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Grouping sport teams into round robin competitions

Tuilio A. M. Toffolo - Jan Christiaens -
Frits C. R. Spieksma - Greet Vanden
Berghe

Abstract The sport teams grouping problem (STGP) concerns the assign-
ment of teams to round-robin tournaments. The primary objective is to mini-
mize the total travel distance of the participating teams while simultaneously
respecting fairness constraints. Three integer programming formulations are
presented: two compact formulations and another with an exponential num-
ber of variables. Additionally, meta-heuristic methods are applied to generate
feasible high-quality solutions.

Keywords Sport teams grouping problem - Branch-and-price - Column
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1 Introduction

Both professional and recreational sports competitions require large organi-
zational efforts. Despite the huge budgets involved, the actual impact of or-
ganizational decisions on players, supporters and potential game outcomes
remain difficult to model and assess. In addition, the decisions to be made —
the combinatorial problems requiring solutions —, vary considerably in nature.

The timetabling community has a history of welcoming efforts to inves-
tigate academic versions of real world sport scheduling problems. Examples
include the traveling tournament (Easton et al., 2001; Nemhauser and Trick,
1998) and traveling umpire (Trick and Yildiz, 2007). Such initiatives have re-
sulted in the formation of an international community (Kendall et al., 2010)
defining new academic problems related to sports timetabling (Ribeiro and
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Urrutia, 2007) and generating state of the art algorithms for the traveling tour-
nament problem (Anagnostopoulos et al., 2006; Gaspero and Schaerf, 2007),
and the traveling umpire problem (Toffolo et al., 2016; Trick and Yildiz, 2011;
Trick et al., 2012; Xue et al., 2015).

The present paper’s subject further contributes to this line of sports schedul-
ing research by introducing an academic version of a relevant and challenging
optimization problem which occurs in many regions and impacts a large num-
ber of youth players. The sport teams grouping problem (STGP) addressed
in the present paper concerns the assignment of teams to round-robin tourna-
ments, wherein the primary objective is to minimize the total travel distance
of the teams while simultaneously respecting fairness constraints.

Prior to the start of each season, clubs enroll one or more youth teams to
participate in leagues. Each team has a location (related to its club) and is
assigned a certain level, given by [ € {1,2,3}. These levels denote a team’s
estimated strength, with level ‘1’ used to denote the strongest teams. A league
may contain teams from different levels, so long as the difference in level for
each pair of teams in a league is at most 1. Furthermore, each league must
comprise of between m~ and m™* teams, where m~ and m™ are problem
parameters. It is undesirable for teams from the same club to play in the same
league, however up to ¢ teams from the same club are permitted to do so,
where ¢T is also a parameter — usually set to 2. Additionally, no team may
travel more than a given time limit tT to another team’s home venue.

The STGP is a challenge faced by numerous sport associations. The Royal
Belgian Football Association (RBFA), for instance, organizes youth football
leagues. Within the East Flanders province alone, these leagues comprise more
than 500 youth teams playing approximately 5,000 matches. Therefore, re-
ducing the total travel time and distance is very desirable, both logistically
and economically. Observe also that the RBFA faces multiple instances of the
STGP: there are round-robin tournaments to be constructed for each age cat-
egory of each province. In addition to being highly relevant in practice, the
STGP is also challenging from a computational perspective since it generalizes
clique partitioning with minimum clique size requirement and is, consequently,
an NP-Hard problem.

Three integer programming formulations are presented: two compact for-
mulations and one with an exponential number of variables derived from Ji
and Mitchell (2007). The first two formulations are solved by an integer pro-
gramming solver (Gurobi), while the last is solved by a tailor-made branch-
and-price algorithm. Gurobi is employed to solve the master problem, whereas
a specialized heuristic handles the column generation pricing problem. Addi-
tionally, a meta-heuristic method is applied to generate feasible high-quality
solutions for large instances.

The present paper is organized as follows. The next section offers a more
detailed description of the STGP and positions it in relation to other problems
in the literature. Section 3 presents the two compact integer linear program-
ming formulations considered. Section 5 details the formulation with an expo-
nential number of variables, solved by column generation, and introduces the
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heuristic employed to solve the pricing problem. Section 6 explains the devel-
oped branch-and-price approach. Computational experiments are presented in
Section 9 and, finally, Section 10 summarizes the conclusions.

