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Abstract In the present contribution, the application of a dynamic pick-up
and delivery model for hospital internal logistics is investigated. Two schedul-
ing policies are developed: the first applies a cheapest insertion heuristic tar-
geting optimization of the problem’s objective function, while the second em-
ploys local search to improve the current schedule. A computational study is
presented in which the two policies are applied on a range of generated prob-
lem instances that have been made available to the research community. The
benefit of the two policies is demonstrated by comparing them with a common
and intuitive earliest first, by due date policy. Secondly, the benefit of allowing
to combine transports is also investigated, and it is shown that this may lead
to further increased performance.

Keywords Hospital logistics · Patient transportation · Dynamic pick-up and
delivery · Local search

1 Introduction

Internal logistics play a fundamental role in the daily operation of any hospital.
It is the backbone service on which most hospital activities depend. Several
internal logistic flows are distinguishable: the supply of clean linen, food and
medicine; correspondingly the retrieval of waste, dirty linen, food trays and
used surgical instruments; and the transportation of patients from/to con-
sultation, medical imaging, and surgeries. The diversity of these logistic flows,
each with its own distinct rules and complexities, makes managing this process
a daunting task. To address this situation, we present a model for organizing
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and directing these logistic flows based on the dynamic pick-up and delivery
problem (DPDP). DPDPs are one class of vehicle routing problems (VRPs)
which focus on goods requiring pick-up from and delivery to specific locations
by a fleet of vehicles (see Berbeglia et al. [2] for a survey). The organiza-
tion of logistic transports in hospitals fits naturally within this problem class.
Moreover, soft aspects imposed by hospital policies and management make
it a challenging variant. For example, certain routes or corridors in a hos-
pital may be excluded for patient transports, while they are allowed for goods
transportation. Thus, transport time is dependent upon what exactly is being
transported. A further example of a soft aspect is when multiple goods may be
transported together, whereas patient transportation is ideally not combined
with other transports. The dynamic aspect of the problem is also of specific
interest, as it is characterized by relatively high request arrival rates and short
transport times due to the short distances between pick-up/deliveries in a
hospital. Therefore, dispatching decisions must be made in a relatively short
amount of time.

Although the application of operations research techniques to support dy-
namic (real-time) dispatching for logistics is not new, with contributions as
early as the 1980’s [7], research interest in this topic has only been expanding
rapidly in the past decade [8]. As also noted by Berbeglia et al. [2], this gener-
ally derives from technological advances such as faster computing systems and
innovative algorithms in addition to new real-time communication technologies
(such as smartphones) which are necessary for the practical implementation of
such systems. Given the limited amount of time in which decisions need to be
made (e.g. when vehicles need to be directed to their next destination, or when
new requests are announced), a clever use of the time between events may al-
low for the use of inventive approaches that achieve improved performance
over common dispatching rules. An interesting, early contribution in that re-
spect is presented by Gendreau et al. [4], in which neighbourhood search using
ejection-chains [5] is applied to the DPDP between the arrival of events.

In health care, only few such dynamic systems have been developed, mostly
for patient transport due to its strong ad-hoc nature. However, dispatching
is often still done manually, or using simple dispatching rules-of-thumb that
certainly leave room for improvement. Recent studies have looked at more
advanced methods to solve DPDP problems for patient transports. Beaudry
et al. [1] discuss the application of the dynamic dial-a-ride problem (DDARP),
a variant of the DPDP, for organizing intra hospital patient transport in a
German hospital. Their study mostly focuses on transports between buildings
in a 100+ buildings hospital site. This application ultimately resulted in the
development of the Opti-TRANS system [6]. Fiegl and Pontow [3] discuss
the development of an algorithm which dynamically schedules general pick-up
and delivery tasks (patients, but also lab results, materials and other such
items) within hospitals. Their approach is strongly focussed on minimizing
the average weighted flow time, enabling high task throughput. It is however
less suitable for a general objective function, quite possibly featuring several
(possibly conflicting) objectives.

372 Wim Vancroonenburg, Eline Esprit, Pieter Smet, Greet Vanden Berghe

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Optimizing internal logistic flows in hospitals by DPD models 3

The scope of this paper is restricted to the transportation of patients within
a hospital. The combination with material logistic flows, that also involve reg-
ular transports planned in a logistic (typically weekly) timetable, will be in-
vestigated in a subsequent study. Nevertheless, the present contribution is also
applicable to ad-hoc material transports that may be combined with patient
transports, though the focus will be on the latter.

