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Abstract The paper is concerned with the problem of scheduling workplace
training, which arises in a broad range of organisations, from the hospital
placements of nursing students to apprentice training at organisations such
as electricity distributors. The problem can be viewed as a generalisation of
the open shop scheduling problem. The paper discusses the complexity of
the considered problem, and presents an optimisation procedure, which is a
sequential application of integer linear programming and simulated annealing.
The e↵ectiveness of the proposed optimisation procedure was demonstrated by
computational experiments using data with typical characteristics of a real-
world problems arising at large electricity distributors. The computational
experiments show that the proposed optimisation procedure produces superior
solutions on average compared to those from a general purpose MIP solver.

1 Introduction

The paper is concerned with the problem of scheduling workplace training,
which arises in a broad range of organisations. This practical training is fre-
quently in the form of a set of so-called “practice placements”, sometimes also
referred to as “rotations” [10]. Each practice placement is undertaken by one or
more students simultaneously and is designed to provide them with real-world
hands-on experience while under the supervision of a competent instructor.

This training model is encountered in a number of disciplines and in a num-
ber of industries. It is perhaps most notable in the area of clinical education,
for example in nursing, where students that have completed the theoretical
components of their studies must then gain practical experience in a number
of areas prior to becoming fully qualified [2], [11].

Another example, and the main motivation for this research, is the prob-
lem of assigning apprentices of di↵erent types to placements at large electricity
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distributors. Such organisations may take in hundreds of new apprentices each
year, and apprenticeships can take several years to complete. Given the mo-
tivation of the paper, in what follows the discussion is conducted in terms of
apprenticeship planning.

The set of placements is partitioned into a number of placement groups.
Each placement in a particular group exposes the apprentices to the same core
set of skills. Each apprentice has a set of required groups determined by their
apprenticeship type, e.g. line worker, cable jointer, electro-mechanic, etc., and
each apprentice must therefore complete one placement from each of their
required groups in order to complete their practical training.

Apprentices require supervision; too few apprentices in a placement is im-
practical as it removes qualified sta↵ from their regular duties with little ben-
efit to the organisation, and too many apprentices in a placement can be too
burdensome for the team. Therefore, at any given time, each placement is
permitted to have either no apprentices, or between a minimum and maxi-
mum number of apprentices. Each apprentice must spend a minimum amount
of time in each assigned placement, typically a number of weeks or months,
in order to gain the necessary skills and experience. There is no maximum
permissible amount of time for placements.

Although any placement in a particular group provides the same type of
skills, suitability for each apprentice varies from placement to placement. For
example, the travel distance for the apprentice is a serious consideration during
the assignment process. Suitability and personal preferences for placements are
modelled by means of a penalty for each apprentice-placement pair per unit
time. The goal is to minimise the total penalty over a given planning horizon.

Much of the literature on educational timetabling focuses on high school
and university course and examination timetabling [3], [4]. To the authors’
knowledge, the considered problem of workplace training timetabling has not
received the attention in the literature that it deserves. Among few publica-
tions relevant to the workplace training timetabling problem considered in this
paper, [6] considers the resident scheduling problem, a special case of the multi-
period sta↵ assignment problem [1], in which medical residents are assigned to
rotations at hospitals. The authors present a decision support system in which
feasible integer solutions were successfully obtained by means of a rounding
heuristic applied to the linear relaxation of the binary integer programming
model.

The problem studied in this paper can be viewed as a generalisation of the
classical open shop scheduling problem (OSSP) [12]. In the OSSP, there is a
set of machines and a set of jobs. Each job must be processed on each of the
machines in any order, and the processing time of each job on each machine is
specified. Each machine can process as most one job at a time, and each job
can be processed on at most one machine at a time.

In contrast to the OSSP, in the problem considered in this paper, each
placement (which can be interpreted as a machine) can accommodate several
apprentices (which can be viewed as jobs) simultaneously. The duration of
the placement (which can be interpreted as the processing time of a job on
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a machine) in our problem is variable, and must be at least the minimum
required time for this placement. The requirement of OSSP that each job must
be processed on each machine is replaced by the partition of all placements
(machines) into groups; the association of each apprentice (job) to a subset of
these groups; and the requirement that each apprentice must be assigned to
exactly one placement in each associated group. Furthermore, the objective
function in our problem di↵ers from the objective functions commonly used
in publications on OSSP.

