ectt
are shown in Listing 2. The first nine facts in Line 1-2 express the scalar values of each
entity. This instance named Toy consists of 4 courses, 3 rooms, 2 curricula, 8 unavail-
ability constraints, and 3 room constraints. The weekly timetable consists of 5 days and

3 Care must be taken whenever such expressions are evaluated during solving (rather than grounding).

4 Syntactically, each wj can be an arbitrary term. In fact, often tuples are used rather than singular weights
to ensure a multi-set property; in such a case the summation only applies to the first element of selected
tuples.
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Name: Toy

Courses: 4

Rooms: 3

Days: 5

Periods_per_day: 4
Curricula: 2
Min_Max_Daily_Lectures: 2 3
UnavailabilityConstraints: 8
RoomConstraints: 3

COURSES:

SceCosC Ocra 3 3 30 1
ArcTec Indaco 3 2 42 0
TecCos Rosa 5 4 40 1
Geotec Scarlatti 5 4 18 1

ROOMS :

rA 32 1
rB 50 0
rC 40 0

CURRICULA:
Curl 3 SceCosC ArcTec TecCos
Cur2 2 TecCos Geotec

UNAVAILABILITY_CONSTRAINTS:

TecCos 2 0
TecCos 2 1
TecCos 3 2
TecCos 3 3
ArcTec 4 0
ArcTec 4 1
ArcTec 4 2
ArcTec 4 3

ROOM_CONSTRAINTS:
SceCosC rA
Geotec rB

TecCos rC

END.

Listing 1 toy.ectt: a toy instance

name ("Toy"). courses(4). rooms(3).
min_max_daily_lectures(2,3).

course("SceCosC","Ocra",3,3,30,1).
course("TecCos","Rosa",5,4,40,1) .
room(rA,32,1). room(rB,50,0).

curricula("Curil","SceCosC").
curricula("Cur2","TecCos").

room_constraint ("SceCosC",rA).

days(5) .
unavailabilityconstraints(8).

curricula("Curil","ArcTec").
curricula("Cur2","Geotec").

unavailability_constraint ("TecCos",2,0).
unavailability_constraint ("TecCos",3,2).
unavailability_constraint ("ArcTec",4,0).
unavailability_constraint("ArcTec",4,2).

room_constraint ("Geotec",rB).

periods_per_day(4). curricula(2).
roomconstraints(3).

course("ArcTec","Indaco",3,2,42,0).
course("Geotec","Scarlatti",5,4,18,1).

room(rC,40,0).

curricula("Curi","TecCos").

unavailability_constraint ("TecCos",2,1).
unavailability_constraint("TecCos",3,3).
unavailability_constraint ("ArcTec",4,1).
unavailability_constraint ("ArcTec",4,3).

room_constraint ("TecCos",rC) .

Listing 2 toy.1p: ASP facts representing toy.ectt

assigned("SceCosC",rB,3,0). assigned("SceCosC",rB,2,2). assigned("SceCosC",rB,4,2).
assigned("ArcTec", rB,3,1). assigned("ArcTec", rB,0,2). assigned("ArcTec", rB,1,2).
assigned("TecCos", rB,0,1). assigned("TecCos", rB,0,3). assigned("TecCos", rB,1,3).
assigned("TecCos", rB,2,3). assigned("TecCos", rB,4,3). assigned("Geotec", rA,4,1).
assigned("Geotec", rA,0,2). assigned("Geotec", rA,1,2). assigned("Geotec", rA,2,2).
assigned("Geotec", rA,4,2).

Listing 3 Solution (partial answer set) of toy.1p in UD2

4 periods per day, where they start from 0. The fact course(C,T ,N, MWD ,M ,DL) in
Line 4-5 expresses that a course C taught by a teacher 7 has N lectures, which must
be spread into MWD days. The number of students that attend the course C is M. The
course C requires double lectures if DL = 1. The fact room(R,CAP,BLD) in Line 7 ex-
presses that a room R located in a building BLD has a seating capacity of CAP. The fact
curricula(CUR, C) in Line 9-10 expresses that a curriculum CUR includes a course
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c(C) := course(C,_,_,_,_,_). t(T) := course(_,T,_,_,_,_).
r(R) := room(R,_,_). cu(Cu) :- curricula(Cu,_).
d(0..D-1) :- days(D). ppd(0..P-1) :- periods_per_day(P).

% H1.Lectures
N { assigned(C,D,P) : d(D), ppd(P) } N :- course(C,_,N,_,_,_).

% H2.Conflicts
:- not { assigned(C,D,P) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).
:- not { assigned(C,D,P) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

% H3.RoomOccupancy
1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

% H4.Availability
:- assigned(C,D,P), unavailability_constraint(C,D,P).

% Additional constraints (can be omitted)
:- not { assigned(C,D,P) : c(C) } N, d(D), ppd(P), rooms(N).

Listing 4 Encoding of hard constraints

C. The fact unavailability_constraint (C,D,P) in Line 1215, which is used to spec-
ify Hy, expresses that a course C is not available at a period P on a day D. The fact
room_constraint (C,R) in Line 17, which is used to specify Sg, expresses that a room
R is not suitable for a course C.

As an output example, Listing 3 shows an optimal solution with zero cost of the tiny
instance toy.1p in the UD2 formulation. Each predicate assigned (C,R,D, P) is intended
to express that a lecture of a course C is assigned to a room R at a period P on a day D. All
three lectures of the course SceCosC are assigned to the room rB at the first period (0) on
Thursday (3), the third period (2) on Wednesday (2), and the third period (2) on Friday (4)
as can be seen in Line 1.

First-Order Encoding. The feaspoon encoding of hard constraints (H;—Hy) is shown
in Listing 4. Each hard constraint can be individually expressed in either one or two rules
by using integrity constraints and cardinality constraints. As mentioned above, the predicate
assigned(C,R,D,P) expresses that a lecture of a course C is assigned to a room R at a
period P on a day D, and a solution is composed of a set of these assignments. The predicate
assigned(C,D,P) dropping R from assigned(C,R,D,P) is also introduced, since we do
not always have to take the room information into account to specify the hard constraints
except Hs.

