
A Combined Local Search and Integer Programming
Approach to the Traveling Tournament Problem

Marc Goerigk · Stephan Westphal

Received: date / Accepted: date

Abstract The traveling tournament problem is a well-known combinatorial
optimization problem with application to sport leagues scheduling, that sparked
intensive algorithmic research over the last decade. With the Challenge Trav-
eling Tournament Instances as an established benchmark, the most successful
approaches to the problem use meta-heuristics like tabu search or simulated
annealing, partially heavily parallelized. Integer programming based methods
on the other hand are hardly able to tackle larger benchmark instances.

In this work we present a hybrid approach that draws on the power of
commercial integer programming solvers as well as the speed of local search
heuristics. Our proposed method feeds the solution of one algorithm phase to
the other one, until no further improvements can be made. The applicability
of this method is demonstrated experimentally on the galaxy instance set, re-
sulting in currently best known solutions for most of the considered instances.

Keywords traveling tournament problem · tabu search · integer program-
ming · sports scheduling

1 Introduction

Before the start of each season, every sports league is faced with the problem
of scheduling the games among their teams such that a variety of require-

Partially supported by grant SCHO 1140/3-2 within the DFG programme Algorithm Engi-
neering.

M. Goerigk and S. Westphal
Institut für Numerische und Angewandte Mathematik
Universität Göttingen Lotzestr. 16-18
D-37083 Göttingen
Germany
Tel.: +49-551-3920035
Fax: ++49-551-393944
E-mail: s.westphal@math.uni-goettingen.de

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 45



ments is taken into account. The planners have to synchronize every feasible
schedule to the availability restrictions of the sports sites, the most interesting
games have to be matched to available TV slots and specific league-requested
matchups have to be taken care of. Additionally, there is a wish to minimize
the total distances driven by the teams over the season, which becomes even
more important for bigger countries.

In this paper we will focus on the problem of minimizing the total dis-
tances driven by the teams in the way addressed by the well-known Traveling
Tournament Problem (TTP). This sports scheduling problem which has been
introduced by Easton et al. [ENT01] is inspired by Major League Baseball and
is considered to be practically hard to solve.

1.1 Sports Scheduling and the Traveling Tournament Problem

Sports Scheduling in general deals with the design of tournaments. A single
round robin tournament on n teams, where n is an even number, consists
of (n − 1) rounds (also called slots). In each round n/2 games, which are
themselves ordered pairs of teams, take place. Every team has to participate
in one game per round and must meet every other team exactly once. It is
standard to assume n to be even since in sports leagues with n being odd,
usually a dummy team is introduced, and whoever plays it has a day off,
which is called a bye. For scheduling single round robin tournaments a rather
general and useful scheme called the canonical schedule has been known in
sports scheduling literature for at least 30 years [dW81]. It is based on the
polygon/circle method, which was first suggested by Kirkman in 1847 [Kir47].
One can think of Kirkman’s method as a long table at which n players sit such
that n/2 players on one side face the other players seated on the other side of
the table. Every player plays a match against the person seated directly across
the table. The next round of the schedule is obtained when everyone moves
one chair to the right with the crucial exception that there exists one person
at the end of the table who never moves and always maintains the seat from
his or her first round. Note that this method only specifies who plays whom
when and not where. The canonical schedule introduced by de Werra defines
for each of the encounters specified by the method described above, at whose
site they take place such that the number of successive home or away games
is minimized [dW81].

A double round robin tournament on n teams consists of 2(n−1) rounds and
every team must meet every other team twice: once at its own home venue
(home game) and once at the other team’s venue (away game). A popular
policy in practice is to obtain a double round robin tournament from a single
round robin tournament by mirroring, that is repeating the matches of round
k for k = 1, ..., n − 1 in round k + n − 1 with changed home field advantage.
Consecutive home games are called a home stand and consecutive away games
form a road trip. The length of a home stand or road trip is the number of
opponents played (and not the distance traveled).