It is well-known that the classical OSSP is a di�cult one. In particular, it
is NP-hard for the criterion of makespan [8]. Since in the problem, considered
in our paper, the planning horizon is given, which imposes a restriction on the
makespan, even the problem of answering whether or not there exists a feasible
solution for the workplace training timetabling problem is NP-complete. The
complexity of the feasibility problem is caused also by the restrictions on the
number of apprentices allowed by each placement. In the formulation below,
the planning horizon is partitioned into intervals of equal length. It will be
shown in Section 3 that even if the planning horizon is comprised of just a
single interval, the feasibility problem remains NP-complete.

The remainder of the paper is organised as follows. Section 2 presents
the integer programming (IP) formulation for the considered problem. Sec-
tion 3 discusses the computational complexity. Section 4 presents the entire
optimisation procedure. Section 5 presents the results of the computational
experimentation. Section 6 gives concluding remarks.

2 Problem Formulation

Let N = {1, . . . , N} be the set of apprentices, and M = {1, . . . , M} be the set
of placements. M is partitioned into placement groups {M1, . . . , Mk} = M̂.
Define Gi ✓ M̂ to be the set of required placement groups for i 2 N . The
planning horizon is discretised into a number of time periods of equal length
indexed from 1, . . . , T , and define T = {1, . . . , T}. Define Xi,j,t to be 1 if
i 2 N starts j 2 M at or before the beginning of period t 2 T , or 0 otherwise.
Define Yi,j,t to be 1 if i 2 N completes j 2 M before the beginning of period
t 2 {1, . . . , T + 1}, or 0 otherwise. In order to facilitate the exposition of the
model, we extend the planning horizon by an addition period T + 1. Without
the additional period T + 1 used for the Y variables, no placement can take
place at time T . Zj,t is 1 if j 2 M contains apprentices at t 2 T , or 0 otherwise.
The constant ci,j is the penalty per unit time of assigning i 2 N to j 2 M.
The constant lj is the minimum duration for j 2 M. The constants aj and bj

are the minimum and maximum number of apprentices that j 2 M can hold,
respectively. The following Integer Program (IP) describes the problem:

(P) Minimise:
N

X

i=1

M
X

j=1

T
X

t=1

ci,j(Xi,j,t � Yi,j,t) (1)
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Subject To: Xi,j,t  Xi,j,t+1 i = 1, . . . , N ; j = 1, . . . , M ; t = 1, . . . , T � 1

(2)

Yi,j,t  Yi,j,t+1 i = 1, . . . , N ; j = 1, . . . , M ; t = 1, . . . , T (3)

Xi,j,T = Yi,j,(T+1) i = 1, . . . , N ; j = 1, . . . , M (4)

Xi,j,t � Yi,j,t i = 1, . . . , N ; j = 1, . . . , M ; t = 1, . . . , T (5)
X

j2g

Xi,j,T = 1 i = 1, . . . , M ; g 2 Gi (6)

M
X

j=1

(Xi,j,t � Yi,j,t)  1 i = 1, . . . , N ; t = 1, . . . , T (7)

T
X

t=1

(Xi,j,t � Yi,j,t) � ljXi,j,T i = 1, . . . , N ; j = 1, . . . , M (8)

N
X

i=1

(Xi,j,t � Yi,j,t) � ajZj,t j = 1, . . . , M ; t = 1, . . . , T (9)

N
X

i=1

(Xi,j,t � Yi,j,t)  bjZj,t j = 1, . . . , M ; t = 1, . . . , T (10)

N
X

i=1

M
X

j=1

Xi,j,1 � 1 (11)

Xi,j,t 2 {0, 1} i = 1, . . . , N ; j = 1, . . . , M ; t = 1, . . . , T (12)

Yi,j,t 2 {0, 1} i = 1, . . . , N ; j = 1, . . . , M ; t = 1, . . . , T + 1 (13)