The main research question for this study is to investigate the e�ciency
of scheduling policies that specifically target optimization of hospital KPI’s,
formulated through a weighted sum objective function. A definition for the hos-
pital logistics problem is presented that includes elements common to DPDP
definitions combined with elements relevant to the hospital context. A com-
putational study is performed using two scheduling policies which are applied
to a range of randomly generated, realistic instances, that have been made
available to the research community. An important question that is also in-
vestigated is whether it is beneficial to combine patient transports, that is,
transport multiple patients together. It can be envisioned that it is beneficial
to e.g. combine two patient transports when they share a route (partially).
This aspect is also investigated in the computational study.

2 Problem statement

The primary elements and attributes associated with the dynamic hospital
logistics scheduling problem studied in this paper are:

Location: The hospital and its layout can be represented by an undir-
ected graph G(V, A, C) where V = {v1, . . . , vn} is the set of vertices rep-
resenting all relevant locations, such as rooms, doors, junctions in corridors.
A = {{vi, vj}|{vi, vj} 2 V ⇥ V, i 6= j} is the set of arcs connecting di↵er-
ent locations and junctions, thus representing corridors, stairs and elevators.
C : A ⇥ 2R ! R is a travel time function, mapping an arc and a transport
request (see further) subset to the travel time along that edge, carrying the
current request subset. Hence, the travel time between two locations may di↵er
due to the current set of requests being executed together (e.g. transporting
both a walking patient and a patient by wheelchair may limit the walking
speed).

Request: A request represents the order for a transport that must be
performed and is denoted by r = (rp, rd), with R representing the set of all
requests. It consists of a pick-up task rp at location vp

r 2 V and a delivery
task rd at location vd

r 2 V . A request is announced at a certain time ar.
A time-window [stp/d, dtp/d)r is specified for both the pick-up (denoted with
superscript p) and the delivery (denoted with superscript d) in which the pick-

up/delivery should occur. Finally, a service time sp/d
r must also be considered

when performing a pick-up/delivery.
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Porter: Porters represent the sta↵ available for executing pick-up and
delivery tasks. Porters have an availability time-window during which they
may be assigned tasks. They start and stop their day task at a certain depot
vk 2 V . Furthermore, it is assumed that they take no breaks, however clearly
in a practical application this must be accounted for.

Skill: Requests may require a certain skill of the porter performing the
transport. For example, patient transports by wheelchair are normally only
executed by qualified care sta↵, while material transports can be executed by
both regular logistic sta↵ and care sta↵. Therefore, we assume porters may
have one or more skills (may transport patients, may transport medicine), and
requests may be constrained by a skill dependency.

Forbidden combination: A forbidden combination is a set of requests
{r, . . . , r0} that may not be performed simultaneously by one porter (e.g. trans-
porting a patient while carrying dirty linen).

The problem involves assigning and scheduling the transport requests to
porters, respecting forbidden combinations and required porter skills. However,
no strict policy is imposed as to when requests should be assigned/scheduled
– a request may be queued and assigned at a later time. For example, it is
possible to queue the requests and schedule the most urgent request when a
porter has completed a transport. Time-windows of requests are considered
semi-soft: a request pick-up/delivery may not be scheduled before the start of
its corresponding time-window, however it can be scheduled after the end of
this time-window. All requests should be scheduled, and a weighted objective
function of several KPIs should be minimized:

1. Total tardiness: the tardiness of a request pick-up / delivery is defined

as: T p/d
r = Max(0, Cp/d

r � dtp/d
r ) with Cp/d

r the completion time of the
pick-up/delivery of request r.

2. Porter overtime: the overtime of a porter is defined as the completion time
of the last request performed by the porter minus the end of his availability
time-window (or 0, if negative).

3. Total travel time: the travel time of a porter is defined as the time spent
on moving towards pick-up/delivery locations, plus the final return to their
depot.

In the present context of hospital logistics, the KPIs correspond with, for ex-
ample, minimizing the lateness of consultation appointments (where dd

r equals
the assigned consultation time) or minimizing post-consultation waiting times
(where stpr = dtpr and equals the end of the patients’ consultation). The defin-
ition of time-windows is flexible, thus enabling modelling of multiple aspects.
In the remainder of this study, the problem is denoted as the DPDP-Hosp: the
dynamic pickup and delivery problem in hospitals.
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Request arrivals
Event queue

(sorted by event-time)
Advance to current event & process 

it (may lead to more events)

New events : 
- porter dispatch
- porter task finished

Request I
Request k
Request j
Request m
Request n

Apply scheduling policy & 
dispatching

Request pool

Figure 1 Visual representation of the event-based framework. The main source of events
are request arrivals. The discrete event environment will advance at each iteration to the
next event time in the queue, process the current event (a porter dispatch will lead to
updating the current state of the simulation, by assigning the task to the porter; it also
queues the porter task finish in the future) and then allow a scheduling policy to perform
any operation on the current state. This includes changing the scheduled tasks on the current
sta↵, scheduling new tasks from the request pool and posting dispatch events.