46 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



In this work we consider the traveling tournament problem (TTP) as de-
scribed in [ENT01]:

Definition 1 (The Traveling Tournament Problem TTP(k) [ENT01])
Let a set of n teams and a distance matrix (dij) be given. Find a feasible double
round robin tournament of the teams satisfying the following condition:

1. The length of any home stand is at most k.
2. The length of any road trip is at most k.
3. Game j at i is not followed immediately by game i at j.
4. The sum of the distances traveled by the teams is minimized.

As it is the case in most real-world applications, we henceforth assume
k = 3 throughout the paper. The third requirement is known as no-repeater
constraint.

An example instance from [Tri11] is given in Table 1: For every team,
the distance to every other team is known. Table 2 shows the corresponding
optimal solution with objective 416: On day 1, team 1 plays away against team
4, then away against team 2, at home against team 3 on day 3 and so on. Note
that, as demanded, there is no home stand or road trip with length larger than
3.

Team 1 Team 2 Team 3 Team 4

Team 1 0 10 15 34

Team 2 10 0 22 32

Team 3 15 22 0 47

Team 4 34 32 47 0

Table 1 Instance galaxy4.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Team 1 -4 -2 3 4 2 -3

Team 2 3 1 4 -3 -1 -4

Team 3 -2 -4 -1 2 4 1

Team 4 1 3 -2 -1 -3 2

Table 2 Optimal solution to galaxy4.

1.2 Previous Work

So far, most efforts concerning the TTP have led to a variety of algorithms
aiming to minimize the total distance driven by the teams. Kendall et al.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 47



[KKRU10] provide a good overview of the work done on the TTP and sports
scheduling in general. Just to mention a very few examples, hybrid algorithms
with constraint programming (CP) exist by Benoist et al. [BLR01] who addi-
tionally use Lagrange relaxation. Easton et al. [ENT01] merge CP with inte-
ger programming while Henz [Hen04] combines CP with large neighborhood
search. Anagnostopoulos et al. [AMHV06], Hentenryck and Vergados [vHV06],
Gaspero and Schaerf [GS07] and Lim et al. [LRZ06] propose neighborhood
search-based algorithms, whereas Ribeiro and Urrutia [Rib11] focus on the
special class of constant distance TTP where break maximization is equiva-
lent to travel distance minimization.

On the theoretical side, Thielen and Westphal settled the complexity by
showing that the TTP is strongly NP -hard [TW11]. Miyashiro et al. [MMI08]
provide a 2 + (9/4)/(n − 1) approximation for the intensively studied spe-
cial case k = 3 by means of the Modified Circle Method, a variation of the
canonical schedule. In [YIMM09] Yamaguchi et al. obtain an algorithm with
approximation ratio (2k−1)/k+O(k/n) for k ≤ 5 and (5k−7)/(2k)+O(k/n)
for k > 5. Again they make use of the canonical schedule, now refined such
that the teams are ordered around the ’table’ such that most of the distances
driven are part of a near optimal traveling salesman tour which clearly has
positive effects on the length of many distances traveled. As k ≤ n − 1, they
showed this way that a constant factor approximation for any choice of k and
n exists. However, they did not show how this factor looks exactly. This was
done later by Westphal and Noparlik [WN12], whose algorithm was also able
to compute new bests for all galaxy instances with at least 22 teams.

1.3 Contribution

Due to its computational difficulty, exact solution approaches already fail from
a size of 12 teams on [Tri11]. In this paper we propose a combination of local
search heuristics with integer programming methods to overcome local optima.
In an experimental evaluation, we were able to calculate new best known
solutions on most instances of the considered benchmark set.

1.4 Overview

In Section 2, we describe the algorithmic details of our heuristic approach to
the traveling tournament problem, which we evaluate extensively in Section 3.
Section 4 concludes the paper and gives an outlook on further research.

2 A Combined Local Search and Integer Programming Heuristic

The heuristic we consider consists of two separate phases: The local search
phase, which is described in Section 2.1, and the integer programming phase

48 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



as described in Section 2.2. After explaining these phases, we give an overview
of the whole algorithm in Section 2.3

The motivation for combining these methods is the following: Local search
heuristics are an effective means to improve solutions even for large instances,
but local minima pose complications. When the search is not able to leave such
a minimum anymore, it helps to use a view that does not consider the same
neighborhood as before. Therefore, breaking up the current solution structure
by applying integer programming methods is able to provide the local search
with a fresh start from an even improved solution. Within the VLNS classifi-
cation framework [AEOP02], we are using restrictions on the original problem,
but they are not likely solvable in polynomial time.