2 The sport teams grouping problem

Given a set T of teams and travel times between them, the STGP consists of
distributing these teams within leagues while minimizing the total travel time.
Each team ¢ € T is assigned a level I; and a club k; € K, where K is the set
of different clubs. Each league must contain between m~ and m™ teams. At
most ¢t teams from the same club are allowed in a league, and teams within
a league must not be further than ¢+ time units away from each other.

Essentially, the STGP can be described by a graph G = (V, E), where
each vertex represents a team (V' = T). Two vertices are connected by an
edge e € F if the difference in level between teams does not exceed 1 and the
time required to travel between them is not greater than t*. The weight of an
edge is given by the necessary time for a trip between the connected teams’
locations. The objective is to partition the vertex set V into a set of cliques
whose size respects both the minimum and maximum limits given by m™ and
m™T respectively, while minimizing the total weight of the cliques’ edges.

Figure 1 shows a solution for a real-world STGP faced by the Royal Belgian
Football Association. The problem depicted by the figure contains 521 teams
distributed in 169 clubs and 4 different age categories. In this example, m™ =
5 mt =10 and ¢t = 2.

The STGP is a generalization of the clique partitioning problem with min-
imum requirement (Ji and Mitchell, 2007; Labbé and Ozsoy, 2010). The main
difference between the STGP and the classical clique partitioning problem
with minimum clique size requirement is that the STGP imposes a limit on
the number of teams from the same club in a league (or clique), in addition
to a maximum clique size requirement.
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Fig. 1 Illustration of a solution for a STGP instance

3 Integer programming formulations

This section presents three integer (binary) linear programming formulations
for the STGP: two compact formulations and one with an exponential number
of variables. Before proceeding to detailed descriptions of each formulation,
some additional input data is introduced:

L : set of leagues L = {1,2,...,|L|}, where |L| = ||T'|/m™ ] is the maxi-
mum number of leagues;
Ty, : subset of teams T}, C T with all teams from club k € K;
& : set of team pairs (4,7) that cannot be in the same league (due to
level difference or travel time constraints);
t;; : travel time between teams ¢ and j.

3.1 Compact formulation 1

The first compact formulation considers three sets of variables:

x4 : binary variable that assumes value 1 if team i is assigned to league
[ and 0 otherwise;
yi; © binary variable that assumes value 1 if teams ¢ and j are assigned to
the same league and 0 otherwise;
2z ¢ binary variable that assumes value 1 if league [ is used and 0 other-
wise.
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Equations (1)-(7) present the problem formulation.

minimize Z Z tiYij (1)

€T jeT

subject to Zmil =1 vieT (2)
leL
m- z; < qu < m+zl Viel (3)

=

» ag<ct VieLkekK (4)
1€Ty,
Ty +xj <y +1 VieT,jeT,lelL (5)
Yi; =0 V(i,j)e® (6)
T, Yij, 21 € {0,1} VieT,jeT,leL (7)

The objective function (1) minimizes the total travel time. Constraints (2)
guarantee each team is assigned to exactly one league. Constraints (3) activate
variables z while verifying that the number of teams in a selected league | € L
respects lower and upper limits m~ and m™T, respectively. Note that these
constraints also guarantee that if a league I € L is not used (z; = 0), then
x4 = 0Vi € T. Constraints (4) ensure that the number of teams from the same
club in a league does not exceed limit ¢*. Constraints (5) activate variables y,
ascertaining that y;; is 1 if teams 7 and j are assigned to the same league and
0 otherwise. Constraints (6) prevent allocations of two incompatible teams in
the same league and, finally, Constraints (7) declare that variables z, y and z
are binary.

The linear relaxation of formulation (1)-(7) provides trivial lower bound
of value zero for most instances, since Constraints (5) are easily satisfied if
x4 = x5 = 0.5, consequently permitting y;; = 0. To cut away this fractional
solution, valid inequalities are introduced:

mT—1<Y y;<mt—1 VieT (8)
JET
Constraints (8) certify that each team has at least m~ — 1 adversaries

in a league (and at most m™* — 1). This condition cuts away solutions with
yij = 0Vi € T, considerably improving the quality of the lower bound provided
by the linear relaxation.

Additionally, triangle inequalities may also be added (Constraints (9)).
However, experiments revealed that they deteriorate the performance of the
employed solver (Gurobi) for the presented formulation.