Zj,t 2 {0, 1} j = 1, . . . , M ; t = 1, . . . , T (14)

where the expression (Xi,j,t�Yi,j,t) results in 1 if apprentice i 2 N is to attend
placement j 2 M at t 2 T , or 0 otherwise. Constraints (1) describes the ob-
jective, which is to minimise the total assignment penalty. Constraints (2) and
(3) establish the temporal relationships between the Xi,j,⇤ and Yi,j,⇤ variables,
respectively. Constraints (4) ensure that placements must finish if they start,
and (5) ensure that placements must start before they finish. Constraints (6)
ensure that each apprentice’s requirements are satisfied. Constraints (7) ensure
that no apprentice is required to attend more than one placement at any given
time. Constraints (8) ensure that apprentices spend the minimum amount of
time in their assigned placements, and (9) and (10) ensure that each place-
ment j 2 M has either 0, or between aj and bj apprentices, respectively. The
constraint (11) reduce the feasible region by forcing at least some assignments
to happen at the beginning of the planning horizon.
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3 Complexity of Finding a Feasible Solution

In this section we show that even the problem of detecting the existence of
a feasible solution when T = 1 and there exists only one placement group is
NP-complete. It is easy to see that a feasible solution for the problem with
T = 1 and a single placement group exists if and only if there is a solution for
the following system of two inequalities:

a1x1 + . . . + aMxM  N (15)

b1x1 + . . . + bMxM � N (16)

where xi 2 {0, 1} for all 1  i  M . Let c be a nonnegative integer. Denote by
PL(c) the decision problem, requiring to answer whether or not there exists a
solution for (15) - (16), where a1, . . . , aM and b1, . . . , bM satisfy the inequalities

bi � ai � c for all 1  i  M. (17)

Observe that c is not part of the input, i.e. the input is only positive integers
N , a1, . . . , aM and b1, . . . , bM , where all pairs ai, bi satisfy (17). In other
words, all instances of PL(c) satisfy (17) for the same c.

In order to prove that, for any nonnegative integer c, PL(c) is NP-complete,
consider the following decision problem which will be referred to as PARTI-
TION:

Input: positive integers u1, . . . , un such that
n

X

i=1

ui is even.

Question: does there exists a solution to the equation

u1x1 + . . . + unxn =
1

2

n
X

i=1

ui, (18)

where xi 2 {0, 1} for all 1  i  n?
It is well known that PARTITION is NP-complete [7]

Lemma 1 For any positive integer c, PARTITION / PL(c) and therefore
PL(c) is NP-complete.

Proof Let u1, . . . , un be an arbitrary instance of the PARTITION and let c
be an arbitrary nonnegative integer. If c = 0, then PARTITION / PL(c) is
achieved by setting M = n, N = 1

2

Pn
i=1 ui, and

ai = bi = ui for all 1  i  n.

If c > 0, then the corresponding instance of PL(c) is constructed as follows:
M = n,

ai = ncui for all 1  i  n

bi = ai + c for all 1  i  n. (19)
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and

N =
nc

2

n
X

i=1

ui.

Supposed that (18) holds for some x0
1, . . . , x0

n. Then, by multiplying (18)
by nc and taking into account that M = n,

a1x
0
1 + . . . + aMx0

M = N

which by virtue of (19) gives also (16).
Supposed that (18) does not have a solution. Consider arbitrary x0

1, . . . ,
x0

n such that
a1x

0
1 + . . . + aMx0

M  N.

By dividing by nc and taking into account that M = n,

u1x
0
1 + . . . + unx0

n  1

2

n
X

i=1

ui.

Hence,
x0

1 + . . . + x0
n < n. (20)

Furthermore,

u1x
0
1 + . . . + unx0

n <
1

2

n
X

i=1

ui,

because of the assumption that (18) does not have a solution. Since the left-
hand side and the right-hand side are integer,

1

2

n
X

i=1

ui � u1x
0
1 + . . . + unx0

n + 1

which, by multiplying by nc and taking into account (20), M = n and N =
nc
2

Pn
i=1 ui, gives

N � a1x
0
1 + . . . + aMx0

M + Mc > a1x0
1 + . . . + aMx0

M + c(x0
1 + . . . + x0

M )

= b1x
0
1 + . . . + bMx0

M .

Hence, x0
1, . . . , x0

M is not a solution to (16)-(15).
Consequently, (18) has a solution if and only if the system (16)-(15) has a

solution. ut

4 Solution Approach

The problem is very challenging, and the required computational e↵ort for
straight-forward solution of (P) grows very rapidly as the problem size in-
creases. Even for very small test cases, a commercial IP solver struggles to
solve it on a modern stand-alone computer. Since real world problems are
much larger, typically involving hundreds of apprentices, we propose a se-
quential construction stage to produce an initial feasible solution, followed by
an improvement stage based on a local search metaheuristic. The details of
these approaches are given in the remainder of this section.
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4.1 Sequential Construction

Solving (P) directly for hundreds of apprentices is not currently possible in
practically acceptable time. It is, however, possible to incrementally construct
a complete solution by scheduling a small set of apprentices N̂ ✓ N at a
time by solving an IP model. A similar IP-based constructive approach was
considered in Czibula et al. [5] for a class timetabling problem.