Given a instance of fact format, the first four rules in Line 1-2 generate c(C), t(T),
r(R), and cu(Cu) for each course C, teacher T, room R, and curriculum Cu. The next two
rules in Line 3 generate d(0) ... d(D-1) and ppd(0) ... ppd(P-1) express that the days
range from O to D-1, and the periods per day range from 0 to P-1.

For Hj, the rule in Line 6, for every course C having N lectures, generates a candi-
date of assignments at first and then constrains that there are exactly N lectures such that
assigned(C,D,P) holds. For H,, the rule in Line 9 constrains that, for every teacher T,
day D, and period P, there is at most one course C taught by T such that assigned(C,D,P)
holds. The rule in Line 10 constrains that, for every curriculum Cu, day D, and period P,
there is at most one course C that belongs to Cu such that assigned(C,D,P) holds. For
H;, the rule in Line 13 generates a solution candidate and then constrains that there is
exactly one room R such that assigned(C,R,D,P) holds if assigned(C,D,P) holds. The
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% S1.RoomCapacity

penalty("RoomCapacity",assigned(C,R,D,P), (N-Cap)*weight_of_s1) :-
assigned(C,R,D,P), course(C,_,_,_,N,_), room(R,Cap,_), N > Cap.

% S2.MinWorkingDays

working_day(C,D) :- assigned(C,D,P).

penalty("MinWorkingDays",course(C,MWD,N) , (MWD-N) *weight_of_s2) :-
course(C,_,_,MWD,_,_), N = { working_day(C,D) }, N < MwD.

% S3.IsolatedLectures

scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).

penalty("IsolatedLectures",isolated_lectures(Cu,D,P),weight_of_s3) :-
scheduled_curricula(Cu,D,P), not scheduled_curricula(Cu,D,P-1),
not scheduled_curricula(Cu,D,P+1).

% S4.Windows
nscheduled_curricula(Cu,D,P) :- not scheduled_curricula(Cu,D,P), cu(Cu), ppd(P), d(D).
penalty("Windows",windows(Cu,C1,C2,D,P1,P2), (P2-P1-1)*weight_of_s4) :-
curricula(Cu,C1), curricula(Cu,C2), assigned(C1,D,P1), assigned(C2,D,P2),
P1 + 1 < P2, nscheduled_curricula(Cu,D,P) : P = P1+1..P2-1.

% S5.RoomStability

using_room(C,R) :- assigned(C,R,D,P).

penalty("RoomStability",using_room(C,N), (N-1)*weight_of_s5) :-
c(C), N = { using_room(C,R) }, N > 1.

% S6.StudentMinMaxLoad

penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,many) , (N-Max)*weight_of_s6) :-
cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C), ppd(P) },
min_max_daily_lectures(Min,Max), N > Max.

penalty ("StudentMinMaxLoad",student_min_max_load(Cu,D,N,few), (Min-N)*weight_of_s6) :-
cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C), ppd(P) },
min_max_daily_lectures(Min,Max), O < N, N < Min.

% S7.TravelDistance

penalty("TravelDistance",instantaneous_move(Cu,C1,C2,D,P,P+1) ,weight_of_s7) :-
curricula(Cu,C1), curricula(Cu,C2), assigned(C1,R1,D,P), assigned(C2,R2,D,P+1),
room(R1,_,BLG1), room(R2,_,BLG2), BLG1 !'= BLG2.

% S8.RoomSuitability
penalty("RoomSuitability",assigned(C,R,D,P),weight_of_s8) :-
assigned(C,R,D,P), room_constraint(C,R).

% S9.DoubleLectures

penalty("DoubleLectures" ,non_grouped_lecture(C,R,D,P) ,weight_of_s9) :-
course(C,_,_,_,_,1), d(D), 2 { assigned(C,D,PPD) },
assigned(C,R,D,P), not assigned(C,R,D,P-1), not assigned(C,R,D,P+1).

% objective function
#minimize { P,C,S : penalty(S,C,P) }.

Listing 5 Encoding of soft constraints and objective function

rule in Line 14 constrains that, for every room R, day D, and period P, there is at most
one course C such that assigned(C,R,D,P) holds. For Hy, the rule in Line 17 constrains
that, for every room R, a course C is not assigned to a room R at a period P on a day D,
if unavailability_constraint(C,D,P) holds. The rule in Line 20 constrains that, for a
given number of rooms N, and for every day D and period P, there are at most N lectures such
that assigned(C,D,P) holds. This rule expresses an implied constraint and can be omitted,
we keep it as an additional rule for performance improvement of some problem instances.

The teaspoon encoding of soft constraints (S;—So) is shown in Listing 5. The predicate
penalty(S;,V,C) is intended to express that a constraint S; is violated by V' and its penalty
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cost is C. Here again, each constraint S; is compactly expressed by either one or two rules
in which the head is the form of penalty(S;,V,C), and a violation V and its penalty cost
C are detected and calculated respectively in the body. That is, for each violation V of S;,
the predicate penalty(S;,V,C) is generated. We refer to an instance of penalty/3 as a
penalty atom. This idea can be used to express a wide variety of soft constraints such as those
with constant cost and calculated cost. The constants denoted by weight_of_x* indicate the
weights associated with each soft constraint defined in Table 1.

We give the explanation of S1—S3 that compose the basic formulation UDI1. For Sy,
the rule in Line 2, for every course C that N students attend and room R that has a seating
capacity of Cap, generates a penalty atom with the cost of the production of N-Cap and
weight_of_s1,if N > Cap and assigned(C,R,D,P) holds. For S5, the rule in Line 6 gener-
ates an atom working_day (C,D) for every course C, day D, and period P if assigned(C,D,P)
holds. The atom working_day (C,D) expresses that a course C is given on a day D. The rule
in Line 7-8, for every course C whose lectures must be spread into MWD days, generates a
penalty atom with the cost of the production of MWD-N and weight_of _s2, if the number of
days (N) in which a course C spread is less than MWD. For S3, the rule in Line 11 generates an
atom scheduled_curricula(Cu,D,P) for every curriculum Cu, course C that belongs to Cu,
day D, and period P if assigned(C,D,P) holds. The atom scheduled_curricula(Cu,D,P)
expresses that a curriculum Cu is scheduled at a period P on a day D. The rule in Line 12-14,
for every curriculum Cu, day D, and period P, generates a penalty atom with the constant cost
weight_of_s3, if a curriculum Cu is scheduled at a period P on a day D, but not at P-1 and
P+1 within the same day D. In the ITC-2007 competition setting, we have a single objective
function for minimizing the weighted sum of penalty costs, which is shown in Line 50.

5 The teaspoon System

As mentioned, the teaspoon system accepts a standard input format, viz. ectt [10]. For this,
we implemented a simple converter that provides us with the resulting CB-CTT instance in
teaspoon’s fact format. In turn, these facts are combined with the teaspoon encoding, which
is subsequently solved by the ASP system clingo that returns an assignment representing a
solution to the original CB-CTT instance.

Our empirical analysis considers all instances in different formulations (UD1-UDS),
which are publicly available from the CB-CTT portal. The benchmark set ITC-2007 con-
sisting of 21 instances denoted by comp*, DDS-2008 of 7 instances by DDS*, Test of 5
instances by test#*, Erlangen of 6 instances by erlangen*, EasyAcademy of 12 instances
by EAx, and Udine of 9 instances by Udine*. Among them, the instances of Erlangen are
very large. For example, the instance erlangen2012_2.ectt consists of 850 courses, 132
rooms, 850 curricula, 7,780 unavailability constraints, and 45,603 room constraints. We ran
them on a cluster of Linux machines equipped with dual Xeon E5520 quad-core 2.26 GHz
processors and 48 GB RAM. We imposed a limit of 3 hours and 20GB. We used clingo 5>
for our experiments.

Since clingo utilizes a variety of techniques and parameters guiding the search, we
explored several configurations. We focused on parameters concerning optimization and
configurations from clingo’s portfolio. Preliminary benchmarks on the ITC-2007 instances
eliminated suboptimal configurations. Furthermore, configurations were only considered if
they had so-called “unique solutions” on the whole benchmark set. A solution for a config-
uration is called unique if there is no other configuration that has a better objective value

5 We used revision r10140 of the current development branch available at http://potassco.sourceforge.net/.
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or proven optimality for the same value. One configuration was automatically determined
by piclasp 1.2.1, a configurator for clingo based on smac [26]. The parameter space was
restricted to optimization related parameters and portfolio configurations. The ITC-2007
instances served as training set® and each solver run was limited to 600 seconds.

We determined the following 15 configurations: BBO, BBO-HEU3-RST, BB2, BB2-TR,
Dom5, USC1,USCI11,USCI11-CR, USC11-JP,USC13,USCI13-CR, USCI13-HEU3-RST-HD
(LRND), USC3-JP, USC15, USC15-CR which consist of a variety of clingo’s search options:

— BBn: Model-guided branch-and-bound approach traditionally used for optimization in
ASP [3]. The idea is to iteratively produce models of descending costs until the optimal
is found by establishing unsatisfiability of finding a model with lower cost. Parameter n
controls how the costs are step-wise reduced, either strict lexicographically, hierarchi-
cally, exponentially increasing or exponentially decreasing.

— USCn: Core-guided optimization techniques originated in MaxSAT [9]. Core-guided ap-
proaches rely on successively identifying and relaxing unsatisfiable cores until a model
is obtained. The parameter n indicates what refinements and algorithms are used, e.g.
algorithms oll [4], pmres [34], the combination of both with disjoint core preprocess-
ing [31] and whether the constraints used to relax an unsatisfiable core are added as
implications or equivalences. For n > 8, a technique called stratification [5] is enabled.
Stratification refines lower bound improving algorithms on handling weighted instances.
The idea is to focus at each iteration on soft constraints with higher weights by properly
restricting the set of rules added to the solving process. The goal is to faster obtain a
better bound without having to prove optimality.

— HEU3: Enables optimization-oriented model and sign heuristic.

— RST: The solver performs a restart after every intermediate model that was found.

— DOMS: Atoms that are used in the optimization statement are preferred as decision
variables in the solving algorithm and the sign heuristic tries to make those atoms true.
The technique used to modify the variables is called domain-specific heuristic and is
presented in [23].

— LRND: Refers to the configuration automatically learned by piclasp. For space reasons,
the configuration is refereed to as LRND from here on out.

— CR: Refers to clingo’s configuration crafty that is geared towards crafted problems.

— HD: Refers to clingo’s configuration handy that is geared towards larger problems.

— JP: Refers to clingo’s configuration jumpy that uses more aggressive defaults.

— If neither CR, JP or HD is specified, clingo’s default configuration for ASP problems
tweety is taken. This configuration was determined by piclasp and refined manually. For
more information on clingo’s search configurations, see [20].

We introduce the notion of k-way configurations. A k-way configuration is a set of k
configurations, chosen from the 15 aforementioned configurations. The result of a k-way
configuration for each instance is the best result among the k configurations in the set. For ex-
ample, {USC1,BB0,USC11} is a 3-way configuration with the best results between USCI,
BB0 and USCI1. Intuitively, 1-way configurations are equal to the 15 configurations listed
above and the only 15-way configuration is equal to the virtual best solver, referred to as
VBS-ASP.

At first, we analyze the difference between the configurations. To this end, Table 2 con-
trasts the results obtained from clingo’s different configurations, the best k-way configura-
tions where 2 < k < 14, as well as the virtual best configuration VBS-ASP. The configura-

6 We are aware that the training set is included in the test set. The decision was made since no separate
instance set was available and we wanted to record results for all instances and configurations.
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Table 2 Comparison between different clingo configurations

Configuration Meanrank  #Optimal solutions ~ #Unsolved solutions ~ #Unique solutions
VBS-ASP 12267.77 125 0 -
Best 14-way configuration 12349.69 125 0 -
Best 13-way configuration 12431.61 125 0 -
Best 12-way configuration 12574.97 125 0 -
Best 11-way configuration 12738.81 125 0 -
Best 10-way configuration 12981.16 125 0 -
Best 9-way configuration 13257.64 125 0 -
Best 8-way configuration 13564.84 125 0 -
Best 7-way configuration 13895.08 125 0 -
Best 6-way configuration 14533.37 125 0 -
Best 5-way configuration 15192.15 125 0 -
Best 4-way configuration 16418.60 122 0 -
Best 3-way configuration 17789.11 122 0 -
Best 2-way configuration 19595.98 122 0 -
Uscii-Jp 23288.33 122 0 21
UsCil 23938.37 119 0 6
BBO-HEU3-RST 24056.47 77 0 23
Usci3 24272.54 116 0 3
UscCis 24280.83 117 0 2
USCI3-CR 24318.72 116 10 5
USCI5-CR 24346.08 118 2 4
USC11-CR 24381.20 116 12 3
USCI13-HEU3-RST-HD (LRND) 24638.01 115 0 10
BB2-TR 25063.97 79 0 27
USC3-JP 25259.70 122 120 6
BBO0 25367.61 73 0 14
UsCi 25888.89 118 129 2
BB2 26740.59 78 0 6
Dom5 27384.24 76 155 7

tions are ordered by the mean rank that was calculated as suggested in the ITC 2007. 7 Since
there was no distance to feasibility available, it was assumed to be the same for all con-
figurations and instances. Table 2 also displays the number of optimal solutions, unsolved
instances and unique solution for each configuration.

The highest-ranked single configuration was USCI1-JP with also the highest number of
optimal solutions among the single configurations, though the same number of optimal solu-
tions was obtained by USC3-JP. Overall, core-guided strategies with stratification seem to
provide a good trade-off between providing intermediate solutions with good upper bounds
and proving optimality. The only model-driven configuration among the top single configu-
ration is BBO-HEU3-RST. The optimization-tailored heuristics and frequent restarts seem to
improve convergence of the objective function value, but do not help in proving optimality,
since, despite its high rank, the configuration found the third least optimal solutions.

No smaller best j-way configuration was able to beat or be as good as a best i-way con-
figuration where j < i. Adding more configurations continuously improves the mean rank
and the total number of 125 optimal solutions is reached with combining five configura-
tions. Since the mean rank takes into account the individual ranking of the objective value
for each instance, the large distance in mean rank between the best single configuration and
the best virtual configuration indicates that the different instances are sensitive to different
configurations.

Table 3 shows which single configurations are included in the best k-way configura-
tions. Each column represents one best k-way configuration and each row a single config-
uration. A x indicates that the configuration is included in the best k-way configuration in

7 http://www.cs.qub.ac.uk/itc2007/index files/ordering.htm
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Table 3 Best k-way configurations
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that row. The last column shows how many times the configuration in that row was in a
best k-way configuration. The only single configuration that is not included is USC! since
it was not in any best k-way configuration. For example, the best 5-way configuration is
{BB0O-HEU3-RST,USC11-JP,BB2-TR,USCI3-CR,USCI1}.

All best k-way configurations are contained in best k + 1-way configurations for all
2 < k <13 in the table. So increasing k boils down to adding a configuration that provides
upper bounds improving the ranking in an optimal way. USC11-JP and BBO-HEU3-RST are
included in all best k-way configurations. This correlates with the individual ranking of the
single configurations, where USC11-JP placed first and BBO-HEU3-RST third respectively.
However, the next configuration added, viz. BB2-TR, has the most unique solutions but is
individually ranked 10th. Unique solutions provide a definite improvement of the mean rank,
because it is guaranteed to improve the rank of at least a number of instances equal to the
number of unique solutions. Though, the correlation of the order of configurations added
and number of unique solutions is not exact. A new configuration that adds upper bounds
for an instance that tie for first place also improve the overall mean rank. Other examples
of this observation are DomJ5, ranked last but included in 6 best k-way configurations, and
USC15, ranked 5th but only in one best k-way configuration. Dom5 has seven and USC15
two unique solutions.

Information about the best k-way configurations can be used to optimally configure a
multi-threaded portfolio configuration whenever k threads are available. The results show
that each instance is configuration-sensitive, and combining configurations in an optimal
way improves the results significantly.

In VBS-ASP, the time in seconds of finding optimal solutions for each combination of in-
stance and formulation is shown in Table 4. After the individual times for each formulation,
the next row shows the number of optimal solutions and the average time for the preceding
formulation. The table below shows the overall number of optimal solution and the average
time for all combinations. The overall average of 225.82 seconds is low compared to the
time limit of 3 hours, the highest time for a combination being approximately one hour and
9 minutes. With increasing formulation number, the number of optimal solutions decreases
and, except for UD4, the average time increases.

Next, we compare the performance of teaspoon with other approaches. Table 5 contrasts
the best results of teaspoon with the best known ones on the CB-CTT web portal 8. The

8 http://tabu.diegm.uniud.it/ctt/ on2015-11-13
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Table 4 VBS-ASP : the times of finding optimal solutions

Instance Formulation Time (sec.) Instance Formulation Time (sec.) Instance Formulation Time (sec.)
comp02 UD1 2191.82 comp02 UD2 5457.97 comp02 UD3 4123.27
comp04 UD1 1.00 comp04 UD2 1.89 comp04 UD3 1.19
comp06 UD1 2443 comp06 uD2 113.57 comp06 UD3 2.98
comp07 UD1 9.66 comp07 UD2 369.27 comp07 UD3 16.11
comp08 UDI 1.48 comp08 UD2 2.56 comp08 UD3 5.67
comp10 UD1 1.43 comp10 UD2 29.17 comp09 UD3 267.69
compl1l UD1 0.24 compl1l UuD2 0.41 compl10 UD3 1.98
comp13 UD1 8.72 comp13 UuD2 21.25 comp11l UD3 0.44
comp14 UDI1 8.90 comp14 UD2 1591 comp14 UD3 1.39
comp16 UDI 3.30 comp16 UD2 8.24 comp16 UD3 1.76
compl7 UD1 76.88 compl7 UD2 515.23 compl7 UD3 2.12
comp19 UD1 572 comp19 UD2 26.46 comp18 UD3 2.12
comp20 UD1 90.86 comp20 UD2 92.86 comp20 UD3 137.79
DDS1 UDI1 953.51 DDS1 UD2 230.39 DDS6 UD3 1.52
DDS2 UDI1 0.37 DDS2 UD2 0.43 test2 UD3 0.35
DDS3 UD1 0.19 DDS3 UD2 0.24 test3 UD3 0.58
DDS5 UD1 1.34 DDS5 UD2 1.81 test4 UD3 3827.19
DDS6 UD1 1.78 DDS6 UD2 13.98 toy UD3 0.02
DDS7 UDI1 0.27 DDS7 UD2 0.35 Udine4 UD3 15.65
EAO1 UD1 1.90 EAO1 UD2 2.04 #19 UD3 442.54
EA02 UD1 0.45 EA02 UD2 0.56 comp04 UD4 2.12
EAO4 UDI1 2.60 EAO4 UD2 2.99 comp06 UD4 48.63
EAO5 UD1 1.60 EAO5 UD2 1.45 comp07 UD4 38.93
EAO6 UDI 0.51 EAO6 UD2 0.59 comp08 UD4 15.87
EAQ7 UDI1 423 EAO7 UD2 4.98 comp10 UD4 751
EA08 UDI1 1.42 EA08 uD2 1.64 compll UD4 0.92
EA09 UD1 1.51 EA09 UD2 2.23 comp14 UD4 751
EA10 UD1 0.39 EA10 UD2 0.58 comp16 UD4 5.85
EA11 UDI1 0.38 EA11 UD2 0.34 compl7 UD4 688.32
EA12 UD1 0.48 EA12 UD2 0.59 comp20 UD4 3388.42
test2 UD1 1.89 test2 UD2 8.37 DDS6 UD4 3.17
test3 UDI1 9.95 toy UD2 0.01 test?2 UD4 1.46
toy UDI1 0.01 Udinel UD2 3.24 test3 UD4 2.49
Udinel UDI1 3.44 Udine2 UD2 3.21 toy UD4 0.02
Udine2 UD1 1.89 Udine3 UD2 5.41 Udine4 UD4 27.69
Udine3 UD1 1.71 Udine4 UD2 3.56 #15 UD4 282.59
Udine4 UDl1 5.02 Udineb UD2 2.00 comp04 UD5 32.62
Udineb UDI 1.61 Udine6 UD2 1.26 comp08 UD5 77.70
Udine6 UD1 1.08 Udine7 UD2 1.64 comp11 UD5 9.55
Udine7 UD1 1.0 Udine8 UuD2 372.09 DDS5 UD5 137.60
Udine8 UD1 589.89 Udine9 UD2 2.81 test2 UD5 2365.18
Udine9 UDI 2.60 #41 UD2 178.62 test3 UD5 1142.12
#42 UD1 95.66 toy UD5 0.02

Udine4 UDS5 140.63

#8 UD5 488.18

#Optimal solutions Average time (sec.)
#125 225.82

symbols ‘>’ and ‘=’ indicate that teaspoon produced the improved and the same bounds
respectively, compared to the previous best known bounds. If followed by a superscript “x’,
these symbols indicate that teaspoon proved the optimality of the obtained bounds. That is,
the symbol “>*” indicates that we found and proved a new optimal solution. The symbol
‘n.a’ indicates that the result was not available on the web before.

We succeeded either in improving the bounds or producing the same bounds for 166
combinations (55,3% in the total), compared with the previous best known bounds. More
precisely, the feaspoon encoding was able to improve the bounds for 43 combinations and
to prove that 14 of them are optimal. That is, we found and proved new optimal solutions
for 14 combinations. It was also able to produce the same bounds for 123 combinations and
to prove for the first time that 35 of them are optimal. Furthermore, teaspoon was able to
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Table 5 Comparison of teaspoon with other approaches

UD1 UD2 UD3 UD4 UDS5

Instance Best VBS | Best VBS | Best VBS | Best VBS | Best VBS

known -ASP | known -ASP | known -ASP | known -ASP | known -ASP
compO1 4 = 4 5 = 5 8 = 8 6 9 11 72
comp02 12 =* 12 24 =* 24 12 =* 12 26 55 130 338
comp03 38 53 64 109 25 47 362 405 142 238
comp04 18 = 18 35 = 35 2 = 2 13 = 13 59 >* 49
comp05 219 504 284 624 264 556 260 459 570 1081
comp06 14 = 14 27 = 27 8 =~ 8 15 >* 9 85 819
comp07 3 = 3 6 = 6 0= 0 3 = 3 42 962
comp08 19 = 19 37 = 37 2 = 2 15 = 15 62 >* 55
comp09 54 63 96 169 8 =" 8 38 50 150 215
comp10 2 = 2 4 = 4 0= 0 3 = 3 72 591
compil 0= 0 0= 0 0= 0 0= 0 0= 0
comp12 239 343 294 456 51 114 99 388 483 1135
comp13 32 > 31 59 = 59 22 50 41 111 148 276
comp14 27 = 27 51 = 51 0= 0 16 >* 14 95 311
comp1b 38 53 62 109 16 22 30 68 176 379
comp16 11 =* 11 18 = 18 4 = 4 7 = 7 96 906
compl7 30 = 30 56 = 56 12 =~ 12 26 >* 21 155 391
comp18 34 48 61 81 0= 0 27 46 137 228
comp19 32 >* 29 57 = 57 24 32 32 82 125 286
comp20 2 = 2 4 = 4 0 = 0 9 >* 3 124 1098
comp21 43 94 74 124 6 = 6 36 76 151 215
DDS1 38 =* 38 48 = 48| 2393 6036 | 2278 = 2278 1831 5976
DDS2 0= 0 0= 0 120 379 76 139 64 212
DDS3 0= 0 0= 0 22 = 22 11 = 11 22 = 22
DDS4 16 19 17 33 54 912 124 1825 96 2384
DDS5 0= 0 0= 0 54 117 163 488 88 >* 76
DDS6 0= 0 0= 0 0= 0 0= 0 96 864
DDS7 0= 0 0= 0 30 408 21 506 52 786
EAO1 55 = 55 65 =* 65 102 110 67 88 196 645
EAO2 0= 0 0= 0 96 263 41 262 128 492
EAO3 1 = 1 2 = 2 50 234| 6936 > 816 90 1750
EA04 0= 0 0= 0 18 21 9 695 18 99
EAO5 0= 0 0= 0 14 = 14 7 8 14 61
EAO6 5 =" 5 5 =* 5 42 156 27 336 99 581
EAO7 0= 0 0= 0 206 1822 3884 > 1122 205 1681
EA08 0= 0 0= 0 40 48 20 82 40 181
EA09 2 =" 2 4 =" 4 40 = 40 22 27 48 100
EA10 0= 0 0= 0 4 141 19 573 93 544
EA11 0= 0 0= 0 36 52 19 22 45 93
EA12 2 = 2 4 = 4 22 38 12 24 27 126
erlangen2011_2| 3061 > 1662| 4670 5733 | 8122 > 7260| 3152 > 2816| 8010 > 7892
erlangen2012_1| 2782 > 2631| 5716 > 2928| 7544 > 3574| 2694 > 2176| 7585 > 6702
erlangen2012_2| 3332 > 3324| 8813 > 6818| 9731 > 4037| 4624 > 3930| 9081 > 7874
erlangen2013_1| 2608 > 1372| 5476 > 3553| 7289 >  3358| 3553 > 3099| 7253 > 6543
erlangen2013_2 na > 9901| 8150 19839 na > 23285 na > 12682 na > 26621
erlangen2014_1 n.a > 9497| 5981 18395 n.a > 20286 na > 8048 n.a > 22376
testl 212 328 224 404 200 299 208 413 232 539
test2 8 = 8 16 = 16 0= 0 4 = 4 20 =* 20
test3 35 = 35 67 113 18 =~ 18 18 >* 17 97 >* 68
test4 27 91 73 156 12 >* 6 33 37 166 401
toy 0= 0 0= 0 0= 0 0= 0 0= 0
Udinel 0= 0 0= 0 128 426 64 427 138 420
Udine2 4 = 4 8§ =* 8 34 322 30 320 81 313
Udine3 0= 0 0= 0 24 88 19 67 54 175
Udine4 35 = 35 64 = 64 24 =¥ 24 31 =* 31 108 >* 106
Udineb5 0= 0 0= 0 44 338 23 145 47 294
Udine6 0= 0 0= 0 36 76 18 50 38 111
Udine7 0= 0 0= 0 64 94 32 62 64 116
Udine8 16 =* 16 31 >* 29 42 297 31 149 88 172
Udine9 18 = 18 21 =* 21 28 62 23 91 70 163
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produce upper bounds for very large instances in the category erlangen with every formu-
lation, and 8 of them were unsolvable before.

Finally, we briefly compare the new results with our previous work [6]. The 185 bench-
mark instances in [6] were a subset of the CB-CTT portal benchmark set, comprised of the
5 formulations for the categories comp, DDS, test and erlangen without erlangen2013_2
and erlangen2014_1. The teaspoon system was able to obtain the same or better bounds for
168 combinations (90.8% in the total). In detail, teaspoon improves bounds for 109 combi-
nations and proves optimality for 30 of them. For 59 combinations, the same bounds were
produced and 6 of them were confirmed to be optimal.

6 Extensions

We here extend the basic teaspoon encoding presented in Section 4 in view of enhancing the
scalability and flexibility of solving (multi-criteria) CB-CTT problems.

Optimized encodings for the soft constraints Sy, S4, S2, and Sg. The basic en-
coding of S7 and S, precisely reflects their definition but fails to scale to large instances
in complex formulations like UDS5 due to expensive grounding. For S;, the rule in Line
36-38 of Listing 5 generates a penalty atom with the constant cost weight_of _s7 if both
assigned(C1,R1,D,P) and assigned(C2,R2,D,P+1) hold for two courses C1 and C2 that
belong to some curriculum Cu, day D, and period P, and rooms R1 and R2 are located in
different buildings. This rule is expensive when grounding due to its combinatorial blow-
up caused by many variables. This issue can be improved by taking into account that for
every curriculum Cu, room R, day D, and period P, there is at most one course C that be-
longs to Cu such that assigned(C,R,D,P) holds. In view of this, an optimized encoding of
S7 is shown in Line 2—4 of Listing 6. The difference from the basic one is that a new predi-
cate scheduled_curricula/4 is introduced. The atom scheduled_curricula(Cu,B,D,P)
is intended to express that a curriculum Cu is scheduled in a building B at a period P
on a day D. The rule in Line 2 generates an atom scheduled_curricula(Cu,B,D,P) if
assigned(C,R,D,P) holds for every curriculum Cu, course C that belongs to Cu, room R lo-
cated in a building B, day D, and period P. The rule in Line 3—4 produces a penalty atom with
the constant cost weight_of _s7 for every curriculum Cu, day D, and period P, if a curriculum
Cu is scheduled in different buildings at period P and P+1 within the same day D. Another
optimized encoding of §7 is shown in Line 7-9 of Listing 6. The difference from the other
two is that it utilizes cardinality constraints for counting the number of buildings which are
used by two lectures belonging the same curriculum in two adjacent periods within the same
day.

An optimized encoding of S4 is shown in Line 12-19 of Listing 6. The newly intro-
duced atom scheduled_curricula_chain(Cu,D,P,DP) is intended to express that there
is a course in curriculum Cu scheduled before a period P in a day D if DP = -1, or else if
DP = 1 the course in Cu is scheduled after P. The rule in Line 16-19 generates a penalty
atom with the constant cost weight_of _s4 for every curriculum Cu, day D, and period P, if
there is a time window P for Cu in a day D.