Vij +yin <vyin+1 VieT,jeT heT (9)
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3.2 Compact formulation 2

The second compact formulation presented for the STGP is quite similar to
the first, except that different variable sets are considered:

x;; : binary variable that assumes value 1 if team i is assigned to league
[ and 0 otherwise;
Yiji : binary variable that assumes value 1 if teams 7 and j are both as-
signed to league [ and 0 otherwise;
Note that in contrast to the variables y employed in the first formulation,
y defines not only if two teams are together in a league, but also the league
to which they are assigned. This considerably increases the total number of
variables but may impact the branching and overall performance of Gurobi.

minimize Z Z Z tijYiji (10)

i€T jeT lEL

subject to Zwil =1 VieT (11)
leL
>y > (mm =z VieTlel (12)
JeT
>y < (mt -z VieTlel (13)
jeT
S wa<ct VieLkekK (14)
1€T},
Ty +xj Sy +1 VieT,jeT,leL (15)
yisi = 0 V(i) edlel (16)
Til, Yijl 6{0,1} VZ'ET,jET,lEL (17)

Except for the different set of variables and a different constraint to en-
sure the leagues size, formulations (10)-(17) and (1)-(7) are rather similar.
The objective function (10) minimizes the total travel time. Constraints (11)
guarantee each team is assigned to exactly one league. Constraints (12) and
(13) certify that each team is in a league with at least m~ — 1 and at most
m™T —1 other teams, ensuring that league sizes are between m~ and m™ teams.
Constraints (14) limit the number of teams from the same club in a league
to ¢t. Constraints (15) activate variables y, applying a value of 1 to y;; if
teams ¢ and j are assigned to the same league and 0 otherwise. Constraints
(16) prevent allocations of two incompatible teams to the same league and,
finally, Constraints (17) declare that variables x and y are binary.

3.3 Formulation with exponential number of variables

A formulation for the STGP that considers each feasible league (or clique) as
a variable is presented by Equations (18)-(20). This formulation is a standard
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set partitioning formulation, where (2 is the set of possible leagues (columns),
t.. the total travel time of league ¢ and o, indicates whether league ¢ contains
team 4 (a;. = 1) or not («. = 0). Finally, A. is a binary variable that is 1 if
league c is selected and 0 otherwise.

minimize Z A (18)
ceN

subject to Z Oiede =1 VieT (19)
ceN
Ae € {0,1} Vee (20)

The objective function (18) minimizes the total travel time. Constraints
(19) ensure each team is assigned to exactly one selected league, and Con-
straints (20) state that variables A are binary.

When the number of teams |T'| is not a multiple of the minimum league size,
m~, the linear relaxation of (10)-(17) has a greater probability of producing
fractional solutions, as observed by Ji and Mitchell (2007). Since larger leagues
have a higher number of edges, they are generally associated with larger costs.
In the linear relaxation these larger leagues can be replaced by a fractional
combination of smaller leagues, which often yields a better objective value.
Constraint (21) strengthens the formulation by limiting the total number of
selected leagues to ||T'|/m~ |, reducing the replacement of large leagues for
fractional smaller leagues.

>oa<| il (21)

cefn

Note that, since m™ is the minimum size of a league, a solution for a problem
with |T| teams can have at most [|T'|/m~ | leagues. Section 9 shows the impact
of adding this inequality to formulation (18)-(20).

4 Symmetry breaking

Formulations (1)-(7) and (10)-(17) contain many symmetric solutions. All
leagues [ € L are identically defined, with the subsequent permuting of leagues
generating symmetric solutions. It is well known that symmetry has a very neg-
ative impact on branch-and-bound algorithms and should therefore be avoided.

To reduce symmetry, a set T' of teams which cannot coexist in the same
league is fixed to different leagues. Such sets can be easily obtained. Let G =
(V, E) be the graph representation of a problem, where vertices represent teams
and edges connect teams permitted within the same league. Any independent
set of vertices in G is a valid set T that may be used to reduce symmetry.
Ideally, T should be a maximum independent set of G.
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5 Column generation approach

Explicitly implementing formulation (18)-(20) requires an exponential num-
ber of variables. To avoid this, a column generation scheme (Liibbecke and
Desrosiers, 2005; Vanderbeck and Wolsey, 2010) is employed in which vari-
ables are iteratively generated based on dual costs.

