
University Course Timetabling
Solver Evolution

Tomáš Müller

Abstract This paper describes a number of improvements that have been
made to the course timetabling solver used in the open source university
timetabling system UniTime since our last paper on this topic (Rudová et al,
2011). This progress is demonstrated on benchmark data sets from Purdue
University that were introduced in the earlier paper and that are available
online.

Keywords Course timetabling · Local search · UniTime

1 Introduction

University course timetabling is an important and well studied educational
timetabling problem (McCollum, 2007). The open source system UniTime1 is
one of the most advanced and publicly accessible timetabling systems available.
It has been used at Purdue University for course timetabling since 2005.

In Rudová et al (2011), we have published an extensive study of the course
timetabling problem at Purdue University. The paper included two large and
quite complex benchmark data sets (from Fall 2007 and Spring 2007, 8 de-
partmental problems and up to 2,500 classes each) on which our algorithm
was demonstrated. While the two data sets were made available for other re-
searches to use2, to our knowledge, there have been no other papers published
using these data, or others of comparable complexity, for comparison of results.

In this paper, we would like to revisit these two data sets to demonstrate
how incremental advances in solution algorithms and improvements in con-
straint handling have been made that can be applied to improve solutions to

Tomáš Müller
Student System Competency Center, Purdue University, USA
E-mail: muller@unitime.org

1 http://www.unitime.org
2 http://www.unitime.org/uct_datasets.php

263

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

2 Tomáš Müller

real-world course timetabling problems. The fact that it has been possible to
both broaden the applicability of the solver to meet the needs of more insti-
tutions and improve the results on complex benchmark data sets are of note.
Both improving results and broadening the applicability of solution methods
are key to making automated timetabling methods practical.

The ability of UniTime to model most real-world constraints, combined
with the ability to insert di↵erent solver techniques into the solver engine can
make it a valuable platform for comparing a variety of solution methods on
problems of realistic size and complexity. This can help in finding methods that
are most successful in meeting the needs of university timetablers in actual
practice. It is our hope that other researchers will have an interest in making
use of the problem data sets we have made available and that there will be an
interest in expanding the number and variety of data sets as more institutions
worldwide make use of UniTime. They can provide a valuable addition to the
course timetabling benchmarks from the International Timetabling Competi-
tion (McCollum et al, 2010; Bonutti et al, 2012; McCollum et al, 2012).

The paper is organized as follows: a short description of the course time-
tabling problem is presented in the next section (Section 2), this is followed by
a brief description of the algorithm (Section 3), the two benchmark data sets
are presented (Section 4) and the improvements made over the last decade
are demonstrated (Section 5), the most important changes are discussed (Sec-
tion 6) and followed by conclusions (Section 7).

2 Problem Description

Course timetabling is a resource allocation problem with the aim of assigning
classes to times and spaces in such a way that no two classes are placed in the
same room or taught by the same instructor at any given time. Additional hard
distribution constraints must be respected. In the following experiments, we
are concerned with four objectives: time preferences, room preferences, distri-
bution preferences, and student conflicts. Time and room preferences measure
how well particular desires for times and rooms are satisfied, distribution pref-
erences measure how well the soft distribution constraints are satisfied, and
student conflicts measure the degree to which student conflicts are minimized.
Each objective is expressed as a number (e.g., a total time penalty or a number
of students conflicts) and the solver is minimizing a weighted sum of these ob-
jectives. For more details about the problem, including an XML data format,
please see http://www.unitime.org/uct_datasets.php.

2.1 Time

While the same schedule is typically repeated every week during the term,
there can be exceptions. For example, some classes may only meet bi-weekly
or only during the first N weeks of the term. Other classes may meet multiple

264 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 3

times a week, usually following a strict pattern. For example, a class meeting
three times a week for 50 minutes always meets on Monday - Wednesday -
Friday, with all meetings starting at one of a given set of times.

To allow for all these cases, our model of the academic term is divided into
weeks, each week is split into seven days (Monday - Sunday), and each day of
the week has 288 time slots, starting at midnight, with 5 minute increments.
Each possible time placement of a class consists of a date pattern, one or more
days of the week, a start slot and a length. The date pattern is a bit string
defining the dates of the term on which a class can meet. Typical examples of
a date pattern are: full term (a class meets every week of the term), odd/even
weeks (a class meets every other week), or week N � M (a class meets during
weeks N, N + 1, . . . , M). All meetings of a class, which are based on the com-
bination of the date pattern and the selected days of the week, start at the
same time, have the same length, and are placed in the same room or rooms.

Figure 1 shows a sample date pattern. A class following this pattern meets
during odd weeks. Classes do not meet on vacations and during holidays (La-
bor day on September 5, Fall break on October 10-11 and Thanksgiving on
November 23-27). Moreover, weeks between Fall break and Thanksgiving are
shifted by two days (a week starts on Wednesday). A class that meets on Mon-
days and Wednesdays during odd weeks would meet on those Mondays and
Wednesdays that are marked yellow.

Fig. 1 Example Odd Weeks date pattern

Figure 2 shows an example time pattern. It defines two weekly meet-
ings of 50 minutes each. The time pattern allows for the two meetings to
be on Mondays-Wednesdays, Mondays-Fridays, Tuesdays-Thursdays, or on
Wednesdays-Fridays, starting at 7:30 am, 8:30 am, . . . 4:30 pm. Time prefer-
ences can be used to prohibit or require certain combinations (hard constraint),
or to prefer or discouraged them (soft constraint).