In order to incrementally construct a schedule, we first introduce an aug-
mented version of (P):

(AP) Minimise:
N

X

i=1

M
X

j=1

T
X

t=1

ci,j(Xi,j,t � Yi,j,t) + µ
M
X

j=1

T
X

t=1

(Uj,t + Vj,t) (21)

Subject To: (2) � (8)

N
X

i=1

(Xi,j,t � Yi,j,t) + Uj,t � ajZj,t j = 1, . . . , M ; t = 1, . . . , T (22)

N
X

i=1

(Xi,j,t � Yi,j,t) � Vj,t  bjZj,t j = 1, . . . , M ; t = 1, . . . , T (23)

(11) � (14)

Uj,t 2 Z+ j = 1, . . . , M ; t = 1, . . . , T (24)

Vj,t 2 Z+ j = 1, . . . , M ; t = 1, . . . , T (25)

where the augmenting variables Uj,t and Vj,t represent the shortfall and excess
apprentices in placement j 2 M at time t 2 T , respectively. The objective
function (21) penalises these values, weighted by a very large coe�cient µ.

The (AP) model permits solutions that violate the constraints (9) and
(10) from (P), albeit with considerable penalty. Allowing these violations is
necessary when constructing a solution a small number of apprentices at a
time. For example, if minj2M aj > |N̂ |, then no feasible solution can exist.

Even when minj2M bj < |N̂ |, a feasible solution may not exist without the
augmenting variables, even if a feasible solution exists for (P).

Apprentices are considered one or more at a time, in a particular order. At
each iteration, the considered apprentices N̂ are scheduled by solving (AP),
subject to all apprentices that have been scheduled in previous iterations. A
complete solution is produced once all apprentices have been scheduled. The
order in which the apprentices are scheduled is likely to have a significant
a↵ect on the final constructed solution. We propose three basic ordering rules,
and their relative performance is presented in Section 5:

1. Indexed order: Schedule apprentices in the order in which they are defined.
2. Random order: Schedule apprentices at random.
3. Average placement weighted penalty: Schedule apprentices in decreasing

order of
P

g2G
j

(
P

j2g(ljci,j)/|g|).
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While the sequential construction approach can produce a solution with
substantially less computational e↵ort than by direct solving (P), the solution
quality is not guaranteed to be good. The produced solution is, however, a
good starting point for some other solution approaches, such as local search
metaheuristics.

4.2 Simulated Annealing

The solution obtained from the sequential constructive approach may be im-
proved by a local search metaheuristic such as Simulated Annealing (SA) [9].
A straight forward implementation of SA is proposed.

A solution is represented by the set of all apprentices, each of whom is
characterised by: (i) a list of placements they will attend, (ii) a list of dura-
tions corresponding to their attended placements, and (iii) a list of starting
o↵sets—the starting o↵set of a given placement for an apprentice is the unal-
located time between the start of the placement and end the of the previous
placement.

The neighbourhood function produces at each iteration a candidate neigh-
bour solution �0, based on the current solution �, by applying one of the
following operations to a random apprentice:

– swapping the order of two placements at random,
– substituting one random placement for another from the same placement

group,
– incrementing or decrementing the amount of time spent at a random place-

ment, or
– incrementing or decrementing the starting o↵set for a random placement.

Selection of the apprentice and neighbourhood operation is at random with
uniform probability. The first and and second types of operations listed above
will always produce a feasible solution to the augmented (AP) model. The
third and fourth types of operations should be applied in such a way that
the minimum placement duration is not violated, and that starting o↵sets are
always non-negative.