The column generation approach is solved iteratively. A restricted master
problem (RMP) is defined, consisting initially of formulation (18)-(21) with
2 = (). Artificial variables with sufficiently high costs in the objective func-
tion are introduced to satisfy Constraints (19). The linear relaxation of the
restricted master problem is subsequently solved. At each iteration, the pric-
ing problem is solved to obtain columns (or leagues) with negative reduced
cost considering the current dual values v and 7, corresponding to Constraints
(19) and Constraint (21) respectively. A column ¢ € 2 has negative reduced
cost if ¢/, — ZieT aieyi — T < 0. If such columns are found, they are added
to the restricted master problem, which is subsequently re-solved. The algo-
rithm continues until no columns with negative reduced cost can be found,
whereupon the linear relaxation of the master problem is solved.

5.1 Pricing problem

Given dual variables v and 7, the pricing problem consists of finding a feasi-
ble league (column) such that ¢, — > aseys — 7 < 0. This represents the
problem of obtaining a league with an objective function value smaller than 7
considering that a time-cost +; is associated with each team 3.

The pricing problem can be formulated as an integer program. The input
data introduced in Section 3 is considered in addition to dual values v and
7 related to Constraints (19) and (21), respectively. Two variable sets are
defined:

x; : binary variable that assumes value 1 if team i is selected and 0 oth-
erwise;

¥;; : binary variable that assumes value 1 if teams ¢ and j are both selected
and 0 otherwise;

The formulation is given by Equations (22)-(27).

minimize Z Z tijyi; — Z YiZi — T (22)

i€T jET i€T
subject to m- < Za:i <mt (23)
i€T
d a<ct VkeK (24)
i€Ty,
Tit+x; <y +1 VieT,jeT (25)
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Yij =0 V(i,j)ed (26)
x5,y € {0,1} VieT,jeT (27)

The objective function (22) minimizes the travel time while considering
dual costs v and 7. Note that a solution for this pricing problem is a column
with negative reduced cost when its objective value is negative. Constraint
(23) ensures that the size of the produced league is between m~ and m™.
Constraints (24) limit the number of teams from the same club in a single
league to no more than ¢*. Constraints (25) establish that y;; should be 1
whenever both teams ¢ and j are selected. Constraints (26) prevent the selec-
tion of two incompatible teams to the same league and, finally, Constraints
(27) define variables z and y as binary.

Analogously to formulation (1)-(7), the linear relaxation of formulation
(22)-(27) generates weak bounds, since it is possible that y;; = 0 Vi,j € T.
Valid inequalities (28) are added to prevent this:

mT(m” =1 <Y > g <mT(mt—1) VieT (28)
€T jET
Constraints (28) ensure at least m~(m~ — 1) and at most m™(m* — 1)

games are played in a league. These constraints cut away the fractional solu-
tions with y;; =0Vi,j € T.

6 Branch-and-price algorithm

The column generation algorithm (Section 5) only solves the linear relaxed
version of the problem. The solutions produced may be fractional, and thus
it may prove necessary to branch on the variables to find an integer solu-
tion. When this occurs, a branch-and-price algorithm (Barnhart et al., 1998;
Vanderbeck, 2000) is applied. It is a variant of branch-and-bound where the
relaxation is solved by column generation in each search tree node.

Once the linear relaxation of (18)-(20) is solved, branching begins. If the
solution is fractional, there exists a fractional A variable. Therefore, there exist
two teams ¢ and j such that the sum of the A variables containing both ¢ and
j is (strictly) between 0 and 1. Clearly, in an optimal solution either these
two teams are in the same league or not. If they are not, y;; is fixed to 0.
Otherwise, the pricing problem (22)-(27) is extended with z; = z;, which
alters the problem but ensures that teams ¢ and j are assigned to the same
league. Figure 2 depicts the branching scheme.

The selection of the fractional variable to branch is a critical component
of branch-and-bound algorithms (Achterberg et al., 2005). Ideally, the pair
of teams 7 and j that incur the largest objective function increases for both
branches (y;; = 0 and z; = x;) should be selected. However, detecting such
teams may be very time consuming. In the developed approach, a heuristic
criterion is employed: the most distant teams ¢ and j are selected. This criterion
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Root Node
Fix teams in the Forbid pair of teams
same league in the same league
Xa = Xb Yab =0
Fix teams in the Forbid pair of teams
same league in the same league

Xc = Xd

Fig. 2 Illustration of the branching scheme employed in the branch-and-price algorithm

yielded better results than, for instance, selecting the pair of teams with the
most fractional sum of related .