2.1 Phase 1: Tabu Search

The first part of the proposed algorithm consists of a local search phase. This
might be steepest descent, simulated annealing, or any other suitable (meta-
)heuristic. In this work we specifically considered a tabu search heuristic that
uses the standard neighborhood as described in [AMHV06] and [DGS05]. The
five neighborhood search moves are presented in Table 3.

Neighborhood Input Effect

Swap Homes t1, t2 ∈ T Swap home/away pattern for
matches between t1 and t2. No
further adjustments necessary.

Swap Teams t1, t2 ∈ T Swap all matches of teams
t1 and t2. Adjust opponents
accordingly.

Swap Days d1, d2 ∈ D Swap two days. No further ad-
justments necessary.

Swap Teams Partial t1, t2 ∈ T, d ∈ D Swap opponents of teams t1
and t2 on day d. This will cause
more swaps to resolve resulting
conflicts.

Swap Days Partial t ∈ T, d1, d2 ∈ D Swap the opponents of team
t on days d1 and d2. This
will cause more swaps between
these days to reestablish feasi-
bility.

Table 3 Local neighborhood for tabu search algorithm.

Furthermore, we the following algorithm specifications are used:

1. Neighborhood: In every iteration, the whole neighborhood is considered.
That is, all moves of the types given in Table 3 are evaluated, and the best
non-tabu move is chosen.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 49



2. Tabu List: The list contains whole solutions, not just partial properties.
The list length is dynamic in the sense that every considered solution be-
comes tabu, until a new global optimum is found, which triggers the list
to be cleaned.

3. Stopping criterion: If a prescribed number max idle iterations of iter-
ations have passed without finding a new global optimum, the search is
resetted: The current global optimum is restored and the tabu list cleaned.
After a given number max restarts of resets, the search is aborted.

4. Objective: In order to expand the search space to infeasible solutions, we
add a penalty to the original problem objective for every violated home
stand, road trip and no-repeater constraint (Constraints 1.-3. in the prob-
lem definition), but do not forbid schedules that violate these constraints.

5. Dynamic Penalty: The infeasibility penalty is dynamically adapted through-
out the search process, such that sequences of feasible solutions decrease
the penalty, and sequences of infeasible solutions increase it.

6. Dominance: Feasible solutions in the neighborhood that are better with
respect to the original objective than the current best solution are always
preferred to infeasible solutions, even if their modified objective might be
better.

Though there are of course many more possibilities concerning the fine-
tuning of the tabu search, this approach turned out to be most promising in
preliminary experiments.

2.2 Phase 2: Integer Programming

In order to leave a local optimum of the local search procedure, we apply
integer programming methods that do not depend on the neighborhood as
presented in Table 3. For our experiments, we use a variation of the simple for-
mulation presented in [Rib11] with O(n3) variables. The variables xijk(i, j =
1, . . . , n, k = 1, . . . , 2n−2) represent the decision if team i plays away against
team j on day k, while ytij(i, j, t = 1, . . . , n) denotes that team t travels from
team i to team j anywhere in the schedule.

min
n∑

i,j=1

dijxij1 +
n∑

t,i,j=1

dijytij +
n∑

i,j=1

djixij,2n−2 (1)

xiik = 0 (i = 1, . . . , n, k = 1, . . . , 2n− 2) (2)
n∑

j=1

(xijk + xjik) = 1 (i = 1, . . . , n, k = 1, . . . , 2n− 2) (3)

2n−2∑
k=1

xijk = 1 (i, j = 1, . . . , n, i 6= j) (4)

50 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



3∑
l=0

n∑
j=1

xij,k+l ≤ 3 (i = 1, . . . , n, k = 1, . . . , 2n− 2− 3) (5)