3 Solution approach

3.1 Framework

The DPDP-Hosp is modelled and solved in a discrete event-based framework.
The main source of events is the request arrival, i.e. the announcement of a
request r at its announce-time ar (in which all its information, pick-up/delivery
task, location, time-window, is made available). Additionally, two event types
are considered:

– Porter dispatch: this event is announced when a porter departs towards a
pick-up/delivery location;

– Porter service end: this event is announced when a porter finishes a pick-
up/delivery service at the respective location.

Algorithm 1 describes the main flow of this event-based framework, also
depicted in Figure 1. In essence, the framework processes events (denoted by
e) in order of their announce time (time(e)) and allows a scheduling policy
(SchedulePolicy) to handle the current event, update the current state, re-
move requests from the request queue (request pool Rp), etc.

The main data structure of importance, not explained in the pseudo-code,
is the current state (denoted S). Next to maintaining where each porter cur-
rently is and what requests have been executed, it maintains two important
aspects:

– which task each porter is currently executing (if any), and
– which tasks have been assigned and queued to each porter, along with their

scheduled start time (start of service, not dispatch) and end time.
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Algorithm 1 Discrete event-based framework pseudocode
Require: G(V,E,C)
Require: P
Require: R = (r

1

, r
2

, . . . , r
N

)
t 0 . Simulation time t is initially 0
eq  (r

1

, r
2

, . . . , r
N

) . Event-queue eq is initialized with all request arrivals
Rp ; . Request pool of announced events is initially empty
S  InitializeCurrentState()
while eq not empty do

e popFront(eq) . Get next event
t time(e) . Advance time
if e is request arrival then

Rp Rp [ {e} . Add request to request pool
end if
if e is porter dispatch then

p porter(e) . Get porter
rp/d  task(e) . Get assigned task (pick-up/delivery).
v  loc(e) . Get location to where porter is dispatched
S  UpdateCurrentState()
d(loc(p), v) travelT ime(G,S, p, v) . Determine travel time to v

e0  porterServiceEnd(t + d(loc(p), v) + s
p/d

r

, p, v) . Create service end event
Insert(e0, eq) . Add event to event queue

end if
if e is porter service end then

S  UpdateCurrentState()
p porter(e) . Get porter
v  loc(e) . Get location where porter finished service
rp/d  nextTask(S, p) . Get next assigned task for porter
if rp/d exists then

e0  porterDispatch(Max(st
p/d

r

� d(v, v
p/r

r

, t), p, v
p/r

r

)
. Create new porter dispatch event, if any

end if
end if
SchedulePolicy(t, e, eq, S,Rp)

end while

This task assignment to porters is visualized in Figure 2.

3.2 Scheduling policies

Two policies are presented that aim at minimizing the KPI’s presented in
the previous section: a cheapest insertion heuristic, and a local-search method
using the former insertion heuristic in an iterative manner.

3.2.1 Cheapest insertion

Given the current state at the announce time of a new request, this policy
will insert the request at the lowest possible cost. The policy will determine a
position in the scheduled tasks of a porter such that the cost of inserting the
request is as small as possible.
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Request i - PUPorter 1

Request k - DEPorter 2

Request n - PUPorter N

. .
 .

Current 
executing task

Request i - DE Request j - PU Request j - DE . . .

Request m - PU Request m - DE

Request n - DE Request o - PU Request o - DE . . .

Scheduled 
tasks

. .
 .

. .
 .

Start-time: 2,
 end-time: 4

Current time: 3

Start-time: 7, 
end-time: 9

Start-time: 16, 
end-time: 17

Start-time: 20, 
end-time: 22

Start-time: 3,
 end-time: 7

Start-time:   ,
 end-time: ...

Start-time:   ,
 end-time: ...

Start-time:   ,
 end-time: ...

Start-time:   ,
 end-time: ...

Start-time:   ,
 end-time: ...

Start-time:   ,
 end-time: ...