5 Results

In order to test the proposed solution approaches, a set of 36 test cases were
randomly generated with similar characteristics to real-world cases found at
Ausgrid, Australia’s largest electricity distributor. All test cases and corre-
sponding solution files can be downloaded from https://goo.gl/c8yt8H. The
testing system was an Intel i7-4790K quad core CPU with 16GB RAM, run-
ning Microsoft Windows 10 64-bit. Code was written in C# 4.0, and we used
IBM ILOG CPLEX 12.5.0.0 64-bit using the ILOG Concert API to solve the
mathematical programming models. In each case, CPLEX was given a time
limit of two hours.
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Case |N | G |M| ⇢ Case |N | G |M| ⇢
01 100 4 16 2 19 200 4 16 2
02 100 4 16 4 20 200 4 16 4
03 100 4 32 2 21 200 4 32 2
04 100 4 32 4 22 200 4 32 4
05 100 4 64 2 23 200 4 64 2
06 100 4 64 4 24 200 4 64 4
07 100 8 16 2 25 200 8 16 2
08 100 8 16 4 26 200 8 16 4
09 100 8 32 2 27 200 8 32 2
10 100 8 32 4 28 200 8 32 4
11 100 8 64 2 29 200 8 64 2
12 100 8 64 4 30 200 8 64 4
13 100 16 16 2 31 200 16 16 2
14 100 16 16 4 32 200 16 16 4
15 100 16 32 2 33 200 16 32 2
16 100 16 32 4 34 200 16 32 4
17 100 16 64 2 35 200 16 64 2
18 100 16 64 4 36 200 16 64 4

Table 1 Outline of the 36 test cases

We set T = 1.5⇥maxi2N

n

P

g2G
i

maxj2g{lj}
o

in order to approximate the

required length of the timeline. We constructed timetables with the sequential
heuristic using all three list permutations mentioned in Section 4.1. In each
case, we scheduled apprentices one at a time. We then chose the timetable
with the best objective value and used that as a starting point for the SA
metaheuristic mentioned in Section 4.2.

Neighbour solutions in SA were chosen randomly with uniform probability.
We set the initial temperature to 106, the termination temperature to 10�3,
and used a geometric cooling rate of 0.99, which was applied at each iteration.
These values were obtained using trial-and-error on some small, medium, and
large test cases. It is a matter of future research to determine what parameter
values perform best.

Table 1 outlines the 36 test cases that were tested. The tables outlines the
test case identifier (Case), the number of apprentices (|N |), the total number
of placement groups (G), the number of placements (|M|), and the number of
groups per student (⇢).

Table 2 shows the time taken, in minutes, for each procedure tested. The
columns are as follows: The test case (Case); the time taken for sequential
construction using the indexed order (Idx), random order (Rnd), and average
placement weighted penalty order (Pty); the time taken for the SA algorithm
to converge (SA), and the time taken for the IP to terminate (IP).

The sequential construction procedures took about 3.75 minutes on average
for the test cases with 100 students, and about 8.71 minutes on average for the
test cases with 200 students. Simulated annealing took about 10.15 minutes
on average to converge for the test cases with 100 students, 19.12 minutes to
converge for the test cases with 200 students.
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Case Idx Rnd Pty SA IP Case Idx Rnd Pty SA IP
01 0.3 0.3 0.3 1.5 1.2 19 1.9 1.9 1.9 2.8 4.2
02 0.7 0.8 0.8 4.6 19.3 20 9.7 8.9 9.4 8.2 120
03 0.6 0.6 0.6 1.4 10.8 21 4.3 4.3 4.5 3.3 21.1
04 3.2 3.9 3.7 26.6 120.5 22 16.6 15.5 14.9 32 120.1
05 1.6 1.7 1.6 3.8 120 23 6.2 6.1 6.1 4.3 120
06 7.6 8.1 8.2 8.6 120.1 24 27.4 29.1 30.7 37.17 120
07 0.3 0.3 0.3 4.1 120.2 25 1.6 1.5 1.4 7 2.5
08 3 1.2 1.3 15.8 120 26 13.2 6.6 6.1 3.3 23
09 3.5 2.7 2.6 2.8 6.9 27 3.4 3.2 3.6 3.3 3.1
10 7.6 8.6 7.6 3.9 120 28 11.7 12.2 10.5 58 120
11 5.5 5.5 5.5 2.5 120 29 5.4 5.5 5.6 5.1 71.4
12 14.1 14.6 14.5 83.7 120.1 30 21.8 21.5 22.8 26.9 120
13 1 0.8 0.8 1.6 0.1 31 1.2 1.3 1.1 2.9 0.2
14 2.5 2.5 2.7 7.4 2.4 32 5.7 5.2 5.7 17 7.9
15 1.7 2.2 1.6 4.1 0.9 33 2.2 2.2 2.1 8.9 7.5
16 4.6 4.8 4.9 2.8 4.5 34 7.4 7.5 7.5 5.6 120
17 3.2 3.1 3.1 1.8 30.1 35 2.1 2.1 2.4 30.5 120.6
18 6.7 6.6 6.5 5.7 120 36 18.4 19.5 19.8 88 120

Table 2 The time taken, in minutes, for each tested procedure.

