
A Open source timetable production system
for courses and examse

Ruben Gonzalez-Rubio · Balkrishna Sharma

Gukhool

Received: date / Accepted: date

Abstract Diamant is a software system used to manually or automatically produce

course and exam timetables at the Université de Sherbrooke, where it has been in use

since 2001. We have decided to publish Diamant in Summer 2012 as an open source

distribution. To be useful to other institutions, the source code must be modified as

little as possible to facilitate the integration of new algorithms and new input/output

formats. We present here how the program is organized and where modifications will

take place.

Keywords University Timetabling · Design Patterns · Diamant

1 Extended Abstract

Producing course and exam timetables with Diamant at the Université de Sherbrooke

has been done now, for more than 10 years, in different faculties. The course timetable

can use post-enrolment mode or curriculum-based mode. We have decided to publish

Diamant as an open source project to provide access to other universities that could be

interested in using it. We think that, in some cases Diamant can be used as it is. The

report [Gon07] is a detailed account of how timetables are produced at the Université de

Sherbrooke, and some of its external characteristics were also presented in [Gon10].The

timetables can be produced manually or automatically.

Diamant was designed by our research group εXit and the work was done by various

developers. It was developed in an iterative way, and functionalities were added ac-

cording to the users demands. The system is divided into two parts: one that takes the

Ruben Gonzalez-Rubio
Directeur du εXit Lab
Département de génie électrique et de génie informatique
Université de Sherbrooke
Tel.: +819 821 80 00 x 6 29 31
Fax: + 819 821 79 37
E-mail: Ruben.Gonzalez-Rubio@Usherbrooke.ca

Balkrishna Sharma Gukhool
Dpartement de génie électrique et de génie informatique
Universit de Sherbrooke

460 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



data from a database at the University, and formats the data in a way that Diamant

can read. The second part is using Diamant to produce the timetables. Here, we present

only Diamant, which is written in Java. In some cases, the software could be adapted

to particular needs by taking the source code and modifying it. However, the problem

with that approach is that there will be n different versions of the code. A second ap-

proach would be to apply, as much as possible, the open-closed principle, which means

that the code can be open to modifications by adding new classes but closed to other

modifications. This could be achieved by using the design patterns. The advantage is

that the code can be customized without having different versions, the objective being

to add only new classes. The classes needed for an implementation will be instantiated

at run time.

At the core of Diamant is the MVC pattern (Model, View, Controller); the Model

is a class containing a set of events, a set of instructors, a set of rooms and a set

of students. Furthermore, the Model contains also a timetable which consists of slots

(Periods), where Events will be assigned. The Model keeps the state of the timetable.

The Views give the user a visual representation of parts of the sets or the timetable. The

Controllers are there to take user interactions to change the Model, and when the Model

is updated, the View is also updated and the user can see the change on the screen.

The raw data used in the sets are only integers and strings, which helps to display

them in the Views. Manual operation is carried out by opening a dialog, from a menu,

the dialog is in fact a View, changing some data in the Model, and sending a feedback

to the users in a View. Automatic operation is triggered by selecting an optimisation

algorithm from a menu. The algorithm makes data assignments avoiding conflicts and

optimising when possible, and when no more optimisation is possible, the algorithm

quits and the Model is updated. The Model data is read from a file and written to a file,

that preserves the state of the Model, which can be the final state when the timetable

is finished.

Before publishing Diamant as it is, we are conscious of some of its disadvantages :

– First, that the code was implemented to satisfy the Université de Sherbrooke needs.

– The code is not homogenous, as it was written by various programmers.

– Finally, the system is in French only.

The last disadvantage is easy to change. To offer the application in other languages,

we think that we must provide resources to facilitate internationalization; we need to

have external messages in English and in French, as well as examples of how to work in

another language. The messages of each language will be stored in a language resource

bundle. So, normally no modification to the code is needed.

The first two disadvantages may need a large refactoring of the program. This

refactoring will be done in an iterative way.

Our two goals before doing the refactoring are:

– We must offer an program that can be used by other developers, in principle they

will add only new classes.

– The refactoring must reduce the class coupling, which is high in the current version.

These two goals are compatible. Diamant will be published as it is and new versions

containing the refactoring work will be published.

In the next section, we present some details of the system to illustrate how it is

organized.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 461



Details of the work

Basically, a timetable is prepared from data concerning the timetable: the timetable

itself, the events, the students, the instructors and the rooms. At the end, each event

is assigned to a Period in the timetable, for each event a room, an instructor and a

set of students are assigned. When the work is done manually, the assignments are

done by indicating each assignment via the GUI. For example, in a dialog box, it can

be indicated that an event will take place Monday at 13h00, and another Wednesday

at 14h00, and so on. In all dialog boxes, there are list of values where the user can

select one. By design there are no text boxes where any value can be typed. When the

work is done by the optimisation algorithm, it will allocate automatically all possible

assignments.

When trying to produce a timetable, conflicts can arise; so the system must indicate

this. In the case of automatically producing the timetable, the program tries to reduce

to a minimum the number of conflicts.

To explain the program, we distinguish the following parts:

– The input and output of data.

– The GUI and the manual data manipulation

– The optimisation algorithms

1.1 Using the design patterns

A design pattern is a general reusable solution to a commonly occurring problem within

a given context in software [GHJV95]. We are going to refer to some of these design

patterns.

We already mentioned that Diamant is organized using the MVC pattern (Model,

View, Controller). The Model is a big class it contains the data representing the state of

the timetable, those data are divided in classes SetOfX1 and a Timetable. The sets of

instructors, of rooms and of students are used as information that help decisions when

a timetable is produced. For example the characteristics of a room (size among others)

can help to assign the room to an event. The sets of events and the time table are used

to keep the state of the Model when a decision is taken.