Two classes overlap in time if and only if the selected date patterns, days
of the week, and meeting times are overlapping. This means that there is at
least one week, one day of the week, and one time slot in common. Based on
these date and time patterns and the preferences given for each class, a class
has a list of possible time placements together with penalties for assigning
the particular time placement to the class. This means that times that are
marked as prohibited are excluded from the list3 and soft time constraints

3 Required preference is a shortcut for prohibiting all times except those that are marked
as required.

University Course Timetabling: Solver Evolution 265

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

4 Tomáš Müller

Fig. 2 Example 2 x 50 time pattern

(preferred/discouraged times) are used to compute penalizations for assigning
a particular time placement to a class. In particular, there is a penalty of -4
for a strongly preferred time, -1 for a preferred time, +1 for a discouraged
time, +4 for a strongly discouraged time, and zero penalty for a time with no
preference (neutral). The time preference objective minimizes the overall time
penalty.

For example, a class requiring 150 minutes of instruction per week can
meet as follows:

– 3 times per week for 50 minutes each week, e.g., Monday - Wednesday -
Friday between 8:30 am and 9:20 am

– 2 times per week for 75 minutes each week, e.g., Tuesday - Thursday be-
tween 9:00 am and 11:15 am

– 1 time per week for 300 minutes every other week, e.g., Monday between
11:30 am and 5:20 pm on Week 1, 3, 5, . . .

Each time pattern also defines a break time (typically 10 or 15 minutes).
This is the expected time for the students to be able to move from one class
to the next. For example, a 50 minute class has typically a length of 12 slots
(allocating the whole hour) with 10 minutes of break time at the end. This
means that the students, the instructor, and the room are blocked during the
whole hour, while the last 10 minutes can be used by the students and the
instructor to get to some other room for another class.

2.2 Rooms

Each class may need a given number of rooms (typically one). A class may
need zero rooms, in which case it is only to be placed in time. If a class requires
two or more rooms, it is expected that the class meets in all its rooms during
each meeting (all the assigned rooms are blocked by the class when the class
takes place). Similar with times, each class has a list of rooms that the class
can use together with their penalties, based on the size of the class as well as
the requirements and preferences put on the class in the user interface. These
room preferences use the same schema as time preferences and they can be
set on buildings, room equipment/features, user defined room groups, or on
individual rooms. For example, if a data projector is required, only rooms with

266 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 5

a data projector are on the list. Please note that a penalty for a particular
room can be based on a combination of various soft constraints. For example,
if a building A is preferred (penalty -1) and a room A 101 which is in the
building A is strongly preferred (-4), the room penalty for the room A 101 is
-5, while all the other rooms of building A have a penalty of -1.

A room may be available only during certain times or it may be allocated
to a particular department at a certain time. This means that only classes
of a certain department may be able to use a particular room during a given
time. Also, it is not allowed for two classes to occupy the same room at the
same time.

Figure 3 shows a room sharing matrix for a particular room. Each time
can be allocated to a particular department (see Monday or Tuesday in the
example), it can be marked as free for all departments that are allowed to use
the room, or it can be marked as not available for course timetabling at all.

Fig. 3 Example room sharing matrix for a particular room

Distances between rooms are computed using the provided room coordi-
nates or by a travel time matrix. There is a student speed constant which is
included in the solver configuration (together with the weights of each of the
individual objectives, etc.) that is used to convert distances in meters to travel
times in minutes. Typically, we assume that during a 15 minute break time
students can travel up to 1,000 meters.

2.3 Instructors

A class may have one or more instructors assigned. It is not allowed for an in-
structor to teach two or more classes at the same time. If an instructor teaches
two consecutive classes, such an assignment is prohibited if the two classes are
placed in rooms that are too far apart and there is a penalty when the two
classes are close enough but still in a di↵erent building.

Typically, it is discouraged (penalty of +1) for an instructor to teach two
consecutive classes that are not in the same location (distance is not zero)
but are within 50 meters of each other. Distances over 50 meters are strongly
discouraged (penalty of +4) and over 200 meters are prohibited.

University Course Timetabling: Solver Evolution 267

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

6 Tomáš Müller

2.4 Students

In our model, we work with individual student course demands. This means
that each student has a list of courses he/she needs to attend. These course de-
mands may be generated based on curricula (Müller and Rudová, 2014), taken
from the previous year enrollments, student registrations, or a combination of
these.

The problem is complicated by the fact that courses tend to have multi-
ple classes. Courses with many students are usually split into several seminar
groups and/or lectures. Furthermore, a course can be o↵ered in various con-
figurations (e.g., a lecture only, a lecture, and a lab), with multiple lectures
and labs available and some restrictions on what combinations of lecture and
lab students are allowed to take.

Figure 4 shows an example course structure. It shows an instructional
o↵ering that can be o↵ered under two course names (M E 263 and M E 263H)
and one configuration with a lecture, a recitation, and a laboratory subpart.
A student needs to take one class of each subpart from one of the available
configurations. The nesting of the three subparts (Lec 1 is a parent of both Rec
1 and Rec 2, Rec 1 is a parent of Lab 1, Lab 2 and Lab 3, etc.) defines what
combinations of these classes are allowed: for example, a student taking Lab 5
must also take Rec 2 and Lec 1. If the course does not have a nesting defined,
any combination of a lecture, a recitation, and a laboratory would be allowed.
Preferences and requirements can be set on any level of the course structure
(on a subpart, on an instructor, or an individual class) and overridden on
a lower level.