3∑
l=0

n∑
i=1

xij,k+l ≤ 3 (j = 1, . . . , n, k = 1, . . . , 2n− 2− 3) (6)

xijk + xjik + xij,k+1 + xji,k+1 ≤ 1 (i, j = 1, . . . , n, k = 1, . . . , 2n− 3)
(7)

ziik =
n∑

j=1

xijk, (i = 1, . . . , n k = 1, . . . , 2n− 2) (8)

zijk = xijk (i, j = 1, . . . , n, i 6= j, k = 1, . . . , 2n− 2) (9)

ytij ≥ ztik + ztj,k+1 − 1 (t, i, j = 1, . . . , n, k = 1, . . . , 2n− 3) (10)

xijk, zijk, ytij ∈ {0, 1} (t, i, j = 1, . . . , n, k = 1, . . . , 2n− 2) (11)

As there is little hope in solving this program directly, we divide it into
two smaller problems based on the provided input solution: Optimizing the
home-away-pattern (HA-opt) and optimizing the rest of the schedule with
fixed home-away-pattern (non-HA-opt). Both subproblems are described in
the following.

Optimize Home-Away-Pattern. In order to optimize the home-away-pattern
for a given solution, we have to fix the decisions when two teams face another.
Let x̃ be the given solution to the x variables. We now add the Constraint (12)
to the original problem:

xijk + xjik = x̃ijk + x̃jik (i, j = 1, . . . , n, k = 1, . . . , 2n− 2) (12)

By doing so, we fix if team i plays against team j on day k, but leave the venue
open. In terms of the solution format as described in Table 2, we restrict the
optimization process to the signs +,− of the schedule.

The resulting problem is also known as the Timetable Constrained Distance
Minimization Problem, and has been introduced in [RT06].

Fix Home-Away-Pattern. The resulting second partial problems consists of
finding optimal team matchups, when travel and home days are fixed for every
team. As before, let x̃ be the given solution. We add Constraints (13) and (14)
to the problem formulation:

n∑
i=1

xijk =
n∑

i=1

x̃ijk, (j = 1, . . . , n, k = 1, . . . , 2n− 2) (13)

n∑
j=1

xijk =
n∑

j=1

x̃ijk, (i = 1, . . . , n, k = 1, . . . , 2n− 2) (14)

These constraints force a team to play away if this is the case for the input
solution, and to play at home otherwise. For the solution format of Table 2,
this means that we fix the signs, but can change the actual opponents.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 51



2.3 Phase Combination

Having described the two phases separately, we now focus on how to combine
them. In Figure 1, a diagram of the proposed algorithm structure is given.

Fig. 1 Algorithm overview.

The solution process needs to be provided with a starting solution, whose
creation is described in the experimental setup of Section 3. First, a local
search is performed until its stopping criterion is satisfied. If it was possible
to improve the solution, we pass it to the second phase, and end the solution
process otherwise. In the second phase, we repeatedly optimize the home-away-
pattern and its counterpart problem, until both partial problems are not able
to improve the current solution anymore. If the phase was able to improve the
given solution at all, we repeat phase 1, and end the algorithm otherwise.

Additionally, we propose another feature that turned out to be valuable in
our experiments. The local search phase considers many solutions that may
be inferior to the current best solution, but are structurally so different that a
home-away optimization might create a new current best solution. Therefore,
even if the local search was not able to improve its input, we feed the last found
local optimum to the second phase. Only if this does not create a solution that
is better than the current best, we consider the local search phase as being
not successful.

3 Experimental Results

In this section we present experimental experience on the performance of the
proposed combination of local search and integer programming techniques.

Environment All experiments were conducted on a PC with 99 GB main mem-
ory and an Intel Xeon X5650 processor, running with 6 cores at 2.66 GHz and

52 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



12MB cache. All code is written in C++ and has been compiled with g++
4.4.3 and optimization flag -O3. For the integer programming phase, we used
the Gurobi optimizer [Inc11] in version 4.5.

Setup The conducted experiment was scheduled the following way:

1. The considered benchmark set are the galaxy instances from [Tri11]. As
instances with team size up to 10 have already been solved to optimality,
we only used those which are larger.

2. We construct canonical schedules [dW81] as input solutions using the ro-
tation scheme as described in [WN12]. Of these, only the best three are
used per instance.