There are various Views and various Controllers. The Views give the user a visual

representation of parts of the sets or the timetable. The Controllers are there to take

user interactions (a external change in the View) and send them to the Model, and when

the Model is updated the Views are also updated, and the user can see the change on

the screen.

For example in a View, that can be a dialog, it is possible to assign a instructor to

an event. That can be done by selecting the instructor name for this event in the View,

when the button ”ok” is pressed the action takes place, that means that the Controller

sends the name of the instructor to be assigned to the corresponding event in the Model

where the change takes place.

The Model gets its data from a file and at the beginning sends its current state of

the model to a file when some work is done. This work can represent the final state or

an intermediate state.

1 Where the SetOfX could be a set of events, a set of instructors, a set of rooms and a set
of students.

462 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



The DTTStructure represents the timetable with its Model organized hierarchically

Figure 1. It can contains c cycles, each cycle contains d days (normally 5 days), that can

be seen as a week, in a day there can be s sequences, and each sequence can contain p

periods. There is no overlap in periods contained in a sequence, and there is no overlap

in sequences for a day. With this organization, it is possible to offer a very flexible way

to define a timetable. The periods can be seen as slots where events are assigned.

Fig. 1 The timetable hierarchy

Where the sets are lists of Objects that are defined for the type of its constituents.

1.2 The input and output of data.

The raw data (input and output) used in the sets are only integers and strings. This

helps to display them in the Views and a developer can read the files if needed.

We can have the following scenarios with the data:

– The data used in an other university are the same as that of Diamant, then there

is no work to do.

– The new data can be mapped onto the Diamant data; maybe some attributes have

another name. That can be done by reading the new data and put the data in a

file that can be read by Diamant.

– The new data are a subset of Diamant’s data, that means that some of the Diamant

data must be initialized to safe values; these values are safe when there are no

exceptions and the optimisation algorithm does not use these values.

– The new data contains new attributes, in which case these new attributes must be

part of the data.

The first three scenarios are easy to deal with. The last one, however will need

the usage of the Strategy pattern, Figure 2. In that pattern a Diamant file (one for

each type of data) can be read by one class, namely DiamantFormat and a different

format can be read by another class NewDataFormat. The readFile is a variable of type

ReadFileBehavior and each class in the Model has one. That means that the readFile

method can be fixed at runtime. The interface ReadFileBehaviour contains one method

readFile. The classes DiamantFormat and NewDataFormat implement this method, so the

variable readFile is used to call readFile without knowing which class is instantiated.

For each new format only new classes will be added.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 463



Fig. 2 Strategy pattern for reading files

1.3 The GUI and the manual data manipulation

The Model contains two types of data: immutable and mutable. The mutable data are

used to make assignments (see next subsection). All the other data in the Model are

immutable, that means that they do not change during program runtime. For example,

it is not necessary to change an instructor name by Diamant to produce a timetable. If

any change is needed on immutable data, it must be done outside Diamant. For example,

if an instructor name has an error, it must be changed somewhere else, possibly in the

database, then the files can be reloaded into Diamant. To add attributes to the Model,

there are new PropertyLists containing couples with each couple having the name of

the attribute and the value. So for example, in a University they add an attribute sex

for students. This can be done by adding a list of attributes to the students in that

list the new attribute will be a couple with the String sex and the value M or F. This

information can be used to set groups with an appropriated mix of students. The new

attributes must be also immutable. All the dialog boxes will implement interfaces and

this allows the addition of a new dialog box which can display the new attribute. Again,

modifications to offer new functionalities will be done by adding new classes.

1.4 The optimisation algorithms

The timetable is built by assigning events to Periods and assigning data to Events. In

fact, to make an assignment, Periods and Events contain instance variables, which are

lists. For example to assign an Event to a Period, the Event is added to the list; when

the Event is removed from the list, then the assignment is no longer valid. Manual

operation allows the assignment process by using dialogs, where choices are made by

selecting a value from a list and this changes the model. Automatic operation is started

by a menu where an optimisation algorithm is defined; when started it works on the

464 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



Model. It makes assignments and removes assignments to minimize conflicts. When the

algorithm finishes, the View is updated, showing the current status of the timetable.

Also different optimisation algorithms can be implemented by a strategy as illus-

trated by Figure 3.

Fig. 3 The strategy pattern for optimisation algorithms

Each strategy can be instantiated when a menu item is activated; if the menus are

implemented by the command pattern, then when a new command is needed a new

class is written and the menu can be added to the configuration.

In some cases the algorithm could need the data in a different data structure, for

example instead of using the timetable of Diamant a simple matrix can represent the

days and the periods. That means that the data in the Model must be mapped onto

new structures, so the algorithm will be divided in three steps : mapping the Diamant

Model onto the new structure, the optimisation algorithm and mapping the result onto

the Diamant Model.

Conclusion

We think that the system Diamant could be used and extended for other universities.

Customisation can be done in a simple way without having to rewrite large parts of

the system. We will be glad to help other institutions to adapt Diamant to their special

needs. Finally the diamant URL is:

http://tictacserver.gel.usherbrooke.ca/exitopenprojets/

References

GHJV95. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Gon10. R. Gonzalez Rubio. Diamant: A timetable production system for courses and exams.
In PATAT’10, Belfast, Northern Ireland, August 2010.

Gon07. R. Gonzalez-Rubio. La production et la consultation d’horaires dans une université.
Technical report, Université de Sherbrooke, 2007.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 465

http://tictacserver.gel.usherbrooke.ca/exitopenprojets/projects?locale=en