Case Idx Rnd Pty SA IP Case Idx Rnd Pty SA IP
01 29 29 31 0 0 19 20 19 19 0 0
02 4 20 18 0 0 20 61 10 10 0 1076
03 0 0 0 0 0 21 0 0 1 0 0
04 12 23 28 0 465 22 30 13 18 0 845
05 0 1 0 0 2 23 0 0 0 0 0
06 0 0 0 0 83 24 4 4 4 1 -
07 122 118 114 18 5 25 118 120 120 18 0
08 78 40 72 5 - 26 2 4 2 0 0
09 9 7 4 0 0 27 12 27 43 0 0
10 1 0 0 0 46 28 219 214 232 1 474
11 1 2 0 0 0 29 0 0 0 0 0
12 8 3 2 2 47 30 1 1 0 0 -
13 11 3 9 8 0 31 111 100 92 0 0
14 13 20 10 3 0 32 214 194 210 101 0
15 4 14 1 3 0 33 58 55 46 1 0
16 0 0 4 0 0 34 0 0 2 0 0
17 0 0 0 0 0 35 14 18 9 5 0
18 0 0 0 0 0 36 1 29 8 2 365

Table 3
P

M

j=1

P
T

t=1

(U
j,t

+ V
j,t

) for solutions produced by each tested procedure.

The IP approach terminated at the two hour time limit for half of the
test cases, although these were spread evenly between those cases with 100
and those with 200 students. The average time overall for the IP approach,
including for those that terminated at the time limit, was 66 minutes, and there
was no significant di↵erence in average time between the test cases with 100
and with 200 students. For the test cases where CPLEX reported an optimal
solution before reaching the time limit, the average solve time was 12 minutes,
and again there was no significant di↵erence in the cases where there were 100
or 200 students.
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Table 3 shows the total number of violations lower and upper bound viola-
tions of placement size, given by

PM
j=1

PT
t=1(Uj,t +Vj,t), for the solutions pro-

duced by each procedure. The columns are as follows: The test case (Case); the
number of bound violations produced by sequential construction for indexed
order (Idx), random order (Rnd), and average placement weighted penalty
order (Pty); the number of bound violations for the solution produced by the
SA algorithm, and the number of bound violations for the solution produced
by the IP approach (IP). CPLEX did not report any integer solutions for test
cases 08, 24, and 30 prior to terminating at the time limit.

Each of the sequential construction procedures produced violation-free so-
lutions for 10 of the 36 test cases. For 6 of those 10, all three list permutations
were able to produce violation-free solutions, whereas for the other 4, some list
permutations produced violation-free solutions while other permutations did
not. The average number of bound violations were 32, 30, and 31, respectively,
for the three tested permutations.

Both SA and IP produced 23 violation-free solutions for the 36 test cases.
For 16 of those 23 cases, SA and IP both produced violation-free solutions.
For test case 20, SA produced a solution with no bound violations, while the
IP approach produced 1076 violations after terminating at the two hour time
limit. For test case 22, SA again produced a solution with no bound violations,
while the IP approach produced a solution with 845 bound violations.

The quality of solutions, with respect to the number of bound violations,
produced by SA appear to be of roughly similar quality to the solutions pro-
duced by the IP approach. The SA approach, however, did not have a time
limit, and took on average about 14.6 minutes to converge, whereas CPLEX
was given a two hour limit for the IP approach. It is reasonable to assume that
if the SA procedure was tuned to run for a longer duration, it would produce
better solutions.

Table 4 shows the solution quality, given by
PN

i=1

PM
j=1

PT
t=1 ci,j(Xi,j,t �

Yi,j,t), for the solutions free of bound violations produced by each procedure.
The columns are as follows: The test case (Case); the solution quality produced
by sequential construction for indexed order (Idx), random order (Rnd), and
average placement weighted Penalty order (Pty); the solution quality for the
solution produced by the SA algorithm, and solution quality for the solution
produced by the IP approach (IP). We do not report the solution quality where
the number of bound violations is nonzero.