3. The described algorithm is run for the resulting 45 solutions. The param-
eter set we used is presented in Table 4. Note that the factor we multiply
the infeasibility penalty of the local search with is chosen in a way that
penalty increase faster than they decrease.

4. For the best solution found so far for every problem instance, we restart
the algorithm with the second parameter set of Table 4.

Teams 12-14 16-22 24-36 38-40
max idle iterations, first 10,000 1,000 500 250

max restarts, first 2
max idle iterations, second 100,000 4,000 1500 500

max restarts, second 3
starting inf. penalty input objective /1, 000

inf. penalty factor 0.97 and 1/0.93
timelimit HA-opt 1800s

timelimit Non-HA-opt 3600s

Table 4 Parameter choice.

Results We summarize the achieved results in Table 5. In the first column, the
instance size in terms of number of teams is given, followed by the objective
value of the best currently known solution as of January 2012 in column two.
We then present the initial objective values of the three best initial solutions,
and the improved objective value after the first run of the algorithm, together
with the corresponding number of algorithm phases. As described in the setup
paragraph, these solutions are further improved by restarting the algorithm.

In the last column, we present a lower bound for each instance, and mark
bounds that were previously unknown with an asterisk (*). These bounds are
found by calculating an optimal tour for each team separately, and summing
up the respective tour lengths. Finding these tours was done using a flow-based
integer programming formulation with a timelimit of 3600 seconds, which was
hit in only a few cases.

As can be seen, it was possible to further improve the currently best solu-
tion in 9 out of 15 cases by at least 0.1%, and up to 3.2%. There seems to be

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 53



Teams Best Known Initial 1st Number 2nd LB
Solutions Improvement of phases Improvement

12 7197
8223 7642 2

7555
(5.0%)

69338364 7720 2
8408 7639 2

14 10918
13017 11566 2

11552
(5.8%)

1022113047 12008 2
13126 11636 2

16 14900
16257 15769 2

15704
(5.4%)

13619*16315 15897 2
16372 16094 2

18 20907
21635 21426 2

21346
(2.1%)

19050*21658 21437 2
21728 21346 2

20 26289
28237 26921 4

26749
(1.7%)

23738*28332 27121 3
28368 26749 4

22 35516
35832 35624 4

35584
(0.2%)

31461*35882 35812 2
36021 35584 2

24 45728
45962 45671 3

45657
(-0.2%)

41287*46029 45657 2
46130 45705 2

26 60962
61617 58991 4

58991
(-3.2%)

53802*61634 59889 4
61703 59894 4

28 77577
77683 77381 2

77320
(-0.3%)

69992*77732 77320 3
77736 77361 3

30 96765
97270 96756 2

96710
(-0.1%)

88831*97321 96712 2
97384 96710 4

32 120683
122567 120053 3

119996
(-0.6%)

108187*122655 120130 4
122661 119996 4

34 147742
148194 147644 3

147612
(-0.1%)

133976*148223 147612 4
148363 147763 3

36 173640
174475 173532 3

173532
(-0.1%)

158363*174595 173716 3
174734 173670 2

38 209463
212706 205876 3

204980
(-2.1%)

188935*212809 204980 8
213072 205870 7

40 249002
249976 247017 9

247017
(-0.8%)

226794*249996 248295 3
250081 248223 6

Table 5 Results overview.

a connection between the instance size and the number of algorithm phases,
which can be explained by the increasingly larger neighborhood, which makes
it more difficult for the local search to find an actually close, better solution.
Therefore, combining local search with integer programming methods is espe-
cially beneficial for large instances.

54 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



Of course, many more experimental setups are possible to pursue: As an
example, we not only examined the best three initial solutions of galaxy22,
but all 22 of them. As a result a solution of objective 35467 was found, which
is 0.1% below the current best solution.

4 Conclusion and Outlook

We proposed an algorithm to the traveling tournament problem that is able
to overcome local optima arising in local search heuristics by solving integer
optimization subproblems. Its applicability is demonstrated by an extensive
experiment on a well-known benchmark set, resulting in new best known solu-
tions for all instances of size greater or equal to 24. Experiments with further
instance sets are currently being conducted.