We use an initial student scheduling algorithm that assigns students to
classes in a way that tries to keep students with similar sets of course choices
together, akin to the homogeneous sectioning introduced by in (Carter, 2001).
Besides minimizing student conflicts during the search, there is a final section-
ing algorithm executed at the end of the search that can further decrease the
number of student conflicts by swapping students among alternative classes of
a course. More details about this process are provided in (Müller and Murray,
2010).

There is a student conflict when a student is enrolled in two classes that are
overlapping in time or that are placed in consecutive times and in rooms that
are too far apart. The distance conflict occurs when the second class starts
just after the first class and the travel time between the two classes is greater
than the break time at the end of the first class4.

During the search, the solver can distinguish between student conflicts that
cannot be removed by student sectioning (called hard student conflicts) and
student conflicts that may be removed by moving students around the course.
It can also distinguish between student conflicts that are caused by the two
classes overlapping in time or by the distance between the two consecutive

4 One of the improvements made to the solver is the ability to consider distance conflicts
between classes that are not at adjacent times, bringing both the break time that is at the
end of the first class as well as any time between the two classes into the equation.

268 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 7

Fig. 4 Example course structure

classes (called distance student conflicts). A di↵erent weight can be put on
each of these categories. For example, the weight of a student conflict that may
be avoided by moving students around can be proportional to the anticipated
success of the final sectioning algorithm in removing a certain percentage of
these conflicts.

2.5 Distribution Constraints

There are additional distribution constraints that may be set between indi-
vidual classes, which may be soft or hard. Hard distribution constraints must
be satisfied, violations of soft distribution constraints are penalized. These
constraints include5

– back-to-back (given classes must be placed on the same day, one just after
the other),

– precedence (given classes must be placed in the given order),
– di↵erent time (given classes cannot overlap in time),
– spread in time (given classes must be spread in time as much as possible),

5 The full list of distribution constraints that are included in the published 2007 data
set from Purdue University is available at http://www.unitime.org/uct_grconstraints_
v23.php. There have been more constraints added into the solver and the UniTime software
since then, but those are not included in the presented data. The up to date list of available
distribution constraints, including their description, can be found on the Distribution Types
page in the UniTime application.

University Course Timetabling: Solver Evolution 269

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

8 Tomáš Müller

– can share room (given classes are allowed to share the same room, if the
room is big enough),

– meet together (given classes must meet at the same time in the same room),
– same or di↵erent meeting days, times, or rooms.

Some distribution constraints are automatically derived from the course
structure. For example, a class cannot overlap with its parent and all classes
of a subpart are to be spread in time as much as possible to allow more choice
for the students.

The same penalization schema of required, strongly preferred, preferred,
discouraged, strongly discouraged, and prohibited is used for distribution con-
straints as it is for the time and room requirements. Required and prohibited
constraints are considered hard (cannot be violated) and the others are soft
(violations are to be minimized). It is important, however, to realize that
a negative preference (either prohibited or discouraged) of a constraint can be
reformulated as a positive preference of the opposite constraint. For example,
prohibited same room has a meaning of required di↵erent rooms, where any
two classes that are in the constraint cannot be placed in the same room. Sim-
ilarly, prohibited back-to-back requires all classes to be placed on the same
day, with no two classes overlapping in time or being back-to-back (one just
after the other). Violations of a preferred or a discouraged constraint have
a penalty of 1, violations of a strongly preferred or a strongly discouraged con-
straint have a penalty of 4. Some constraints do not have a soft or an opposite
(discouraged or prohibited) version. For example, the meet together constraint
can be only required.

3 Algorithm

The solver is based on an iterative forward search (IFS) algorithm (Rudová
et al, 2011). This algorithm is similar to local search methods; however, in
contrast to classical local search techniques, it operates over feasible, though
not necessarily complete, solutions. In these solutions, some classes may be
left unassigned. All hard constraints on assigned classes must be satisfied,
however. Such solutions are easier to visualize and more meaningful to human
users than complete but infeasible solutions. Because of the iterative character
of the algorithm, the solver can also easily start, stop, or continue from any
feasible timetable, either complete or incomplete.

The search is processed iteratively (see Fig. 5 for the algorithm), starting
from an initial timetable ! that can be empty. During each step, a class is
selected (Line 4). Typically an unassigned class is chosen. An assigned class
may be selected when all classes are assigned but the timetable is not good
enough, e.g., when there are still many violations of soft constraints. Once a
class is selected, a placement from its domain is chosen for assignment contain-
ing both time placement and the desired number of rooms (Line 5). Even if
the ‘best’ placement is selected, its assignment to the selected class may cause
some hard conflicts with already assigned classes. Such conflicting classes are

270 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 9

1: function IFS(!)
2: � = !
3: while canContinue(!) do
4: v = selectVariable(!)
5: d = selectValue(!, v)
6: � = hardConflicts(!, v/d)
7: ! = !\� [{v/d}
8: if better(!,�) then � = !
9: end while

10: return �
11: end function

Fig. 5 Pseudo-code of the iterative forward search algorithm.

computed (Line 6) and removed from the timetable and become unassigned.
Finally, the selected placement is assigned to the class. The algorithm attempts
to move from one (partial) feasible timetable to another via repetitive assign-
ment of a selected placement to a selected class (Line 7). During this search,
the feasibility of all hard constraints in each iteration step is enforced by re-
moving conflicting classes (Line 7). The search is terminated when the desired
timetable is found or when there is a timeout (Line 3). The best timetable
found � is remembered during the search (Line 8) and returned at the end
(Line 10).

The algorithm makes use of a learning technique called Conflict-based
Statistics (CBS) that has been developed to prevent cycling and to improve
the quality of the final solution (Müller et al, 2004). There is a data structure
that memorizes hard conflicts which have occurred during the search together
with their frequency and the assignments that caused them. More precisely, it
is an array

CBS [A/a ! ¬ B/b] = cab.