A parallel branch-and-price algorithm was developed in which multiple
threads analyze nodes concurrently. The different threads compete to update
bounds and add new nodes to the heap, rendering the algorithm’s execution
non-deterministic.

7 Heuristic approach to the pricing problem

The pricing problem is either optimally solved, by a general integer pro-
gramming solver for example, or addressed heuristically without convergence
proof. Although heuristics lack convergence proof, it is worthwhile investigat-
ing whether they require less computational time to generate one or more
columns (here leagues) with negative reduced cost than integer programming
solvers.

The heuristic is provided with a partial solution in which a set of team-
to-league assignments are fixed. The heuristic is initialized by first creating
a new clique for every team. If two teams of the pricing problem are fixed
to separate leagues, the cliques corresponding with these teams are marked
as conflicting ones. Contrastingly, if two teams are fixed to the same league,
the corresponding cliques are merged. The cost of a clique is defined as the
sum, over all pairs of teams within the clique, of their corresponding edge
weights. Similarly, the cost of merging two cliques or assigning them to the
same league is defined as the sum, over all pairs of teams belonging to different
cliques, of their corresponding edge weights. By monitoring these costs, the
initialization procedure enables fast evaluation during the subsequent local
search step where clique and team lists are updated.
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The local search procedure begins by sorting all cliques in order of de-
scending dual values, thus providing a sequence for selecting the first clique
inside an empty league. This initial league is iteratively improved by adding
the best neighboring solution of a randomly selected neighborhood. The set of
local search neighborhoods includes:

1. add teams neighborhood: adds, if possible, a clique (set of teams) to a
compatible league without exceeding the maximum league size.

2. remove teams neighborhood: removes, if possible, a clique (set of teams)
without violating the minimum league size.

3. swap teams neighborhood: greedily replaces the clique (set of teams) adding
the most to the objective function value with the clique that would incur
the smallest increase.

The exploration of neighborhoods is randomized by rejecting, with a small
probability «, better neighboring solutions than the best found so far. While
iterating over the neighborhoods, all feasible leagues with negative cost are
saved and ordered by increasing cost. The local search procedure ends when
a given iteration limit is reached. If no league with negative reduced cost
has been generated before the iteration limit, additional computation time is
granted to the heuristic, thus potentially avoiding the necessity to call the
integer programming solver, which requires a substantial amount of time to
converge.

Algorithm 1 depicts the heuristic procedure. Initially, each clique consists
of a single team. While the branching (of the branch-and-price) is executed,
teams are fixed to the same league or forced to be in separate leagues. Fixing
two teams to the same league is equivalent to merging these teams’ cliques
into a single clique. The algorithm requires four arguments: (i) a list with
all cliques sorted by their dual cost, (i7) a function that calculates a league’s
cost considering the dual values, (ii7) the probability « and (iv) a maximum
number m of iterations per clique. The algorithm begins by initializing the
list of leagues L and the pointer p to the current clique (lines 1-2). Next, the
current league [ is initialized with the teams of the selected clique (line 4)
and the pointer p is updated (line 5). For a limited number of iterations, the
algorithm performs local search using the neighborhoods presented. First, one
of the neighborhoods is randomly selected (line 7). Second, a feasible neighbor
is produced considering the current league [ and the parameter « (line 8). Note
that the acceptance of improving neighbors is prevented with probability 1—a.
If a novel league (not in L) is generated, it is accepted (lines 9-10). In case
the league also represents a negative reduced cost column, it is added to set L
(lines 11-12). Finally, the set of produced columns is returned (line 13).

Whenever the heuristic fails to provide a column with negative reduced cost
within its computation time limit, formulation (22)-(27) is solved to either find
a column with negative reduced cost or prove the nonexistence of such column.
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Algorithm 1: Pricing heuristic

Let C be a list with all cliques sorted by their dual cost
Let f(.) be a function that returns the cost of league (oo if league is infeasible)
Let « be the probability of only accepting an improving neighbor
Let m be the maximum number of iterations per clique
PricingSolver(C, f(.), a, m):
L+ 0
p<+0
while stopping criterion not met do
I+ Cp
p«p+1l
while limit of iterations m not met do
N <+ random neighborhood
I + feasible solution in neighborhood N(I, )
if I’ ¢ L then

© 0N W N =

[
(=}

LV
if f(I) <0 then L + L+ {l};

i
[

12 return L

8 Metaheuristic approach

A simulated annealing heuristic was developed to quickly find good upper
bounds. First an initial solution is constructed by assigning leagues to all teams
based on a randomized best insertion method. The procedure iterates over all
existing leagues which are compatible with the team. Whenever a league yields
a lower insertion cost for a team, it is accepted with a probability of 80% as
the best league assignment for a team. If no league is accepted, then a new
league is created including only this team. This constructive method does not
ensure feasibility of the constructed solution because some leagues may contain
fewer teams than required. Next, it is iteratively improved by ruining and
recreating the solution as follows. A random number of leagues in the current
solution is selected. For each of these leagues a random number n € {1,2}) is
chosen. To prevent many leagues from becoming infeasible, n is reduced, with
a probability of 90%, to the maximum number of removed teams such that
the minimum number of teams is retained. Thereafter, new separate leagues
are created for a fraction f = 1/m™ of all removed teams. This construction
method tries to insert all remaining teams, considering only leagues with a
shortage of teams while not creating new leagues. Finally the remaining teams
are assigned to leagues by considering the full solution (again, no new leagues
are created). If not all removed teams are reassigned, the neighbor solution is
rejected and the original solution is returned. The neighbor solution created
by the ruin and recreate procedure may be accepted by simulated annealing.
The system is cooled down by simulated annealing from ¢y = 100 to t; = 1
in 80 million iterations. The cooling rate 7 is thus given by Equation (29),
where tg is the initial temperature, ¢; the final temperature and I the number
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of iterations.

Algorithm 2 presents the simulated annealing procedure. The procedure
requires four arguments: (¢) initial solution, (i¢) initial temperature, (ii¢) final
temperature and (7v) cooling rate. Additionally, let f(.) be the function that
returns the objective value of a solution and g(.) the function that returns the
number of infeasible leagues of a solution. Initially, the best solution S* and
current temperature ¢ are initialized (lines 1-2). While the final temperature is
not reached (line 3), neighboring solutions are generated (line 4) and evaluated.
Note that solutions with higher number of infeasible leagues are always rejected
(line 5). Otherwise, if the produced solution improves upon the previous one
(lines 6-7), it is accepted (line 8). If it improves the best one, then the best
solution is also updated (line 9). Worsening solutions may be accepted with
a certain probability (lines 11-12). The temperature is updated (line 13) and
the algorithm proceeds to the next iteration. Once the final temperature is
reached, the best solution generated is returned (line 14).

Algorithm 2: Simulated Annealing

Let S be the initial solution

Let to and t; be the initial and final temperatures, respectively
Let v be the cooling rate, v € [0, 1]

Simulated Annealing(S, to, t1, 7):

1 S* S

2 t <+ to

3 while t > t; do

4 S’ < solution obtained by applying ruin-and-recreate on S
5 if g(S’) < g(S) then

6 A f(5) = f(9)

7 if A <0 then

8 S+ S

9 if f(S') < f(S*) then S* «+ 5/;
10 else

11 take a random z € [0, 1]

12 if z < e 4/t then S « 5;

13 |ty xt

14 | return S*

9 Computational experiments

Computational experiments were conducted to evaluate the performance of
the three formulations proposed. The running time for solving each instance
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set was limited to 8 hours. The test system was an Intel(R) Xeon(R) CPU E5-
2640 v3 @ 2.60GHz computer with 128GB of RAM memory running Ubuntu
Linux 14.04 LTS.

Real-world instances were provided by Movetex!. In addition to the real-
world problems, artificial instances were generated to evaluate the behavior
of the different approaches on problems with both fewer and more teams. All
instances are available online? so as to encourage future research on the STGP.

Table 1 shows the results obtained within 3 hours for the two compact
formulations presented in Section 3. |T'|, m~ and m™ are the instance char-
acteristics. For each formulation the value of the linear relaxation (LB°), the
best lower bound obtained (LB*), the best solution (UB), the runtime and
the resulting gap are presented. Best results are highlighted in bold. Note that
the second formulation resulted in better bounds and solutions for most in-
stances. It enables solving one instance more than the first formulation. For
larger instances (u-13, u-15 and u-17), however, the first formulation resulted
in better feasible solutions.

Table 1 Results obtained with the compact formulations

1st Formulation 2nd Formulation
Inst. [T m m - - " :
LB’ LB* UB Time Gap LB’ LB* UB Time Gap
5 10 550.00 opt 724 1.0s 0.0% 550.00 opt 724 1.1s 0.0%
tiny 15 10 936.09 opt 1438 0.2s 0.0% 1076.49 opt 1438 0.2s 0.0%
10 1128.91 opt 1438 0.2s 0.0% 1288.09 opt 1438 0.2s 0.0%

10 996.00 1044.00 1202 10800.0s 13.1% 996.00 1130.00 1196 10800.0s 5.5%
1382.00 1476.00 1768 10800.0s  16.5% 1382.00 1602.00 1762 10800.0s 9.1%
10 1806.00 1914.00 2314 10800.0s  17.3% 1806.00 2160.00 2312 10800.0s 6.6%

© NN O
=
(=]

small 50 .
10 2258.00 2440.00 3120 10800.0s 21.8%  2258.00 2810.00 3074 10800.0s  8.6%
10 2748.00 3182.00 4190 10800.0s 24.1% 2748.00 3550.00 4190 10800.0s 15.3%
10 10 3276.00 3552.00 4190 10800.0s 15.2%  3276.00 opt 4190 3033.9s  0.0%
5 8 1841.00 1842.00 4674 10800.0s 60.6% 1841.00 1842.00 13016 10800.0s  85.8%
13 166 6 8 2528.00 2528.00 19704 10800.0s 87.2% 2528.00 2528.00 13016 10800.0s 80.6%
e 7 8 3290.00 3290.00 19168 10800.0s  82.8% 3290.00 3290.00 13016 10800.0s  74.7%
8 8 - infeasible 15.0s - 4126.00 4140.00 - 10800.0s -
5 8 1799.00 1800.00 9256 10800.0s  80.6% 1799.00 1800.00 14060 10800.0s  87.2%
6 8 2507.00 2508.00 18984 10800.0s 86.8%  2507.00 2508.00 13638 10800.0s 81.6%
15 167
b 7 8 3268.00 3268.00 11552 10800.0s 71.7%  3268.00 3268.00 19502 10800.0s 83.2%
8 8 - infeasible 11.4s - 4090.00 4098.00 - 10800.0s -
5 8 1637.00 1638.00 5202 10800.0s  68.5% 1637.00 1638.00 10910 10800.0s  85.0%
6 8 2237.00 2238.00 7188 10800.0s 68.9%  2237.00 2246.00 12356 10800.0s 81.8%
17 130
-
7 8 2889.00 2890.00 8988 10800.0s 67.8%  2889.00 2892.00 15228 10800.0s  81.0%
8 8 - infeasible 4.8s - 3612.00 3616.00 - 10800.0s -
5 8 1135.00 1148.00 1932 10800.0s  40.6%  1135.00 1158.00 1478 10800.0s 21.7%
91 58 6 8 1546.00 1562.00 2832 10800.0s 44.8%  1546.00 1628.00 1988 10800.0s 18.1%
u- 5
7 8 2018.00 2088.00 2516 10800.0s 17.0%  2018.00 2118.00 2616 10800.0s 19.0%
8 8 - infeasible 0.5 - 2556.00 2672.00 - 10800.0s -

I http://movetex.be
2 TInstance and solution files are available at http://benchmark.gent.cs.kuleuven.be/
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Table 2 Results obtained with the branch-and-price and simulated annealing algorithms

_ Best Compact Form. Branch-and-Price
Inst. |T] m~ m" - - - SA Gap
LB* UB Time LB" LB’ LB* UB Time
5 10 0.00 724 1.0s 704.00  704.00 opt 724 1.2s 1438 0.0%
tiny 15 6 10 0.00 1438 0.2s 1019.00 opt opt 1438 0.6s 1438 0.0%
7 10 0.00 1438 0.2s 1306.29 opt opt 1438 0.6s 1438 0.0%
5 10 1130.00 1196 10800.0s 1168.33 1168.33 opt 1196 19.8s 1196 0.0%
6 10 1602.00 1762 10800.0s 1669.87 1740.72 opt 1762 21.1s 1762 0.0%
small 50 7 10 2160.00 2312 10800.0s 2224.30 2278.13 opt 2312 25.4s 2312 0.0%
8 10 2810.00 3074 10800.0s 2858.71 3024.33 opt 3074 14.7s 3074 0.0%
9 10 3550.00 4190 10800.0s 3517.47  4180.00 opt 4190 5.3s - 0.0%
10 10 3552.00 4190 3033.9s 4172.67 4172.67 opt 4190 69.0s - 0.0%
5 8 1842.00 4674 10800.0s 2126.28 2137.48 2161.03 - 10800.0s 2194 1.5%
w13 166 6 8 2528.00 13016 10800.0s 2934.03 3030.76 3051.93 - 10800.0s 3064  0.4%
7 8 3290.00 13016 10800.0s 3859.64 4041.20 opt 4054 188.1s 4054 0.0%
8 8 infeasible 15.0s 4938.37 - infeasible. 16.2s - -
5 8 1800.00 9256 10800.0s 2077.36  2108.80 2130.02 - 10800.0s 2168 1.8%
wib 167 6 8 2508.00 13638 10800.0s 2935.13 3057.35 opt 3084 6006.1s 3084  0.0%
7 8 3268.00 11552 10800.0s 3884.23 4098.56 4142.77 4148 10800.0s 4156 0.1%
8 8 infeasible 11.4s 4935.82 - infeasible. 16.3s - -
5 8 1638.00 5202 10800.0s 1926.13 1926.13 1953.63 - 10800.0s 1998 2.2%
w17 130 6 8 2246.00 7188 10800.0s 2669.58 2791.48 opt 2838 2942.3s 2838 0.0%
7 8 2892.00 8988 10800.0s 3460.76  3603.07 opt 3640  127.5s 3640 0.0%
8 8 infeasible 4.8s 4343.73 - infeasible. 9.5 - -
5 8 1158.00 1478 10800.0s 1317.38 1417.00 opt 1460  365.1s 1460 0.0%
w2l 58 6 8 1628.00 1988 10800.0s 1789.19 opt opt 1976 2.2s 1976 0.0%
7 8 2118.00 2516 10800.0s 2357.08 2474.91 opt 2476 7.28 2476 0.0%
8 8 infeasible 0.5s 2987.25 - infeasible. 1.9s - -

Table 2 presents the results obtained with the branch-and-price approach
described in Section 6. The best results obtained with the two compact formu-
lations are presented, as in Table 1. Considering the branch-and-price: column
LB® shows the lower bounds obtained by the linear relaxation of formulation
(19)-(20), while column LB presents the linear relaxation value of (19)-(21).
The best lower bound obtained (LB*), best solution (U B) and runtime of the
branch-and-price are also presented. In addition, the results obtained with the
simulated annealing (SA) and the gaps between the best generated solution
and the best bound are included. Note that Constraint (21) is essential when-
ever |T| is indivisible by m ™, as expected. It enables considerably improving
the quality of the linear relaxation’s objective, leading to stronger formula-
tions. The branch-and-price proved much more adequate than the presented
compact formulations to solve the STGP. Although it was unable to provide
feasible solutions for the larger instances (u-13, u-15 and u-17), high quality
bounds were obtained. Additionally, simulated annealing generated high qual-
ity solutions, obtaining the optimal values for almost all solved instances. The
resulting gap considering the best solution and the best bound are very low.
The worst gap is only 2.2% for the largest considered instance, u-17.

Finally, it is noteworthy that the developed heuristic for the pricing prob-
lem performed considerably better than the integer programming approach.
Therefore, results using only the solver for the pricing problem were omitted.
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10 Conclusions

The present paper presented the Sport Teams Grouping Problem (STGP), a
challenging and practical combinatorial optimization problem which is inter-
nationally applicable and relevant in recreational sports environments.

Despite its generality, the academic literature does not provide efficient
algorithms for solving the STGP.

Three different integer programming formulations were developed and eval-
uated for the STGP, two of which are compact formulations and another with
an exponential number of variables, being solved by a branch-and-price al-
gorithm. A heuristic method is employed to solve the column generation’s
pricing problem within the developed branch-and-price. The compact formu-
lations incurred much weaker results than the developed branch-and-price.
The branch-and-price was able to solve most instances, except the large ones.

A simulated annealing approach was proposed to deal with the large in-
stances. The method obtained optimal solutions for almost all instances.

Overall, good bounds and solutions were obtained. The largest optimality
gap was only 2.2%.

Future research directions include further experimentation with larger in-
stances, in addition to the development of cutting planes towards a branch-
and-cut-and-price. Techniques such as strong branching should also be studied
to improve the branch-and-price branching decisions.
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