In the basic encoding, the soft constraints S, and S¢ are expressed by using ASP’s car-
dinality constraints. These rules can be optimized by using state-of-the-art SAT encoding
techniques for Boolean cardinality constraints. We used Sinz’s sequential counter encod-
ing [37], and the resulting encodings are shown in Line 22-27 for S, and Line 3045 for
Se. For S5, the atom wd_counter (C,M,D,N) is intended to express that the number of lec-
tures scheduled from day O to D for a course C whose lectures must be spread into M days
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% S7.TravelDistance

scheduled_curricula(Cu,B,D,P) :- assigned(C,R,D,P), curricula(Cu,C), room(R,_,B).

penalty("TravelDistance",instantaneous_move(Cu,D,P,P+1) ,weight_of_s7) :-
scheduled_curricula(Cu,BLG1,D,P), scheduled_curricula(Cu,BLG2,D,P+1), BLG1 != BLG2.

% S7.TravelDistance
penalty("TravelDistance",instantaneous_move(Cu,D,P,P+1),weight_of_s7) :-
cu(Cu), d(D), ppd(P), ppd(P+1),
#count { B : assigned(C,R,D, (P;P+1)), curricula(Cu,C), room(R,_,B) } > 1.

% S4.Windows
dp(1;-1).
scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
scheduled_curricula_chain(Cu,D,P, DP) :- scheduled_curricula(Cu,D,P), ppd(P+DP), dp(DP).
scheduled_curricula_chain(Cu,D,P+DP,DP) :- scheduled_curricula_chain(Cu,D,P,DP), ppd(P+DP).
penalty("Windows",windows(Cu,D,P) ,weight_of_s4) :-

scheduled_curricula_chain(Cu,D,P,-1),

not scheduled_curricula(Cu,D,P),

scheduled_curricula_chain(Cu,D,P,1).

% S2.MinWorkingDays
working_day(C,D) :- assigned(C,D,P).
wd_counter(C,M,-1,0) :- course(C,_,_,M,_,_).
wd_counter(C,M,D,N+1) :- wd_counter(C,M,D-1,N), working_day(C,D), N+1 <= M.
wd_counter (C,M,D,N+0) :- wd_counter(C,M,D-1,N), d(D), N <= M.
penalty("MinWorkingDays",course(C,N) ,weight_of_s2) :-

course(C,_,_,M,_,_), N = 1..M, days(D), not wd_counter(C,M,D-1,N).

% S6.StudentMinMaxLoad
abc(M,min) :- min_max_daily_lectures(M,_).
abc(M,max) :- min_max_daily_lectures(_,Max), periods_per_day(Ppd), M=Ppd-Max.
abc(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
abc_counter(Cu,D,-1, O,min) :- cu(Cu), d(D).
abc_counter(Cu,D,-1, O,max) :- cu(Cu), d(D).
abc_counter(Cu,D, P,N+1,min) :-

abc_counter(Cu,D,P-1,N,min), abc(Cu,D,P), N+1 <= M, abc(M,min).
abc_counter(Cu,D, P,N+1,max) :-

abc_counter(Cu,D,P-1,N,max), ppd(P), not abc(Cu,D,P), N+1 <= M, abc(M,max).
abc_counter(Cu,D, P,N+0O,MM) :-

abc_counter(Cu,D,P-1,N,MM), ppd(P), N <=M, abc(M,MM).
abc_counter(Cu,D,min) :- abc(Cu,D,P).
abc_counter (Cu,D,max) :- cu(Cu), d4(D).

penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N),weight_of_s6) :-
cu(Cu), d(D), N = 1..M, periods_per_day(P), abc(M,MM), abc_counter(Cu,D,MM),
not abc_counter(Cu,D,P-1,N,MM).

Listing 6 A collection of optimized encodings for 7, S4, S», and Sg

% S8 RoomSuitability
penalty("RoomSuitability",assigned(C,R,D,P),W) :-

assigned(C,R,D,P), room_constraint(C,R), soft_constraint("RoomSuitability",W).
:- assigned(C,R,D,P), room_constraint(C,R), hard_constraint("RoomSuitability").

Listing 7 Extended encoding of Sg

is greater than and equal to N. The rule in Line 26-27 generates a penalty atom with the
constant cost weight_of_s2 for every course C whose lectures must be spread into M days,
if the number of lectures for C scheduled in the whole days is less than M.

Easy composition of different formulations. To easily activate or deactivate each soft
constraint and switch it from soft to hard, we introduce new predicates soft_constraint/2
and hard_constraint/1. The atom soft_constraint (S;,W;) is intended to express that S;
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soft_constraint ("RoomCapacity", 1). soft_constraint ("MinWorkingDays", 1).
soft_constraint ("Windows", 1). soft_constraint ("StudentMinMaxLoad",1).
hard_constraint ("RoomSuitability"). soft_constraint ("DoubleLectures", 1).

Listing 8 The UD4 formulation

soft_constraint ("RoomCapacity", 1) . soft_constraint ("MinWorkingDays", 1).
soft_constraint ("IsolatedLectures", 1). soft_constraint("Windows", 1).
soft_constraint ("RoomStability", 1). soft_constraint ("StudentMinMaxLoad", 1).
soft_constraint ("TravelDistance", 1). soft_constraint("RoomSuitability", 1).
soft_constraint ("DoubleLectures", 1).

Listing 9 Formulation consisting of all soft constraints (S;—S9) with the weights of all 1s

#minimize
#minimize

P@2,C : penalty("RoomSuitability",C,P) }.
P@1,C : penalty("DoubleLectures",C,P) }.

#minimize { P@9,C : penalty("RoomCapacity",C,P) }.
#minimize { P@8,C : penalty("MinWorkingDays",C,P) }.
#minimize { PQ@7,C : penalty("IsolatedLectures",C,P) }.
#minimize { P@6,C : penalty("Windows",C,P) }.
#minimize { P@5,C : penalty("RoomStability",C,P) }.
#minimize { P@4,C : penalty("StudentMinMaxLoad",C,P) }.
#minimize { P@3,C : penalty("TravelDistance",C,P) }.