This means that the assignment of a class A with a placement a (denoted
A/a) has caused a hard conflict cab times in the past with the assignment
B/b. Note that this does not imply that the assignments A/a and B/b cannot
be used together in the case of non-binary constraints. In the value selection
function, each hard conflict is then weighted by its frequency, i.e., by the
number of past unassignments of the current value of the conflicting variable
caused by the selected assignment.

If a complete solution is not found, it is very likely due to an inconsis-
tency in the input data. The content of the Conflict-based Statistics provides
very valuable information back to the user which can be used to identify the
problematic hard constraint or constraints that need to be relaxed.

It should be noted that while the algorithm is based on local search, the
whole solver library is written in a constraint oriented manner, working with
variables (classes), values (placement of a class in time and space), assignments
(of values to variables), and hard and soft constraints. The solver framework
does not allow for a hard constraint to be violated at any time. Moreover,
Müller (2005) shows how arc consistency can be maintained by the framework

University Course Timetabling: Solver Evolution 271

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

10 Tomáš Müller

through the search and how the presented iterative forward search algorithm
can be transformed into a complete search using dynamic backtracking, just
like the algorithm described by Jussien et al (2000). While this is very inter-
esting from the theoretical standpoint, maintaining full arc consistency does
not seem to be very practical for course timetabling instances of any decent
size as it is extremely memory and CPU consuming.

4 Data Sets

The Purdue University timetabling problem is naturally decomposed into a
centrally timetabled large lecture problem, individually timetabled depart-
mental problems, and a centrally timetabled computer laboratory problem.
The data sets in our experiments consist of 8 departmental problems each.
Each of these sub-problems may have characteristics that are di↵erent from
other problems in the set. Some of the di↵erent attributes for selected prob-
lems are listed in Table 1, all data sets for these problems are available from
http://www.unitime.org/uct_datasets.php.

Table 1 Main characteristics of the considered problems.

Problem C
la

ss
es

M
ee

ti
n
g
s

p
er

w
ee

k

H
o
u
rs

p
er

cl
a
ss

C
la

ss
es

p
er

su
b
p
a
rt

S
tu

d
en

ts

C
la

ss
es

p
er

st
u
d
en

ts

R
o
o
m

s

R
o
o
m

ca
p
a
ci

ty
(m

in
-m

a
x
)

D
is

tr
ib

u
ti

o
n

co
n
st

ra
in

ts
p
er

cl
a
ss

T
im

es
p
er

cl
a
ss

R
o
o
m

s
p
er

cl
a
ss

pu-spr07-llr 803 2.09 2.40 1.25 27881 3.15 55 40-474 0.69 10.80 16.49

pu-fal07-llr 891 2.07 2.32 1.26 30855 3.23 55 40-474 0.71 13.00 18.89

pu-spr07-ms 440 2.32 2.43 3.52 11992 1.11 25 24-51 2.74 8.00 8.82

pu-fal07-ms 525 2.35 2.40 4.45 14331 1.10 33 24-61 2.18 8.79 4.92

pu-spr07-cs 93 1.63 2.14 1.82 725 2.03 13 17-61 2.83 13.77 1.94

pu-fal07-cs 174 1.31 1.92 2.72 2002 1.57 13 22-61 2.49 17.00 2.24

pu-spr07-ecet 107 1.17 2.57 2.55 648 2.30 9 16-49 2.78 25.14 1.00

pu-fal07-ecet 113 1.21 2.54 2.46 662 2.60 9 16-49 2.54 24.62 1.00

pu-spr07-sa 69 1.67 2.30 1.50 1312 1.40 4 40-48 1.25 18.44 2.15

pu-fal07-sa 63 2.00 2.43 1.47 925 1.13 6 14-48 0.92 20.60 3.27

pu-spr07-cfs 214 1.44 2.91 2.21 1610 1.94 29 10-71 1.79 11.24 2.19

pu-fal07-cfs 201 1.38 2.90 2.14 1936 1.75 28 10-71 3.28 11.00 2.86

pu-spr07-vpa 249 1.71 3.24 1.64 1836 2.17 47 10-45 2.06 12.98 2.48

pu-fal07-vpa 290 1.59 2.92 1.72 1747 2.22 41 10-45 1.26 1.23 1.10

pu-spr07-lab 443 1.25 1.97 4.82 8421 1.14 36 20-45 2.05 16.66 16.65

pu-fal07-lab 200 1.20 1.81 3.70 4835 1.08 31 20-45 3.29 19.79 16.80

pu-spr07-c8 2418 1.81 2.45 1.95 29514 4.16 213 10-474 1.76 12.85 10.82

pu-fal07-c8 2457 1.85 2.40 1.90 32399 4.10 208 10-474 1.74 12.49 10.22

272 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 11

Problems with the su�x llr and lab stand for the large lecture room prob-
lem and the computer laboratory problem, respectively. The su�xes ms, cs,
ecet, sa, cfs, and vpa denote data from departmental problems. The abbre-
viations fal07 and spr07 indicate the Fall 2007 and Spring 2007 semester. In
addition to these problems, a combined data instance has been created con-
taining classes from all of these problems (su�x c8). This problem contains
nearly 2,500 classes with more than 32,000 students and 200 rooms.