For the 16 cases where both the SA and the IP approach were able to
produce solutions free of bound violations, the solutions produced by SA were,
on average, 25.35% worse than the solutions produced by the IP approach.
CPLEX reported optimal solutions to 12 of these 16 cases. The total solve time
for these 16 cases, on average, was 3.35 minutes for SA, and 42.23 minutes for
the IP approach.

Overall, it is di�cult to say with any great certainty which approach was
the clear winner. The three permutations for the sequential construction ap-
proach performed roughly as well as each other, and were clearly inferior to
the SA and IP approach, however they were only intended to produce quick,
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Case Idx Rnd Pty SA IP
01 - - - 23466.74 12218.00
02 - - - 31456.12 19539.15
03 11380.88 11380.88 11380.88 11380.88 8950.06
04 - - - 58500.79 -
05 30538.88 - 29993.70 26038.54 -
06 20413.69 20413.69 20413.69 20413.69 -
07 - - - -
08 - - - -
09 - - - 34522.71 14452.74
10 - 29381.33 29379.06 29379.06 -
11 - - 20402.50 20402.50 9927.31
12 - - - - -
13 - - - - 32044.13
14 - - - - 44299.37
15 - - - - 19000.53
16 48001.84 48003.71 - 48001.45 47292.00
17 25266.19 25267.24 25267.24 23561.66 15840.75
18 23908.51 23910.29 23911.83 23908.51 22841.66
19 - - - 33116.71 22657.04
20 - - - 77746.94 -
21 28490.52 28484.20 - 27858.08 15261.23
22 - - - 81712.63 -
23 12898.13 12899.39 12898.53 12898.13 11411.07
24 - - - - -
25 - - - - 37379.71
26 - - - 89275.82 83455.80
27 - - - 36460.34 27029.42
28 - - - - -
29 41506.05 41644.64 40808.95 35225.88 16731.11
30 - - 45126.83 45126.83 -
31 - - - 70340.18 69970.71
32 - - - - 119561.60
33 - - - - 38290.64
34 102606.22 102603.19 - 102603.19 100615.49
35 - - - - 25512.38
36 - - - - -

Table 4
P

N

i=1

P
M

j=1

P
T

t=1

c
i,j

(X
i,j,t

� Y
i,j,t

) for solutions with no bound violations pro-
duced by each tested procedure.

initial solutions. The SA and IP approach appear to be roughly similar to one
another in solution quality. The SA approach appears to be slightly superior
to the IP approach with respect to bound violations, however the IP approach
appears superior to the SA approach when looking only at solutions free of
bound violations. One factor that cannot be ignored, however, is that the SA
approach produced solutions in significantly less time than the IP approach,
and also avoids the need to use an IP solver.

6 Conclusion

The paper considers the problem of assigning apprentices to practice place-
ments. It is shown that even the problem requiring the answer to the question:
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“Does there exist a feasible solution?”, is NP-complete. The paper presents an
optimisation procedure comprised of a sequential application of integer linear
programming, and a simulated annealing metaheuristic.

The proposed heuristics were tested by means of computational experi-
ments on a number of randomly generated test cases, with similar characteris-
tics to relevant data at Ausgrid, Australia’s largest electricity distributor. The
straight forward approach of solving the IP model subject to a two-hour time
limit produced good solutions in most cases, however this approach is not suit-
able when the size of the problem grows large. The approach of sequentially
constructing a solution one apprentice at a time by solving an augmented ver-
sion of the IP produced solutions quickly, but with many violations on the
lower and upper bounds on the permissible number of students in each place-
ment. The approach of improving a sequentially constructed schedule using
simulated annealing was shown to produce solutions of similar quality to the
approach of solving the IP, but required substantially less time.

Future work can further investigate di↵erent apprentice ordering rules,
as well as mapping the performance versus quality trade-o↵ of considering
a greater or fewer number of apprentices at each iteration of the sequential
constructive stage. For the SA implementation, applying the operations in the
neighbourhood function in a non-uniform manner, in order to better direct
the optimisation away from poor solutions, as well as other neighbourhood
definitions such as Kempe chains, should be investigated.
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