Figure 2 Visual representation of the current state at any given time t. Porters may be
executing a task, and have a list of currently queued tasks scheduled and assigned to them.
These queued tasks are volatile: policies may decide to reorder/redistribute these tasks, as
long as they are not dispatched (i.e. currently executing).

Two variants of the cheapest insertion heuristic are possible, depending
on whether or not the request delivery must be scheduled immediately after
the pick-up. The implementation can handle both cases, using a parameter to
indicate if consecutive pick-ups and deliveries are required.

Certain constraints must be taken into account to ensure feasibility. Firstly,
tasks requiring special skills may only be assigned to porters having the ap-
propriate competences. Hence, only porters having the required skills are con-
sidered when evaluating positions for inserting the request. Furthermore, in
the case of non-consecutive pick-ups and deliveries, if the request types of two
tasks form a forbidden combination, those tasks may never be executed simul-
taneously. A porter may not pick up a request before having delivered all other
requests forming a forbidden combination with it. For each non-consecutive
set of positions for the request’s pick-up and delivery, the other tasks of the
porter must be checked for forbidden combinations.

After determining a feasible insertion position in a porter’s list of scheduled
tasks, the start and end times of the tasks are recalculated. This is done using a
simple procedure, iterating over all scheduled tasks and determining the start
time of a task1 based on the maximum value of:

– the current decision time t, incremented with the travel time to the pick-
up/delivery location,

– the start of the time-window str/p
d .

1 Note that this is the start time of the pick-up/delivery service, not the dispatch time to
the location;
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3.2.2 Local search

The second policy is an extension of the previous policy. After inserting a
new request in the solution using the method described previously, a simple
local search-based procedure is applied to the current state. At each iteration,
a request is randomly selected and ejected from the porter’s route. Using
the cheapest insertion procedure, the request is inserted into the schedule
again and the start and end times of the scheduled tasks are recalculated.
New solutions are accepted if their cost is lower than or equal to the best
known cost. The search is stopped if no improvements are found for a certain
number of iterations. Currently, it is assumed that there is su�cient time
between the arrival of two requests to allow the search process to finish. In the
computational study following below, this is generally the case.

4 Computational study

4.1 Experimental setup

The computational study is based on a real-life hospital layout of the newly
constructed AZ Maria Middelares, a 7-level (+1 subterranean level) hospital
in Ghent, Belgium. A detailed graph was mapped on the hospital layout, with
accurate alignment to latitude/longitude coordinates. All rooms, corridors,
stairs and elevators were included in the graph as vertices and edges.

The discrete event-based framework was implemented as a simulation en-
vironment, developed in Java 1.8 (and shown in Figure 3), in which di↵erent
scheduling and dispatching policies can be tested on both generated and his-
toric data.

The computational study focuses on the comparison of the cheapest insertion-
policy (denoted CI) with the local search-policy (denoted LS). A comparison
is also made with a common dispatching rule, earliest first, by due date (de-
noted EFDD). The latter policy is seemingly intuitive, processing the tasks
in a first due order and assigning them to the porter who can start the ser-
vice earliest (based on porters’ last assigned task’s planned end time, and the
travel time to the current task). An initial comparison is made between the
three policies EFDD, CI and LS on the KPI’s defined in Section 2. To this
end, the executed schedules are each evaluated at the end of a simulation run.
The three objectives, total tardiness, porter overtime and total travel time, are
combined as terms in a linear weighted sum objective function, with weights
representing the relative importance of the objectives to the decision maker.
For the purpose of this study, these weights have been set to one; i.e. the three
objective terms are simply summed in the final objective value.

Additionally, the benefit of allowing to combine transports, respecting for-
bidden combinations is investigated both for CI and LS. To this end, we allow
to combine up to three transport requests in the CI and LS heuristics.
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Figure 3 Discrete event simulation environment developed in Java 1.8, showing (partially)
one level of the hospital layout with overlaid graph.

The policies are tested on randomly generated request arrival scenarios
having the following characteristics:

– Pick-up/delivery locations are randomly selected between two groups of
hospital rooms: consultation/exam/operating rooms and patient rooms
and waiting areas. Hence, the transport pairs largely correspond to the
bulk of patient transports from their room to an appointment in the oper-
ating theatre or to a physician.

– Service times are exponentially distributed with mean 30 seconds (i.e. it is
assumed the pick-up/delivery is normally rather fast)

– Time-windows of 15 minutes, with the end of the time-window, relative to
the request announce time, log-normally distributed. Either the pick-up or
the delivery time-window is binding (the other being very large), with a
50/50 ratio between the two cases.

