
A variant of the high-school timetabling problem and

a software solution for it based on integer linear

programming

Iulian Ober

Abstract The paper presents a practical method for handling a particular class of
timetabling problem through integer linear programming and a software tool which
implements this approach. The class of problems tackled by the tool is a relatively
classical high-school timetabling problem, which however presents distinctions that
set it apart, such as the existence of overlapping time slots or the extensive use of
hierarchically organized student groups. The results obtained on real-life examples
of workloads from our institution are very encouraging, both in terms of quality of
the generated timetable and of tool performance and ease of use.

1 Introduction

This paper presents the timetabling problem faced at the University of Toulouse
in the Computer Science Department of the Blagnac IUT (University Institute of
Technology) and reports on a way to approach this problem through integer linear
programming (ILP) and on a software tool which resulted from this approach.

The problem is a particular case of the general High-School Timetabling (HSTT)
problem, as characterized for example in [9], but has two features that set it apart.
The first feature is that the time slots may be overlapping and are not totally ordered.
While it would be possible in principle to re-formulate the problem by sub-dividing
the time slots into unique, totally ordered and equal-length sub-slots and assigning
several consecutive sub-slots to each lecture, this solution would increase the com-
plexity of the problem specification by the user, as well as the complexity of the
ILP model, hindering performance. The second feature is the extensive use of hier-
archically organized student groups: as we will show in section 2, the student set is
divided into semesters, which are divided into classes that are further divided into
smaller groups. Each of these three levels of granularity may constitute the audience
of several courses. With the exception of these distinctive features, the problem is a
classical one of assigning time-slots and rooms with regard to a curriculum and to a
predefined course-group-teacher assignment.

Université de Toulouse, 118 Route de Narbonne
F -31062 Toulouse, France
E-mail: Iulian.Ober@irit.fr

283

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



The initial motivation for this work was practical and the author approached it
not as a research problem but as a problem of convenient tooling. The main reason
for looking for a custom-made solution was the perception that in order to obtain
good quality solutions automatically, one fares better if one masters the internals of
the timetable generator tool and is able to add specific constraints that fit the needs
of the institution. In the process of designing the solution, we nevertheless tried to
separate what is relatively generic and applicable to the timetabling problem of many
institutions similar to ours from what is specific to the institution. The result is a
generic-enough method and an easily extensible tool, described in this paper.

1.1 Related work

There are many research papers describing various techniques for solving variants of
the HSTT problem; for a broad literature survey one may consult [8], which focusses
on HSTT, and [6,4], which also cover other types of timetabling problems. Many
approaches listed there concentrate on heuristic methods, however there are several
previous proposals that rely upon integer linear programming [5,2,11,1,13].

A notable recent evolution in the field is the proposal of XHSTT [9], and XML-
based format for specifying HSTT problems that has become a de facto standard. A
repository of benchmark examples is available in this format, the examples coming
from di�erent institutions in various countries [10]. This has stimulated research
in the field and opened up the possibility of benchmarking di�erent approaches.
Concerning ILP-based approaches, a general resolution method based on this format
has been recently proposed in [5].

While the class of problems formulated in this paper is in many ways less general
than the class of problems that may be captured in XHSTT format [10], this also
opens up the possibility to define a simpler and more e�cient ILP model for it,
as it can be seen in the following. There is also one respect in which the problem
described here is not a sub-class of that of [9], namely the possibility for overlap
between time slots, and therefore the existing solutions such as [5] cannot be readily
applied, although it is in principle possible to reformulate the problem in terms of
totally ordered, non-overlapping, equal-length sub-slots, as mentioned above – at the
cost of increasing its complexity.

2 The timetabling problem

The problem tackled in this work is a particular case of the general High-School
Timetabling (HSTT) problem, aiming to assign time-slots and rooms with regard to
a curriculum and to a predefined course-group-teacher assignment. Being based on
a common national curriculum, other IUTs in France face a very similar problem,
although sometimes there may be additional constraints due to local specificities. A
particular feature of the IUT curriculum is that it is composed of modules that do
not usually last for a whole semester and therefore the set of courses changes usually
from one week to another, requiring the timetable to be redefined each week. Adding
that to a curriculum that is particularly dense (33h of class per student per week
on average) and to a high utilization of specialized rooms (amphitheatres, computer
rooms, multimedia rooms) which are in limited number, make this problem very

2

284 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



challenging to tackle manually. On the positive side, the problem is made easier by
the fact that the course-group-teacher assignment is usually predefined and there are
few courses with high durations requiring spreading throughout the week.

The elements to be taken into account in the timetable are as follows:

– Time slots: Contrary to the usual HSTT problem, there is not necessarily a list
of disjoint time-slots. The reason for this is that the duration may vary from
one lecture to another. For example, at the Blagnac IUT, most lectures have
a duration of 1:30 hours (in which case they may start at fixed times: 8AM,
9:30AM, 11AM, 14:15PM, 15h45PM, 17h15PM) but there may be lectures with
di�erent durations and starting at di�erent times (for example, a 2-hours lecture
starting at 9AM). For this reason we consider, as the basis for the timetable, a
list of possible time-slots, each having a specified duration, and a binary relation
defining which pairs of time-slots overlap one another (for example, the 2-hours
9AM-11AM time-slot overlaps two 1:30-hours time-slots, namely 8AM-9:30AM
and 9:30AM-11AM).

– Teachers: As usual, teachers may have availability constraints and preferences,
which may be defined on a per-time-slot basis.

– Student groups: In the IUT curriculum, students at a certain level (semester
group, usually somewhere around one hundred students) are divided in classes
of around 26 students (called TD groups) which are further divided in two sub-
groups (called TP groups). Teachings take the form of lectures (delivered to
a whole semester group), “TDs” (delivered separately to each TD group) and
“TPs” (delivered separately to each TP group). Obviously, the IUT timetable
has to take into account this division and not plan an event for a sub-group in
parallel to another event which concerns any one of its super-groups.

– Rooms: There are di�erent categories of rooms: amphitheatres (fitted for a whole
semester group), basic classrooms (fitted for a TD group), computer and multi-
media rooms (fitted for a TP group or in some cases for a TD group). In each
category there may be several rooms, which are often interchangeable. Quantity
is however important and is a limiting factor for the timetable (for example, there
are 6 computer rooms for a total of 14 TP groups in Blagnac, so there may not
be more than 6 computer TPs in parallel). Moreover, due to sharing with other
departments, the quantity for a room category may vary from one slot to another
(e.g., 2 amphitheatres are available on Monday morning, but not the other days).

– Courses: In the IUT curriculum, a course is composed of a certain number of
lectures, TDs and TPs. However, to ease the definition, we will consider each
of these components as a separate course, for each of the instructors involved.
Therefore, in our problem definition, a course is characterised by:
– a course name
– an instructor
– a time-slot duration (1:30, 2 hours...)
– a room category as well as a quantity of rooms that are used for one session

(usually one, but sometimes certain courses need two computer rooms at
once)

– the number of sessions for each group concerned
In addition, there may be several other types of constraints on courses:
– consecutiveness: two or more sessions must be scheduled consecutively in the

timetable,

3

A variant of the high-school timetabling problem and a software solution for it
based on integer linear programming 285

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



– precedence: the sessions of one course must precede the sessions of another
course, for example when the amphitheatres lecture must precede the corre-
sponding TDs or TPs,

– time-slot constraints: certain courses may prefer or forbid the use of certain
time-slots, for example one would forbid amphitheatre lectures late in the
evening and prefer morning to after-noon slots. Also, in Blagnac, most courses
are forbidden to take place on Thursday afternoon which is reserved for sports
and other activities.

With the exception of the overlapping time-slots of di�erent duration, all the
elements and constraints expressed above can in principle be captured in the XHSTT
format [9]. However, there is not a 1-to-1 correspondence between the elements above
and those of an XHSTT model: for example, XHSTT resources such as rooms cannot
specify a multiplicity and therefore one would have to model the individual rooms
and use resource groups in order to define room categories. For this reason, the
ILP formulation presented in the next section is simpler and more direct than one
based on the general XHSTT format, such as [5]. Also, a timetable constructed
based on an XHSTT formulation of our problem would necessarily include more
detailed information (e.g., individual rooms as opposed to just the room type), the
computation of which would incur an overhead.

3 The ILP formulation

3.1 Model constants

This section lists, by category, the various data that define an instance of the problem.
They correspond to the elements listed informally in section 2.

– Time slots:
– Slots is an set of time-slots (identifiers)
– SlotTypes is a set of time-slot types (identifiers; for example, the durations

may be used as types)
– slType : Slots æ SlotTypes is a function assigning a type to each slot
– overlap ™ Slot◊Slot is a binary relation on slots. (s1, s2) œ overlap (denoted

s1 Î s2) i� slots s1 and s2 overlap chronologically
– rank : Slots æ N is a numbering function which defines the partial order

between slots. The function is used for imposing consecutiveness and prece-
dence constraints between events, defined below. As such, the function has
to observe two constraints:

• two chronologically consecutive slots have to be assigned consecutive nat-
ural numbers as rank

• a slot that chronologically precedes another must have a lower rank than
the other

Note that with these constraints, the rank function defines only a partial
order, in particular in the case of overlapping slots (e.g., two overlapping
slots may be assigned the same rank). Moreover, the rank function may be
used to model gaps in the timetable, e.g., nights: it su�ces to leave a gap
bigger than 1 between the rank of the last slot of a day and the rank of the
first slot of the next day.

4

286 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



– Teachers:
– Teachers is a set of teachers (identifiers)
– tAvail : Teachers ◊ Slots æ {0, 1} defines teacher availability per time-slot.

tAvail(t, s) = 1 i� teacher t is available for slot s

– tPref : Teachers ◊ Slots æ {0, 1} defines teacher preferences per time-slot.
tPref(t, s) = 1 i� s is a preferred slot for teacher t. Note that tPref(t, s) = 1
implies tAvail(t, s) = 1.

– Student groups:
– Groups is a set of student groups (identifiers)
– subgroup ™ Groups ◊ Groups is a binary relation, (g1, g2) œ subgroup (de-

noted ª) i� g1 is a (strict) sub-group of g2. Note that the relation must be
acyclic.

– Rooms:
– RoomCategories is a set of room categories (identifiers)
– rAvail : RoomCategories ◊ Slots æ N defines how many rooms of a partic-

ular category are available at each time-slot
– Courses:

– Courses is a set of courses (identifiers)
– courseTeacher : Courses æ Teachers defines who teaches the course. If

di�erent parts of a curriculum course are taught by more than one teacher
(for the same or for di�erent groups), they will appear as separate elements
in Courses.

– courseSlotType : Courses æ slType defines what kind of slot type is used
by the course

– courseRoomCat : Courses æ RoomCategories defines what kind of room is
used by the course

– courseRoomNb : Courses æ N defines how many rooms are used by the
course (usually 1)

– courseGroupNb : Courses ◊ Group æ N. courseGroupNb(c, g) defines how
many sessions there are in the course c for the group g.

– consecCourses ™ Courses. If c œ consecCourses then the sessions of this
course for each concerned group have to be consecutive (applies to groups g

such that courseGroupNb(c, g) > 1).
– courseAvail : Courses ◊ Slots æ {0, 1} defines availability per time-slot.

courseAvail(c, s) = 1 i� course c may be scheduled at slot s. Note that this
function may also be used to model a partial solution for the timetable, if one
is available: the events that are already scheduled are assigned a courseAvail

of 0 for all the other slots except those that are pre-assigned.
– coursePref : Courses ◊ Slots æ {0, 1} defines preference per time-slot.

coursePref(c, s) = 1 i� s is a preferred slot for course c.
Note that coursePref(c, s) = 1 implies courseAvail(c, s) = 1.

– precedes ™ Course◊Course defines the precedence between courses. (c1, c2) œ
precedes (denoted c1 π c2) means all time-slots allocated to c1 must chrono-
logically precede the slots of c2. Note that the relation must be acyclic.

5

A variant of the high-school timetabling problem and a software solution for it
based on integer linear programming 287

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



3.2 Model variables and objective function

The model uses the following set of variables x
s,c,g

œ {0, 1} where s œ Slots, c œ
Courses and g œ Groups, taking the value 1 when group g has a course c in time-slot
s and 0 otherwise. Note that since rooms are not explicitly modelled as resources
to be assigned, we need not index x on rooms: the model only needs to satisfy the
constraint that enough rooms of each type are available at every slot. This reduces
the size of the set of decision variables making resolution more e�cient.

On a first approach, the cost function has two components, which may be summed
and assigned di�erent weights according to the needs:
– a cost incurred by the use of unpreferred slots of teachers

UT =
ÿ

sœSlots

cœCourses

gœGroups

(tAvail(courseTeacher(c), s)≠tPref(courseTeacher(c), s))·x
s,c,g

(1)
– a cost incurred by the use of unpreferred slots for courses

UC =
ÿ

sœSlots

cœCourses

gœGroups

(courseAvail(c, s) ≠ coursePref(c, s)) · x
s,c,g

(2)

In Section 3.4 we discuss how the model may be augmented to optimize other
criteria.

3.3 Hard constraints

All the constraints listed in the following are hard, i.e. have to hold for the timetable
to be considered valid.

– All the courses are allocated a slot:

’c œ Courses, ’g œ Groups :
ÿ

sœSlots

x
s,c,g

= courseGroupNb(c, g) (3)

– No group has two courses in parallel (or a course in parallel with another course
of one of its super-groups):

’s œ Slots, ’g œ Groups :

ÿ

cœCourses

Q

cax
s,c,g

+
ÿ

g

ÕœGroups

gªg

Õ

x
s,c,g

Õ

R

db Æ 1 (4)

Since this constraint has also to take into account slot overlapping, an additional
constraint is necessary for every pair of overlapping slots:

’s, s

Õ œ Slots such that s Î s

Õ
, ’g œ Groups :

ÿ

cœCourses

Q

cax
s,c,g

+ x
s

Õ
,c,g

+
ÿ

g

ÕœGroups

gªg

Õ

(x
s,c,g

Õ + x
s

Õ
,c,g

Õ )

R

db Æ 1 (5)

6

288 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



– The slots allocated to a Course have the right SlotType:

’s œ Slots, c œ Courses such that courseSlotType(c) ”= slType(s),

’g œ Groups : x
s,c,g

= 0 (6)
– The teachers are available at the allocated slots and a teacher does not have

several courses in parallel:

’s œ Slots, ’t œ Teachers :
ÿ

cœCourses

courseT eacher(c)=t

ÿ

gœGroups

x
s,c,g

Æ tAvail(t, s) (7)

– There are enough rooms of each category for each slot:

’s œ Slots, ’t œ RoomCategories :
ÿ

cœCourses

courseRoomCat(c)=t

ÿ

gœGroups

courseRoomNb(c) · x
s,c,g

Æ rAvail(t, s) (8)

Since this constraint has also to take into account slot overlapping, an additional
constraint is necessary for every pair of overlapping slots:

’s, s

Õ œ Slots such that s Î s

Õ
, ’t œ RoomCategories :

ÿ

cœCourses

courseRoomCat(c)=t

ÿ

gœGroups

courseRoomNb(c) · (x
s,c,g

+ x
s

Õ
,c,g

)

Æ min(rAvail(t, s), rAvail(t, s

Õ)) (9)
where min denotes the minimum of two numbers.
Note that this may overconstrain the model in the case where rAvail(t, s) and
rAvail(t, s

Õ) are di�erent. However, in most cases rAvail should be equal for
overlapping slots s, s

Õ.
– courseAvail constraint is observed:

’c œ Courses, ’s œ Slots :
ÿ

gœGroups

x
s,c,g

Æ courseAvail(c, s) (10)

– Consecutiveness constraints are observed:

’c œ consecCourses, ’g œ Groups,

’s, s

Õ œ Slots such that rank(sÕ) ≠ rank(s) Ø courseGroupNb(c, g) :
x

s,c,g

+ x
s

Õ
,c,g

Æ 1 (11)
– Precedence constraints are observed:

’c, c

Õ œ Courses such that c π c

Õ
,

’g, g

Õ œ Groups such that courseGroupNb(c, g) · courseGroupNb(cÕ
, g

Õ) > 0,

’s, s

Õ œ Slots such that rank(s) < rank(sÕ) :
x

s,c

Õ
,g

Õ + x
s

Õ
,c,g

Æ 1 (12)

7

A variant of the high-school timetabling problem and a software solution for it
based on integer linear programming 289

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



3.4 Integrating soft constraints

As mentioned in Section 3.2, the model aims at minimizing the use of unpreferred
slots (with preferences given per-teacher or per-course). However, it is possible to
augment the model to take into account other types of soft constraints. We discuss
here two examples of soft constraints.

Minimizing “long days”. When the di�erence of time between the first and the last
slot of a day is big, such as in our running example where days run from 8AM to
6:45PM, it is important from a human point of view to avoid as much as possible
days that start very early in the morning and end very late in the evening, both for
teachers and for groups of students. In order to minimize such long days, say for
teachers, the model may be augmented with the following:
– Days is a set of the days of week
– first : Days æ Slots maps each day to its first slot
– last : Days æ Slots maps each day to its last slot
– L

d,t

œ {0, 1}, where d œ Days and t œ Teachers, is an auxiliary variable which
will be assigned the value 1 when d is a “long day” for teacher t (i.e., t teaches
during both the first and the last slot of the day)

– the constraint linking L to x:

’d œ Days, t œ Teachers :
ÿ

cœCourses

courseT eacher(c)=t

ÿ

gœGroups

(x
first(d),c,g

+ x
last(d),c,g

) ≠ 2 · L
d,t

Æ 1 (13)

– an additional component, which models the cost incurred by the “bad days”, may
then be weighted into the cost function:

LT =
ÿ

tœT eachers

dœDays

L
d,t

(14)

Minimizing long days for student groups works much in the same way as for
teachers.

Clustering busy times. The idea here is to group the time slots in which a teacher or
student group has courses around certain days (or half-days) while freeing up others.
It is useful for freeing-up blocks of time either for students to allow for individual
work, or for adjunct teachers who have another main job. For example, the model
may be augmented with the following in order to minimize the number of presence
days for teachers:
– day : Slots æ Days maps each slot to a day of week
– D

d,t

œ {0, 1}, where d œ Days and t œ Teachers, is an auxiliary variable which
will be assigned the value 1 when t has at least a busy slot on day d (“used day”)

– the constraint linking D to x:

’d œ Days, t œ Teachers :

card(Slots) · D
d,t

≠
ÿ

cœCourses

courseT eacher(c)=t

ÿ

gœGroups

ÿ

sœSlots

day(s)=d

x
s,c,g

Ø 0 (15)

where card(Slots) denotes the cardinal of the set Slots.

8

290 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



Model.xlsx	

XLScheduler	

Timetable.xlsx	

model	is	feasible	

IIS.lp	

model	is	infeasible	
add	constraints	to	
improve	quality	of	

solu>on	

correct	source	of	
infeasibility	

solu>on	is	
sa>sfactory	

solu>on	is	
unsa>sfactory	

stop	

Fig. 1 Workflow of the XLScheduler tool.

– an additional component, which models the cost incurred by “used days”, may
then be weighted into the cost function for some (or for all) teachers t:

BT

t

=
ÿ

dœDays

D
d,t

(16)

4 Tool and experimental results

The model described above was implemented in a software tool, XLScheduler (https:
//www.irit.fr/˜Iulian.Ober/XLScheduler). The software works in batch mode,
reading the model constants (see Section 3.1) from a spreadsheet that has to observe
a certain tabular format, described in the following. From this data, the software
creates the ILP model and solves it with an o�-the-shelf solver, which can be either
Gurobi [14] or the open-source solver Cbc [12]. Two results are possible: either a
feasible timetable is found, in which case it is displayed in text form and written
to an Excel file with a convenient format, or the problem is infeasible. In the latter
case, if the used solver is Gurobi, it is possible to generate an Irreducible Inconsis-
tent Subsystem (IIS) in textual LP format, from which the user may be able to find
the cause of infeasibility, at least in simple cases such as when the availability of a
teacher does not allow him to deliver all his courses. Such cases are generally caused
by over-restrictive constraints added by the teachers and are resolved by relaxing the
constraints. The workflow is summarized in Figure 1 and it may be iterated several
times, while adding soft constraints to the model file to improve the quality of the
solution.

A web-based trial version of the tool is available at https://www.irit.fr/
˜Iulian.Ober/XLScheduler/submit.php. However, due to licencing limitations, the
web-based version can only use Cbc as back-end solver. This limitation severely im-
pacts the performance of the tool, as discussed below (§4.2).

9

A variant of the high-school timetabling problem and a software solution for it
based on integer linear programming 291

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



4.1 Input/Output formats

Ease of use being one of the primary concerns for the tool, the input format for
the tool is a spreadsheet. At most institutions, the timetabling data (teachers list,
availability, etc.) is already managed with a spreadsheet software and therefore data
is readily convertible to the format used by the tool. The input spreadsheet must
contain eight sheets:

– TimeSlots: a table of time slots (names, types, overlapping relations, etc.)
– InstructorAvailability: a table of teachers with availability/preference per-slot
– Groups: a list of groups and value table for the subgroup function
– Rooms: a table of room categories and quantity per-slot
– Courses: a table of courses with associated data (teacher, slot type, room category

and quantity, group assignment and quantity)
– CourseSlotPrefs: a value table for courseAvail and coursePref functions
– CoursePrecedence: a table defining the precedes relation
– Objectives: a table defining the relative weights for the components of the cost

function

An example file is available online1. The format presented above takes into ac-
count the hard constraints detailed in §3.3 and the objectives from §3.2. Adding
soft constraints such as the ones discussed in Section 3.4 is less obvious since such
soft constraints are hard to generalize and to specify in a generic way in the input
file. For now, the solution we use is to hard-code them in a custom version of the
tool. Making them part of the standard version of the tool would require extending
the input format; since defining a generic-enough and understandable format is not
always easy, we plan to do this when enough user requests justify the need.

If a feasible timetable is found by the tool, it is also output into a convenient
spreadsheet format. An example of automatically generated timetable is available
online 2.

4.2 Back-end solvers and experimental results

Two solvers may be used as back-end for XLScheduler: Gurobi [14] or the open-
source solver Cbc [12]. In both cases, the interface with the solver passes through
a Python [3] API: the native Python API for Gurobi, the PuLP [7] API for Cbc.
The two APIs are quite similar and allow to express the model elements (see §3) in
a natural way.

The tool was used on a real-life model with the following characteristics:

– 39 teachers
– 2 semester groups divided into 7 TD groups and 14 TP groups
– up to 15 rooms of 4 di�erent categories, depending on the time-slot. Although

this may seem quite a lot, a large part of the curriculum is delivered in TPs, and
there are at most 6 rooms available for the 14 groups at any time.

– 83 courses. A course is defined by a unique triple (subject,group type,teacher)
but may concern several groups.

1 https://www.irit.fr/˜Iulian.Ober/XLScheduler/modelExample.xlsx
2 https://www.irit.fr/˜Iulian.Ober/XLScheduler/resultExample.xlsx

10

292 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



– 169 events (course instances) to schedule

The configurations of five di�erent weeks at our institution, with varying courses
and availability constraints, were solved with the tool. Both solvers were able to
solve all models to optimality, albeit with di�erent performance: usually under 1
second with Gurobi, in the order of 3 minutes for the PuLP/Cbc version.However,
on a closer analysis, the performance di�erence is mainly caused not by the solver,
as Cbc also solves the model in a few seconds, but by the PuLP API during model
creation. An alternative method for creating the Cbc model is currently sought.

The quality of the generated timetable could be adjusted by tightening the avail-
ability and preferences over time-slots, and in some cases by adding custom soft
constraints such as the ones discussed in Section 3.4. In the end, the quality of the
timetable from a human point of view is comparable to that obtained manually. In
one case, it was possible to find a satisfactory solution where, manually, one could
not be found without adding an extra resource (another computer room).

5 Conclusion

E�ciently obtaining good quality timetables is a problem faced by many teaching
institutions and the need for practical tools to support this problem is recognized.
This is even more so in institutions where the timetable is highly dynamic from one
week to another, as it is the case in our example. The paper presents a practical
approach for handling a particular class of timetabling problem, which has been
implemented in an easy to use and extensible tool that handles timetable data in a
simple spreadsheet format, facilitating its adoption by the concerned personnel.

The class of problems tackled by the tool is a relatively classical HSTT problem.
However, it presents a few distinctions that set it apart, such as the existence of
overlapping time slots or the extensive use hierarchically organized student groups.
In some ways, the problem is also simpler than the general HSTT problem, since
teachers are pre-assigned to groups and rooms within the same category are consid-
ered interchangeable, which make it possible to define a simpler and more e�cient
ILP-based model for it. The results obtained on real-life examples of workloads from
our institution are very good, both in terms of quality of the generated timetable
and of tool performance and ease of use.

References

1. T. Birbas, S. Daskalaki, and E. Housos. School timetabling for quality student and teacher
schedules. Journal of Scheduling, 12(2):177–197, 2008.

2. Natashia Boland, Barry D. Hughes, Liam T.G. Merlot, and Peter J. Stuckey. New integer
linear programming approaches for course timetabling. Computers & Operations Research,
35(7):2209 – 2233, 2008. Part Special Issue: Includes selected papers presented at the
ECCO’04 European Conference on combinatorial Optimization.

3. Python Language Documentation. https://www.python.org/doc/.
4. Je�rey H. Kingston. Automated Scheduling and Planning: From Theory to Practice, chap-

ter Educational Timetabling, pages 91–108. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

5. Simon Kristiansen, Matias Sørensen, and Thomas R. Stidsen. Integer programming for
the generalized high school timetabling problem. Journal of Scheduling, 18(4):377–392,
2014.

11

A variant of the high-school timetabling problem and a software solution for it
based on integer linear programming 293

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016



6. Simon Kristiansen and Thomas Riis Stidsen. A comprehensive study of educational
timetabling-a survey. Technical report, Department of Management Engineering, Techni-
cal University of Denmark, 2013.

7. Stuart Mitchell. An Introduction to pulp for Python Programmers. The Python Papers
Monograph, 1, 2009. Available online at http://ojs.pythonpapers.org/index.php/tppm.

8. Nelishia Pillay. A survey of school timetabling research. Annals OR, 218(1):261–293, 2014.
9. Gerhard Post, Samad Ahmadi, Sophia Daskalaki, Je�rey H. Kingston, Jari Kyngäs,

Cimmo Nurmi, and David Ranson. An XML format for benchmarks in high school
timetabling. Annals OR, 194(1):385–397, 2012.

10. Gerhard Post, Je�rey H. Kingston, Samad Ahmadi, Sophia Daskalaki, Christos Gogos,
Jari Kyngäs, Cimmo Nurmi, Nysret Musliu, Nelishia Pillay, Haroldo Santos, and Andrea
Schaerf. XHSTT: an XML archive for high school timetabling problems in di�erent coun-
tries. Annals OR, 218(1):295–301, 2014.

11. Haroldo G. Santos, Eduardo Uchoa, Luiz Satoru Ochi, and Nelson Maculan. Strong bounds
with cut and column generation for class-teacher timetabling. Annals OR, 194(1):399–412,
2012.

12. Cbc solver website. https://projects.coin-or.org/Cbc.
13. Christos Valouxis, Christos Gogos, Panayiotis Alefragis, and Efthymios Housos. De-

composing the high school timetable problem. In Practice and Theory of Automated
Timetabling, 2012.

14. Gurobi website. http://www.gurobi.com.

12

294 Iulian Ober

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016