{

{

Listing 10 Multiple objective functions

is a soft constraint to be activated and its weight is W;. The atom hard_constraint (S;)
is intended to express that §; is activated as a hard constraint. We refer to these atoms as
constraint atoms. An extended encoding of Sg with constraint atoms is shown in Listing 7.
The rule in Line 2-3 is the same as before except for the instance of soft_constraint/2.
The rule in Line 4 expresses Sg as a hard constraint by dropping the penalty atom in the
head. Another method for switching from soft to hard is to enforce a cardinality constraint
like ‘:- not #sum { P,C : penalty("RoomSuitability",C,P) } 0. . In this case, we don’t
need the rule in Line 4 that expresses Sg as a hard constraint. It is also possible to switch
constraints in the opposite direction. For example, to define Hy as a soft constraint, we only
have to add a penalty atom to the head of the rule in Line 17 of Listing 4.

The idea of constraint atoms allows for easy composition of different formulations, since
any combination of constraints can be represented as a set of facts. Consequently, it enables
a timetable keeper to experiment with different formulations at a purely declarative level.
For example, ASP facts representing the UD4 formulation is shown in Listing 8. And also,
we show a big formulation consisting of all soft constraints (S;—S9) with the weights of all
Is in Listing 9.

Support for multi-criteria optimization based on lexicographic ordering. A well-
known multi-criteria optimization strategy called lexicographic ordering [30] has been im-
plemented in clingo. It enables us to optimize criteria in a lexicographic order based on their
priorities. We extend our basic encoding for supporting such multi-criteria optimization.
This extension can be done by replacing the #minimize function in Listing 5 with multiple
ones in Listing 10. Each integer value on the right-hand side of @ stands for a priority level,
where greater levels are more significant than smaller ones®. Usually, solutions can be rep-

9 Note that the priorities in Listing 10 are quite arbitrary.
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resented in the form of utility vector (pi,pa,...,pn), where each p; stands for the penalty
cost of soft constraint S;.

On the other hand, the optimality of multi-criteria optimization with lexicographic order-
ing does not always coincide with that of single-objective one. However, optimal solutions
obtained by lexicographic optimization can correspond to feasible ones with small penalty
cost in the original single-objective setting. In a preliminary experiment on the UD5 formu-
lation, the lexicographic optimization in the order of S1 > S4 > S > §7 > Sg > S3 found
optimal solutions for more than half instances of ITC-2007 competition. The results include
optimal vectors (S1,S4,52,57,S6,53) = (0,0,0,0,22,11) for comp10,(0,0,0,0,112,35) for
comp13,(0,0,0,0,56,28) for comp14,(0,0,20,0,122,54) for comp09, and (0,0, 10,0,110,46)
for comp21. From single objective’s point of view, the first three correspond to better bounds
(33, 147, and 84) than the previous best known ones (72, 148, and 95). The last two corre-
spond to bounds (196 and 166) which are close to the best known ones (150 and 151).

Towards multi-shot ASP solving with teaspoon. Incremental SAT solving has recently
been recognized as an important technique for many problems such as model checking and
planning [18]. From an ASP perspective, multi-shot ASP solving has been implemented in
clingo [22]. It enables us to handle problem specifications which evolve during the reasoning
process, either because data or constraints are added, deleted, or replaced.

For (multi-criteria) CB-CTT solving, multi-shot ASP solving with teaspoon can be
promising. This is because it allows for incremental solving of finding optimal solutions
with varying a set of constraints, switching them from hard to soft, varying the priority level
of objectives, and reusing legacy timetables. Suppose that a legacy timetable is represented
as a set of instances of predicate legacy/1. The reuse of a legacy timetable can be expressed
by only one rule:

_heuristic(assigned(C,R,D,P),true,1) :- legacy(assigned(C,R,D,P)).

The special predicate _heuristic/3 is used to express various modifications to the clingo’s
heuristic treatment of atoms. This rule expresses a preference for both making a decision
on assigned(C,R,D,P) and assigning it to true if legacy(assigned(C,R,D,P)) holds for
every course C, room R, day D, and period P. In a preliminary experiment with UDS, we
were finally able to find new bounds 33 for comp10, 135 for comp13, 74 for comp14, 142 for
comp09, and 143 for comp21 by reusing the solutions obtained by lexicographic optimization
as legacy timetables.

7 Discussion

Perhaps the most relevant works are problem encodings in Integer Programming [11-13,
27]. These encodings use the binary variables xc p p and/or xc g p p that correspond to the
predicate assigned/3 and/or assigned/4 respectively. SAT/MaxSAT encodings [2] also
use the same binary variables. The major advantage of our approach is not only the compact
and flexible declarative representation gained by using ASP as a modeling language, but
also the high performance gained from the recent advanced techniques in ASP solving.

We presented an ASP-based approach for solving the CB-CTT problems. The resulting
system teaspoon '° relies on high-level ASP encodings and delegates both the grounding
and solving tasks to general-purpose ASP systems. Our empirical analysis showed that core-
guided optimization with stratification is very effective in finding optimal solutions. Further-

10 All source code is available from http: //potassco.sourceforge.net/apps.html

Proceedings of the 11*" International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) — Udine, Italy, August 23—-26, 2016



teaspoon: Solving the Curriculum-Based Course Timetabling Problems with
Answer Set Programming 31

more, it also showed that each CB-CTT instance is configuration-sensitive, and combining
configurations in an optimal way improves the performance significantly.

We have contrasted the performance of feaspoon with the best known bounds obtained

so far via dedicated implementations. feaspoon demonstrated that ASP’s general-purpose
technology allows to compete with state-of-the-art CB-CTT solving techniques. In fact, the
high-level approach of ASP facilitates extensions and variations of first-order encodings in
view of enhancing the scalability and flexibility of solving (multi-criteria) CB-CTT prob-
lems. In the future, we thus aim at investigating multi-shot ASP solving with teaspoon.
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