– A homogeneous Poisson-process (i.e. exponential inter-arrival) with rate
parameter �. Requests are of 3 types: by wheelchair, by bed, or walking.
Only walking patients may be grouped in a single transport.

– A workforce of N porters.

A dataset of instances with di↵erent arrival rates (� = 0.1, 0.5, 1.0 ar-
rivals/minute) and size of workforce (N = 5, 10, 15) was created, with 10
randomly generated instances per combination. These instances are provided
in an accessible JSON-format2.

2 Available at https://gent.cs.kuleuven.be/hospital-logistics/
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4.2 Results and discussion

4.2.1 No combined transports (consecutive pick-up and deliveries)

Firstly, the performance of the CI and LS policies is compared to the baseline
policy EFDD, without allowing combining transports. Table 1 reports the
lateness, overtime, travel time and combined objective value for each policy,
averaged over ten instances of each combination of � and N . It is clear that CI
and LS outperform the baseline policy on all cases. Both policies have a clear
emphasis on minimizing the travel time, which has the strongest impact on
the objective value. Hence, it is beneficial to employ a scheduling policy that
specifically targets optimization of the weighted objective value, as defined.
Though the sensitivity of this experiment to these weights remains an open
question, similar results can be expected where the CI and LS policies will
target the largest impacting KPI.

4.2.2 Combining transports

The second research question considers whether or not it is beneficial to com-
bine transports. Table 2 reports only on the objective values obtained for each
policy, again averaged over ten instances of each combination of � and N . The
table includes CI and LS configurations that combine transports, allowing up
to three (parameter Cap) transports to be combined. The results show that
combining transports is certainly beneficial, for both CI and LS policies. Al-
lowing more than two transports is mostly beneficial, but this is not always
the case.
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� N EFDD CI LS

consec. non-consec. consec. non-consec.
Cap = 2 Cap = 3 Cap = 2 Cap = 3

0.1 5 260.76 197.46 196.46 196.50 194.73 193.66 192.66
0.1 10 216.27 173.44 169.80 169.25 170.92 168.96 168.12
0.1 15 294.49 205.09 203.37 203.43 202.98 201.56 201.66

0.5 5 1297.71 1053.67 1029.91 1016.92 997.18 961.07 943.81
0.5 10 1265.57 951.15 921.01 908.00 900.40 868.78 861.34
0.5 15 1262.33 909.43 896.58 881.54 865.82 847.46 833.12

1 5 2652.80 2394.56 2282.92 2219.32 2149.58 2051.27 2002.03
1 10 2602.96 2064.18 1978.83 1932.45 1915.82 1815.13 1776.50
1 15 2647.13 1960.45 1873.51 1818.70 1823.53 1722.97 1685.84

Table 2 Overview of the average objective-values for each policy, on each combination of
� and N . Consec. denotes that the policy respects the consecutiveness of pick-up and deliv-
eries, i.e. no transports are combined. Non-consec. allows combining transports, respecting
forbidden combinations and a maximum of combined transports equal to Cap. Bold high-
lighting indicates best result.

5 Conclusion

The past decade has seen a strong increase in the (successful) application of
dynamic pickup and delivery models, and vehicle routing models in general,
to support (real-time) decision making in logistics. Hospitals, until now, have
been lagging behind, with internal logistic processes mostly being scheduled
and dispatched manually.

Only recently are systems being deployed to automate this process by
means of dispatching rules. This paper showed that such systems, and thus
hospitals, can benefit by applying more advanced scheduling policies that spe-
cifically target optimization of hospitals’ KPIs. Two such policies were presen-
ted: a first policy that uses a cheapest insertion (in terms of a weighted sum
objective function) heuristic to insert transport tasks in porters’ schedules,
and a second policy that improves on that by applying local search. Though
relatively basic, these two policies already show improved performance in com-
parison to an intuitive dispatching rule, earliest first, by due date.

An interesting aspect of applying DPD models to internal hospital logistics,
is the possibility of combining transports. Whereas in e.g. DPD applications
for parcel delivery services it may be common practice to combine transports
(multiple pick-ups in sequence, before performing deliveries), for patient trans-
ports in hospitals this is certainly not the case. Nevertheless, the possibility
of combining transports exists and this paper shows it is also beneficial to
allow this, even on only a limited portion of transports. Hence, this study may
convince hospital managers to reconsider this possibility, in light of improved
performance.
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