The problems presented in Table 1 are related to each other. The large lec-
ture problem is solved first. It includes classes from all departments requiring
students to be scheduled into the pool of shared large lecture rooms. Conse-
quently, departmental problems can be solved taking into account their large
classes assigned earlier. Finally, the shared computer laboratory problem is
solved. Since this is an easy problem (many computer labs have similar equip-
ment and capacity, and there are fewer restrictions on time) it can be solved
after the departmental problems.

Table 1 gives the main characteristics of each problem, including the num-
ber of classes, the average number of meetings per week, and the average
number of hours per class. Alternative classes of a course that are of the same
instructional type are grouped into subparts (see the average classes per sub-
part). Other important characteristics given are the number of students and
the classes to which these students are enrolled (see the average classes per
students). Each problem also has a specified set of rooms where classes should
be scheduled and each class has a specified number of seats. Table 1 includes
information about minimum and maximum room capacity and the average
number of distribution constraints per class. The last two columns, named
Times per class and Rooms per class, show the average number of time and
room placements that are available to a class respectively.

5 Experiments

Results computed on the two combined problems (pu-fal07-c8 and pu-spr07-
c8) by di↵erent solver builds are presented in Figure 6. The first point shows
the solver that was used in the experiments in the previous publication (Rudová
et al, 2011). The later points show how the solver improved on these data sets
since then. Figure 6 shows a simplified objective of the solver, only combining
the four major characteristics of a solution. These are: the number of student
conflicts, satisfaction of time and room preferences, and satisfaction of soft
distribution constraints. The value of zero would mean a solution with no stu-
dent conflicts, with all the classes assigned to their best available times and
rooms and with no soft distribution constraints violated. On the horizontal
axis there are solvers from di↵erent times, starting in March 2008 and ending
with the latest version of the solver (CPSolver 1.3 as of December 2015, that
is used in UniTime 4.1).

University Course Timetabling: Solver Evolution 273

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

12 Tomáš Müller

Fig. 6 Value of the objective function, compared using the latest solver.

All the instances use the same (default) configuration6, except for the two
last data points (denoted Deluge) which use a di↵erent algorithm once a com-
plete solution is found (see Section 6.3). The very last data point is the same
algorithm, but making use of 4 CPU cores instead of just one. The highest
impact of the new algorithm can be seen in the soft distribution constraints as
it does a better job on those that link three and more classes together. Each
date was selected because there was a significant change made to the solver at
that time. This is to be able to show how much each individual change helped.
It also shows that certain changes had a negative impact (on these particular
data sets), which can be seen on the charts by the objective going up.

It should be noted that each data point is an average of 10 independent
runs with a 30 minute time limit, using a Mac Pro (Mid 2012) with two 6-Core
Intel Xeon processors running at 3.06 GHz, 64 GB memory, OS X 10.11 and
Java 8. To eliminate any changes in computing how well a particular objective
is satisfied, the latest solver is used to validate and evaluate all of the resulting
timetables.

For the Spring 2007 data set, the objective went down by 45.7% and it went
down by 55.1% for Fall 2007. These changes are 38.0% and 31.6%, respectively,
when evaluated by the solver from March 2008 (see Table 2 below). The most
interesting improvements that stand behind these results are discussed in the
following section.

Figure 7 shows a breakdown of the objective from Figure 6 into individ-
ual characteristics. Student conflicts shows the absolute number of student
conflicts after the final sectioning has been run. Time preferences and room
preferences are expressed as a percentage satisfied by the assigned class times
and rooms. That is, 0% would mean all classes assigned in the worst possible
time or room and 100% would mean all classes assigned to the best possi-
ble time or room respectively. Similarly, 100% for the distribution preferences
would mean all soft distribution constraints are satisfied. Violations of soft
distribution constraints are computed between individual pairs of classes even
when a constraint is created between three or more classes. For example, a

6 This configuration is also used as the default solver configuration in UniTime and has
not changed significantly in many years, except for new weights and parameters covering
the new constraints, criteria, and added complexity of the solver.

274 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 13

Fig. 7 Value of the four optimization critera, compared using the lastest solver.

di↵erent room distribution constraint that is created between four classes is
83.3% satisfied when there are two of the four classes in the same room, ex-
pressing that only one of the six pairs of the classes that are in the constraint
is violated (see Figure 8).

Fig. 8 Di↵erent room constraint between 4 classes: five of six class pairs are satisfied.

University Course Timetabling: Solver Evolution 275

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

14 Tomáš Müller

Table 2 shows the average results for a selected subset of the solvers used
in Figures 6 and 7. As in the previous figures, the first solver (denoted Mar
08) corresponds to the solver used in the previous paper (Rudová et al, 2011).
The solver denoted Dec 15 is the most recent version of the solver library
in the experiment. The last two columns correspond to the solver using a
di↵erent algorithm once a complete solution is found (based on Great Deluge,
see Section 6.3). All the solvers in the experiment use just one CPU core,
except for the last test which makes use of four CPU cores. Results from both
data sets are included (Spring 2007 and Fall 2007).

Table 2 Results of selected solver versions.

Characteristics S
o
lv

er
V
er

si
o
n

C
P
S
o
lv

er
1
.1

M
a
r

0
8

M
a
y

1
0

C
P
S
o
lv

er
1
.2

D
ec

1
0

A
u
g

1
1

J
u
l
1
4

C
P
S
o
lv

er
1
.3

D
ec

1
5

G
re

a
t

D
el

u
g
e

G
re

a
t

D
el

u
g
e

4
co

re
s

Objective Spring 07 4333.6 3963.2 3081.0 2835.3 2640.3 2566.9 2450.1 2353.1

using Dec 15 solver Fall 07 4640.4 4679.7 4032.3 3720.3 2832.0 2459.3 2308.5 2083.6

Improvement Spring 07 8.55 28.90 34.57 39.07 40.77 43.46 45.70

of Mar 08 [%] Fall 07 -0.85 13.10 19.83 38.97 47.00 50.25 55.10

Student Spring 07 1721.9 1379.1 1159.7 1075.7 1111.4 1080.9 1059.4 1024.4

Conflicts Fall 07 1069.8 1055.6 944.6 895.3 944.7 825.9 766.9 732.9

Time Spring 07 90.64 90.46 91.49 91.67 92.44 92.08 91.93 92.25

Preferences [%] Fall 07 87.67 87.17 88.26 87.99 89.76 89.48 88.78 89.15

Room Spring 07 83.51 83.82 86.60 86.29 86.90 87.69 88.17 88.28

Preferences [%] Fall 07 81.70 80.90 86.89 87.33 84.22 89.30 90.91 91.33

Distribution Spring 07 79.95 80.31 87.97 90.77 93.13 93.72 95.05 95.68

Preferences [%] Fall 07 79.83 79.86 82.28 84.68 93.19 94.06 94.77 96.17

Objective Spring 07 3650.0 3288.9 2637.8 2529.5 2459.6 2404.6 2345.3 2264.8

using Mar 08 solver Fall 07 3390.0 3438.1 2911.9 2824.0 2899.7 2548.8 2396.4 2318.0

Improvement Spring 07 9.89 27.73 30.70 32.61 34.12 35.74 37.95

of Mar 08 [%] Fall 07 -1.42 14.10 16.70 14.46 24.81 29.31 31.62

The Objective lines show the average value of the solution found, presented
in the same way as in Figure 6. Smaller values mean a better solution; a perfect
solution with no student conflicts, no soft distribution constraint violations and
with all classes having the best possible times and rooms assigned would have
a zero value. The Improvement lines show improvement of the solution over
the first solver in the test (denoted Mar 08). The remaining lines show the
individual characteristics of the solution, expressed as percentages computed
in the same way as in Figure 7, except for student conflicts which are shown
in absolute numbers.

Like in the previous figures, all the results in the upper part of the Table 2
(above the double horizontal line) are evaluated using the most recent solver
in the test (denoted Dec 15). The bottom part of the table shows the same
results evaluated by the first solver in the test (denoted Mar 08). Most of the
di↵erences are caused by the way soft distribution constraints are evaluated

276 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 15

(see Section 6.2) and in the way that weighted student conflicts are counted
(see Section 6.1).

While there have been a lot of changes done in the solver over the years, the
solver remains backward compatible. In the above experiments, we have taken
the data sets (pu-spr07-c8 and pu-fal07-c8) from our earlier works (Rudová
et al, 2011) and we were able to run the di↵erent builds of the solver on them
without making any changes to the data sets or the solvers. All the produced
results were validated by the first and the last solver in the test. On the other
hand, this means that we were not able to demonstrate any improvements on
the constraints that were added later and that are not present in the discussed
data sets.

6 Improvements

The solver framework7, called CPSolver thanks to its constraint-based mod-
eling, is written in Java and freely available under the GNU Lesser General
Public License. It contains a constraint layer where most of the search algo-
rithms and heuristics are implemented and three separate modules for course
timetabling, examination timetabling, and student scheduling, where the prob-
lem specific aspects of these problems are implemented.

Since the last paper (Rudová et al, 2011) featuring CPSolver 1.1, there have
been two major releases of the solver library and most of the code has been
rewritten. In CPSolver 1.2, the solver framework was rewritten to make use
of Java 5 Generics and to allow the solver objective to be split into individual
criteria. This has helped in making the solver much easier to customize and
extend. In CPSolver 1.3, a more versatile assignment model was implemented
allowing better support for multiple solver threads and parallel algorithms.
A few new algorithms have also been implemented in this version. Besides
these more general improvements, a lot of work has also been done on the
individual modules, making the UniTime system capable of handling problem
aspects from more institutions with di↵erent needs.

6.1 Student Sectioning

A lot of the improvements that have been made revolve around the student
sectioning algorithm and its ability to move students around before, during or
after the search.

Before the Jun 09 release, the final student sectioning algorithm was only
able to swap two students between a pair of alternative classes (classes of the
same subpart). Now the solver can also move a student from one section to
another, given that the other section has space available in it.

Please note that this change only impacts the Spring 2007 data set as the
Fall 2007 data set is using weighted students. This means that students are

7 http://www.cpsolver.org

University Course Timetabling: Solver Evolution 277

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

16 Tomáš Müller

weighted such that all spaces in a course are completely filled. For example,
if there is a course with 30 spaces, but only 20 student requests, each student
takes up 1.5 spaces in the course. This was done to ensure there are no alter-
native sections left with no students and was used in production for the first
time in Fall 2007.

The Aug 11 release also added the ability to swap students between dif-
ferent parent classes. Before, a student swap was initiated only between classes
with either no parent or the same parent. For example, consider two lectures
(Lec 1 and Lec 2), each with two labs (Lab 1 and Lab 2 for Lec 1 and Lab 3
and Lab 4 for Lec 2). Before the change, a student was only swapped between
Lec 1 and Lec 2 if there was an improvement between the two lectures (the
swap was never initiated between two labs of di↵erent parents). Now, an im-
provement between Lab 1 and Lab 3 (di↵erent lecture) is also considered and
propagated upwards.

6.2 Distribution Constraints

In the Dec 10 release, the computation and assignment of the Meet Together
constraint was improved. This change ensured that classes that were set up
to meet together were not partially assigned to a time and room that would
not work for all of the classes in the constraint. This did not have any impact
on the Spring 2007 data set as there are no Meet Together constraints in that
set. There are 25 such constraints in Fall 2007, however.

The most important change in the Jun 11 release is a revision of the
weighting schema for the distribution preferences. Before, there was a penalty
considered every time a soft distribution constraint was violated, regardless of
its violation. Because some constraints span many classes, a weighting model
counting the number of violations, (e.g., pairs of classes in the constraint that
are in a conflict) was adopted.

Consider, for example, a di↵erent room constraint between four classes.
The former model put the same penalty in the objective function regardless
of how many of the four classes were put in the same room. The new model
tries to capture how badly the constraint is violated instead. While this change
put a little less pressure on the whole constraint being satisfied, the overall
acceptance of the solution improved.

Forward checking over all hard distribution constraints was added in the
Feb 14 release. When a potential placement of a class is checked for con-
flicts, for each hard distribution constraint that includes the class, it is not
only checked that the placement satisfies the constraint, but also whether the
remaining variables (classes) of the constraint can be assigned in a way that
satisfies the constraint. This means that the domain of each of the remaining
variables is checked for a value (placement of the class in time and space)
that supports the proposed assignment of the constraint. If there is only one
supporting value in the domain, all the other hard constraints are checked
for conflicts with this placement as well. Many additional improvements have

278 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 17

been made to the forward checking algorithm in the following release Jul 14,
including limiting search depth.

Sequence checking for the Back-to-Back constraint was also improved in
the Jul 14 release. The Back-to-Back constraint puts all classes on the same
day or days in a sequence with no break times in between. A partially assigned
constraint is considered satisfied if and only if the partial assignment can be
extended in a way that would satisfy the constraints. For example, consider a
Back-to-Back constraint between three hour long classes. Such a constraint is
satisfied if two of these three classes are assigned next to each other while it is
possible to attach the last class before or after the pair. The constraint is also
satisfied if the two classes have an hour in between while the last class can be
placed in that hour. In this release, the sequence check of the Back-to-Back
constraint was changed to return the smallest set of variables that must be
unassigned in order to make the rest of the constraint plus the proposed new
assignment satisfied that does not contain the new assignment (the selected
value of the selected variable in the iterative forward search algorithm, see
Figure 5). Previously, it could have returned the new assignment if any other
possibility would have had to unassign more classes.

6.3 Search Algorithms

One of the improvements in CPSolver 1.1 was the ability to easily plug-in
di↵erent search algorithms that do not necessarily follow the iterative for-
ward search schema (one variable is selected and re-assigned in each step,
possibly with some additional unassignments automatically carried over by
the framework). Many search algorithms and heuristics have been included
over the years. In CPSolver 1.3, a hybrid algorithm based on the International
Timetabling Competition entry by Müller (2009) was introduced. It combines
the iterative forward search during the construction phase with the Great Del-
uge (GD) algorithm (Dueck, 1993) once a complete solution is found.

In each iteration, there is a change to the solution generated and proposed
(see Fig. 9 for the algorithm, Line 5). There is a bound B on the objective
function which starts higher than the best known value (given by the upper
bound UB, e.g., with a 5% slack, Line 2). A proposed change is only accepted
when the solution does not go over the bound B (Line 6). As the search
progresses, the bound goes down using the cooling rate parameter CR (Line 9).
When the bound gets below the objective, only changes that are not worsening
the solution are accepted (Line 6). The idea is to give the search a bit of slack
at the beginning (to be able to escape a local optimum) but force it to settle as
the slack between the solution value and the bound disappears. The bound is
increased again (reheated) when the solver is not able to improve the solution
for some time. This occurs when the bound B gets bellow the lower bound
(computed from the best known solution using the LB parameter, e.g., when
the bound gets below the objective by 5%, Line 10).

University Course Timetabling: Solver Evolution 279

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

18 Tomáš Müller

1: function gd(!)
2: B = value(!) · UB, � = !, at = 1
3: while canContinue(!) do
4: n = selectNeighborhood()
5: � = generate(�, n)
6: if � 6= NULL and (value(! ⌦ �)  value(�) or value(! ⌦ �)  B) then
7: ! = ! ⌦ �
8: if value(!) < value(�) then � = !, at = 1
9: B = B · CR

10: if B < LBat · value(�) then B = UBat · value(�), at = at + 1
11: end while
12: return �
13: end function

Fig. 9 Pseudo-code of the Great Deluge algorithm.

The parameter at is a counter starting at 1. It is increased by one every
time the lower limit is reached and the bound is increased (Line 10). It is also
reset back to 1 when a previous best solution is improved upon. This helps
the solver to widen the search when it cannot find an improvement, allowing
it to get out of a deep local minimum.

During the search, the algorithm makes use of various neighborhoods that
can be called with variable probability (Line 4). Each neighborhood proposes a
particular change to the current solution. There are some problem independent
neighborhoods, including random reassignment of a variable, random swap of
two or more variables, or a change generated by a branch-and-bound algorithm
of a limited depth. There is also a few problem specific neighborhoods, moving
a class to a di↵erent time or room, or swapping two or more classes in time
or space. All of the swaps work in a chain. For example, in a time swap an
available time is randomly selected for a class. If there is no conflict, the
proposed change is returned, if there is just one conflict, it tries to resolve the
conflict in the same manner (propose some other time for the conflicting class),
if there are two or more conflicts the following time for the class is selected
instead. The search fails if there are no more available times for the class, or
when the number of times with just one conflict that it failed to resolve reaches
a given limit (typically three).

A lot of the e↵ectiveness of this algorithm lays in how quickly the bound
B goes down. If it goes down too slowly, the algorithm may not have enough
time to settle. If it goes down too fast, there may not be enough time for the
algorithm to get far enough from the local optimum to be able to explore a
di↵erent region of the search space as it settles. The objective is just a number
and there is no indication how far it is from the optimum. While the cooling
rate CR is relative to the bound (it does not matter if the solution value is
100 or 10000, the number of iterations it takes to decrease the bound by 1%
is the same), it still has a big impact on how much time the solver should be
given.

On the other hand, when the cooling rate is carefully selected, a hybrid
algorithm that makes use of GD once a complete solution is found can out-

280 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

University Course Timetabling Solver Evolution 19

perform IFS as was demonstrated in Chapter 5. Please note that unlike with
IFS, a solution always stays complete during the great deluge phase. This
means that a change that would introduce a hard conflict is never generated
or accepted.

6.4 Multiple Solver Threads

Some work has also been done in exploring the use of multiple CPU cores by
running multiple solver threads in parallel. The CPSolver 1.3 allows for mul-
tiple solver threads working in two modes. In the first mode, all threads share
a single solution, proposing and assigning changes in parallel. In the second
mode, each solver thread has its own solution and only certain information is
shared between these threads, e.g., the value of the best solution ever found.

The last data point displayed from the experiments presented in Section 5,
Figures 6 and 7 and Table 2, makes use of 4 solver threads. Each solver thread
works with its own solution (second mode) and the value of the best solution
is shared between the solver threads during the great deluge phase.

7 Conclusions

Much work has been done on the CPSolver library and its components over
the years since we have published the last study of this problem (Rudová
et al, 2011). As the work presented on the two publicly available data sets
from Purdue University shows, considerable progress continues to be made on
improving the solutions achieved. This has been the result of work on both
solution algorithms and improving how problem constraints are implemented.

More work can certainly be done on the multi-core approach of the solver,
though the course timetabling problem does not seem to be very well suited
for parallelization as there can be a lot of interaction between almost any pair
of classes. There is also a great deal of data that the solver keeps associated
with a particular assignment in our implementation (e.g., every room holds
its own schedule for fast conflict checking) that needs to be synchronized,
access controlled, or often invalidated and recomputed. On the other hand,
the multiple solver threads working with a single assignment approach works
very well on the student scheduling problem (Müller and Murray, 2010). If
each thread is working on a di↵erent student, the only interaction is through
the class and course limits when space in the course starts running low.

The evolution of UniTime over the past several years indicates that there is
much to be confident about moving forward with automated timetabling. The
existence of such frameworks that allow real-life problems to be modeled and
solved, yet allow the flexibility to introduce new solution methods as research
in the field evolves, provides a means of proving the e�cacy of new techniques
on practical problems and comparing results for problems with a wide range
of characteristics.

University Course Timetabling: Solver Evolution 281

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

20 Tomáš Müller

References

Bonutti A, De Cesco F, Di Gaspero L, Schaerf A (2012) Benchmark-
ing curriculum-based course timetabling: formulations, data formats, in-
stances, validation, visualization, and results. Annals of Operations Research
194(1):59–70

Carter MW (2001) A comprehensive course timetabling and student scheduling
system at the University of Waterloo. In: Burke E, Erben W (eds) Practice
and Theory of Automated Timetabling III, Springer-Verlag LNCS 2079, pp
64–82

Dueck G (1993) New optimization heuristics: The great deluge algorithm and
the record-to record travel. Journal of Computational Physics 104:86–92

Jussien N, Debruyne R, Boizumault P (2000) Maintaining arc-consistency
within dynamic backtracking. In: Principles and Practice of Constraint
Programming–CP 2000, Springer, pp 249–261

McCollum B (2007) A perspective on bridging the gap between theory and
practice in university timetabling. In: Burke E, Rudová H (eds) Practice
and Theory of Automated Timetabling VI, Springer-Verlag LNCS 3867, pp
3–23

McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes AJ,
Di Gaspero L, Qu R, Burke EK (2010) Setting the research agenda in
automated timetabling: The second international timetabling competition.
INFORMS Journal on Computing 22(1):120–130

McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R (2012) A new model
for automated examination timetabling. Annals of Operations Research
194(1):291–315

Müller T (2005) Constraint-based timetabling. PhD thesis, Charles Univer-
sity in Prague, Faculty of Mathematics and Physics, URL http://muller.

unitime.org/phd-thesis.pdf

Müller T (2009) Itc2007 solver description: A hybrid approach. Annals of
Operations Research 172(1):429–446

Müller T, Murray K (2010) Comprehensive approach to student sectioning.
Annals of Operations Research 181:249–269

Müller T, Murray K (2010) Comprehensive approach to student sectioning.
Annals of Operations Research 181(1):249–269

Müller T, Rudová H (2014) Real-life curriculum-based timetabling with elec-
tive courses and course sections. Annals of Operations Research pp 1–18

Müller T, Barták R, Rudová H (2004) Conflict-based statistics. In: Gottlieb
J, Silva DL, Musliu N, Soubeiga E (eds) EU/ME Workshop on Design and
Evaluation of Advanced Hybrid Meta-Heuristics, University of Nottingham

Rudová H, Müller T, Murray K (2011) Complex university course timetabling.
Journal of Scheduling 14(2):187–207

282 Tomáš Müller

Proceedings of the 11th International Confenference on Practice and Theory of Auto-
mated Timetabling (PATAT-2016) – Udine, Italy, August 23–26, 2016