It seems promising to use further parameter setups and local search heuris-
tics to find better solutions than presented in this work. Also, we plan to use
the described algorithmic ideas to include robustness issues in the schedule
design, i.e., to find tournament schedules that are insensitive to disruptions
like bad weather conditions that may increase travel time between two venues,
or even render a stadium unusable for certain days.

References

[AMHV06] Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Ver-
gados. A simulated annealing approach to the traveling tournament problem. J.
Scheduling, 9(2):177–193, 2006.

[AEOP02] Ravindra K. Ahuja, zlem Ergun, James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighborhood search techniques. Discrete Applied
Mathematics, 123(13):75 – 102, 2002.

[BLR01] T. Benoist, L. Laburthe, and B. Rottembourg. Lagrange relaxation and con-
straint programming collaborative schemes for traveling tournament problems.
In Proceedings of the 3rd International Workshop on the Integration of AI and
OR Techniques (CP-AI-OR), pages 15–26, 2001.

[DGS05] Luca Di Gaspero and Andrea Schaerf. A tabu search approach to the traveling
tournament problem. In Proceedings of the 6th Metaheuristics International
Conference (MIC-2005), Vienna, Austria, August 2005. Available as electronic
proceedings.

[dW81] D. de Werra. Scheduling in Sports. In P. Hansen, editor, Studies on graphs and
integer programming, volume 11, pages 381–395. Annals of Discrete Mathemat-
ics, North Holland, 1981.

[ENT01] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem
description and benchmarks. Principles and Practice of Constraint Program-
mingCP 2001, pages 580–584, 2001.

[GS07] Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search
approach to the traveling tournament problem. Journal of Heuristics, 13:189–
207, April 2007.

[Hen04] M. Henz. Playing with constraint programming and large neighborhood search
for traveling tournaments. In Proceedings of the 5th International Conference
on the Practice and Theory of Automated Timetabling (PATAT), pages 23–32,
2004.

[Inc11] Gurobi Optimization Inc. Gurobi optimizer, 2011. Version 4.5.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 55



[Kir47] Thomas P. Kirkman. On a problem in combinations. The Cambridge and Dublin
Mathematical Journal, 2:191–204, 1847.

[KKRU10] Graham Kendall, Sigrid Knust, Celso C. Ribeiro, and Sebastián Urrutia. Invited
review: Scheduling in sports: An annotated bibliography. Comput. Oper. Res.,
37:1–19, January 2010.

[LRZ06] A. Lim, B. Rodrigues, and X. Zhang. A simulated annealing and hill- climbing
algorithm for the traveling tournament problem. European Journal of Operations
Research, 174:1459 – 1478, 2006.

[MMI08] R. Miyashiro, T. Matsui, and S. Imahori. An approximation algorithm for the
traveling tournament problem. In Proceedings of the 7th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT), 2008.

[Rib11] Celso C. Ribeiro. Sports scheduling: Problems and applications. International
Transactions in Operational Research, 2011.

[RT06] Rasmus Rasmussen and Michael Trick. The timetable constrained distance min-
imization problem. In J. Beck and Barbara Smith, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, volume 3990 of Lecture Notes in Computer Science, pages 167–181.
Springer Berlin / Heidelberg, 2006.

[Tri11] Michael Trick. Challenge traveling tournament problems benchmark, 2011.
http://mat.gsia.cmu.edu/TOURN/.

[TW11] C. Thielen and S. Westphal. Complexity of the traveling tournament problem.
Theoretical Computer Science, 412(4-5):345–351, 2011.

[vHV06] P. van Hentenryck and Y. Vergados. Traveling tournament scheduling: A sys-
tematic evaluation of simulated annealing. LNCS, 3990:228–243, 2006.

[WN12] S. Westphal and K. Noparlik. A 5.875-approximation for the traveling tourna-
ment problem. Annals of Operations Research, 2012.

[YIMM09] D. Yamaguchi, S. Imahori, R. Miyashiro, and T. Matsui. An improved approx-
imation algorithm for the traveling tournament problem. In Proceedings of the
20th International Symposium on Algorithms and Computation (ISAAC), vol-
ume 5878 of LNCS, pages 679–688, 2009.

56 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway




