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Abstract: Hyper-heuristics aim at providing generalized solutions to combinatorial optimization 

problems.  Educational timetabling encompasses university examination timetabling, university 

course timetabling and school timetabling.  This paper provides an overview of the use of hyper-

heuristics to solve educational timetabling problems. The paper then proposes future research 

directions focusing on using hyper-heuristics to provide a generalized solution over the domain of 

educational timetabling instead of for a specific timetabling problem. 
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1. Introduction 

Whereas research into solving combinatorial optimization problems have 

generally focused on producing the best results for one or more problems, hyper-

heuristics aim at generalizing well over a set of problems (Burke et al. 2003). 

Based on the classification presented by Burke et al. (2010a) hyper-heuristics can 

be selective or generative.  Selection hyper-heuristics choose low-level heuristics 

to construct or improve a potential solution timetable while generation hyper-

heuristics induce new low-level heuristics for a particular domain. Hyper-

heuristics can also be categorized as being constructive or perturbative.  

Constructive hyper-heuristics either select or generate construction low-level 

heuristics to create a solution. Perturbative hyper-heuristics either choose or 

generate low-level heuristics to improve an initial candidate solution.  A 

perturbation hyper-heuristic consists of two components one for heuristic 

selection and another for move acceptance. Thus, the four main categories of 

hyper-heuristics can be described as selection constructive, selection perturbative, 

generation constructive and generation perturbative.  

There are three main areas of educational timetabling, namely, university 

examination timetabling, university course timetabling and school timetabling. All 
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three types of timetabling involve the allocation of events to timetable periods 

while at the same time satisfying a set of hard constraints and minimizing a set of 

soft constraints (Qu et al. 2009c; McCollum et al. 2008; Pillay 2010a). These 

events are exams for exam timetabling, meetings between groups of students and 

lecturers in a specific venue for university course timetabling and meetings 

between classes and teachers for school timetabling. Hard constraints of the 

problem must be met in order to obtain an operable timetable. A timetable 

meeting the hard constraints is described as feasible. Examples of hard constraints 

include students not being scheduled to sit for two or more examinations during 

the same period; classes, teachers and venues not being scheduled more than once 

in the same period.  Soft constraints define characteristics that we would like a 

timetable to possess, e.g. certain events to be scheduled at a particular time of the 

day, examinations with large numbers to be scheduled early in the timetable to 

facilitate marking. The number of soft constraints violated is minimized as these 

constraints are often contradictory and thus a soft constraint cost of zero is not 

attainable.  There are two types of university course timetabling problems namely, 

curriculum-based and post enrolment.  In the curriculum-based version student 

enrolment is not known at the time of timetabling construction while in the post 

enrolment version this is known (McCollum et al.2008).  

The paper firstly provides an overview of hyper-heuristics to solve educational 

timetabling problems.  Section 2 focuses on university examination timetabling, 

section 3 on university course timetabling and section 4 on school timetabling. 

Section 5 presents an analysis of the use of hyper-heuristics to solve educational 

timetabling problems and section 6 proposes future research directions. 

2. Hyper-heuristics for University Examination 

Timetabling 

A majority of the research into the use of hyper-heuristics for educational 

timetabling has been for the domain of examination timetabling.  The hyper-

heuristics employed to solve this problem have been either selection constructive 

or selection perturbative hyper-heuristics.  
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2.1 Selection Constructive Hyper-Heuristics 

Burke et al. (2002) present a case-based hyper-heuristic to solve examination 

timetabling problems. The hyper-heuristic maintains a case base of previously 

solved problems and the low-level construction heuristic that was most 

appropriate to use at each stage of the timetable construction process.  A timetable 

for a new problem is constructed by using the same low-level construction 

heuristic as that used in a previous case most similar to the current point of 

construction.  A similarity measure was used for this purpose. Each problem in 

the case base is defined in terms of the problem characteristics and partial 

solutions, including the heuristic used at each stage of the timetable construction 

process.  The low-level construction heuristics used include largest degree, largest 

degree using tournament selection, colour degree and saturation degree.  The 

system was evaluated on generated timetabling problems. Tabu search was 

employed to determine the best list of problem characteristics for case 

comparisons. In later work (Burke et al. 2006) an additional low-level heuristic, 

namely, hill-climber which improves an initial solution created randomly using 

hill-climbing, was added to the heuristic set.   

Yang and Petrovic (2004) present a hybrid approach combining a case-based 

hyper-heuristic and the great deluge algorithm to solve the examination 

timetabling problem. The great deluge algorithm improves a candidate solution 

timetable created using a low-level construction heuristic such as largest degree, 

largest enrollment, largest colour degree, largest weighted degree and saturation 

degree.  Yang et al. implement a case-based hyper-heuristic to choose which 

construction heuristic to use to create the initial solution. The case base stores 

previously solved examination timetabling problems and the construction 

heuristic used. When solving a new examination timetabling problem the hyper-

heuristic uses a fuzzy similarity measure to match the problem to problems in the 

case base and so identify which construction heuristic to apply to create an initial 

solution which is then improved by the great deluge algorithm.  The case base was 

created using generated examination timetabling problems. The approach 

produced feasible good quality timetables for problems from the Carter 

benchmark set. 

Burke et al. (2005) compare the performance of a tabu search and a hybrid 

hyper-heuristic in solving the examination timetabling problem.  The former 
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employs a tabu search to explore a space of combinations of the two low-level 

construction heuristics, namely, largest degree and saturation degree.  The hybrid 

approach combines case-based reasoning and tabu search. Case-based reasoning is 

used to determine the percentage of largest degree and saturation degree in each 

combination.  The characteristics of the problem being solved are compared to 

previous cases. The same hybridization of largest degree and saturation degree is 

used as that in the case that is the closest match. Tabu search was used to 

determine the most appropriate list of characteristics to use for comparison to 

previous cases. Both the hyper-heuristics were used to solve six generated 

examination timetabling problems and four problems from the Carter benchmark 

set.  The tabu search hyper-heuristic outperformed the hybrid hyper-heuristic.   

Burke et al. (2007) investigate the performance of the tabu search hyper-

heuristic further by extending the set of low-level heuristics used to include 

largest colour degree, largest enrollment, largest weighted degree and random 

ordering. The revised tabu search hyper-heuristic was used to solve eleven of the 

Carter benchmark problems. In Qu et al. (2009b) the heuristic combinations 

performing well are studied to identify any patterns with the respect to the 

positions of the low-level heuristics in the combinations. This revealed that the 

best performing combination contained the saturation degree and largest weighted 

degree heuristics however the best percentage of each low-heuristic and the best 

position of these occurrences in the heuristic combination is problem dependent.  

Based on this an adaptive mechanism was built into the hyper-heuristic to 

hybridize the amount of saturation degree and largest weighted degree in a 

heuristic combination. The hyper-heuristic was used to solve eleven problems 

from the Carter benchmark set. 

Qu and Burke (2005) investigate the use of a selection constructive hyper-

heuristic to solve the examination timetabling problem.  The hyper-heuristic 

employs variable neighbourhood search to explore a space of heuristic 

combinations consisting of two or more graph colouring heuristics, namely, color 

degree, largest degree, largest enrollment, largest weighted degree, saturation 

degree or random ordering. Each heuristic is applied in order to allocate an exam 

to a minimum penalty period.  The hyper-heuristic was used to solve the Carter 

benchmark set of problems. 
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Pillay (2008, 2010b, 2012) implement an evolutionary algorithm hyper-

heuristic to search a space of heuristic combinations of low-level construction 

heuristics chosen from a set containing the largest degree, largest weighted 

degree, largest enrollment, saturation degree and highest cost heuristics.  The 

hyper-heuristic was able to produce good quality timetables for both the Carter set 

of benchmark problems and the benchmark set for the second international 

timetabling competition (McCollum et al. 2008).  This research also examined the 

effect of the representation used for heuristic combinations on the performance of 

the evolutionary algorithm hyper-heuristic.  Three representations, namely, fixed 

length, variable length and n-times and a combination of all three representations 

were tested. The latter option produced the best results. 

The hyper-heuristic implemented by Burke et al. (2009b) employed the greedy 

random adaptive search procedure (GRASP) to hybridize the use of two low-level 

construction heuristics, namely, saturation degree and largest weighted degree, in 

choosing the next examination to schedule during the timetable construction 

process. An improvement phase is also conducted to improve the candidate 

solution constructed.  Steepest descent is used for this purpose. The hyper-

heuristic was used to solve problems in the Carter benchmark set. 

Qu and Burke (2009a) compare the performance of various hyper-heuristics, 

each employing a different search to explore the heuristic space, to solve the 

examination timetabling problem.  These hyper-heuristics search a space of 

heuristics combinations comprised of low-level construction heuristics.  The 

combinations are constructed by selecting heuristics from a set containing the 

largest degree, largest weighted degree, largest colour degree, largest enrollment, 

saturation degree and random ordering heuristics. The hyper-heuristics were 

tested on eleven problems from the Carter benchmark set.  The iterated local 

search hyper-heuristic was found to produce the best results. The performance of 

the hyper-heuristic was improved by searching the solution space, using iterative 

local search, at different intervals during timetable construction.  

Saber et al. (2011) have used a selection constructive hyper-heuristic to solve 

this problem.  In this study four low-level heuristics are combined to decide which 

examination to schedule next. The latter three heuristics in the combination are 

used to deal with ties.  Roulette wheel selection is used to decide which period to 
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allocate the examination to.  The hyper-heuristic was tested on the benchmark set 

for the second international timetabling competition. 

2.2 Selection perturbative hyper-heuristics 

Kendall and Hussin (2004) use a tabu search hyper-heuristic to solve the 

examination timetabling problem for MARA University.  The tabu search hyper-

heuristic is used to improve an initial solution created using either the largest 

degree or saturation degree construction low-level heuristic.  Two variations of 

the standard tabu search hyper-heuristic, namely, tabu search hyper-heuristics 

with hill-climbing and tabu seach hyper-heuristics with great deluge were also 

tested. Low-level heuristics include five move heuristics that reschedule 

examinations, two swap heuristics that swap the periods of two exams, a heuristic 

that unschedules an examination, and five construction heuristics (largest 

enrolment, largest degree, largest weighted degree, largest colour degree, and 

saturation degree) to reschedule unscheduled exams.  The timetable produced by 

the hyper-heuristic was an improvement on the manually created timetable used 

by the university.  In later work Kendall and Hussin (2005) applied the tabu 

search hyper-heuristic to eight problems from the Carter benchmark set.  

Biligin et al. (2006) test seven approaches for heuristic selection and five for 

move acceptance. The heuristic selection methods include simple random, random 

descent, random permutation, random permutation descent, choice function, tabu 

search, and a greedy method.  The three move acceptance approaches evaluated 

are accept all moves, accept improving moves only, great deluge and Monte 

Carlo.  Low-level heuristics used in the study include three hill-climbing operators 

(next ascent hill-climbing, Davis’ bit hill climber, random mutation hill climber) 

and three mutation operators (swap dimension, dimensional mutation and 

hypermutation).  All six operators are applied to binary operands.  The hyper-

heuristic was used to solve the Carter benchmark set of problems and the 

examination timetabling for the Faculty of Architecture and Engineering at 

Yeditepe University. The hyper-heuristic combining the use of a choice function 

and Monte Carlo for move acceptance produced the best results.   

In Ersoy et al. (2007) a hyper-heuristic is embedded in a memetic algorithm 

used to solve the examination timetabling problem.  The hyper-heuristic is used to 

select one of three hill-climbers to be used by the memetic algorithm. The 
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memetic algorithm using various hyper-heuristics was tested on six of the Carter 

benchmark problems.  Self-adaptive hyper-heuristics using either a choice 

function for heuristic selection and great deluge for move acceptance or simple 

random combined with improving and equal move acceptance, were found to 

perform well. 

Burke et al. (2008) study the use of simulated annealing selection perturbative 

hyper-heuristics.  Simulated annealing is used for move acceptance. Three 

methods, namely, simple random, a greedy method and a choice function are 

evaluated for heuristic selection.  Four low-level heuristics which reschedule 

examinations are used. Three of the heuristics attempt to reschedule exams so as 

to remove constraint violations.  The last heuristic attempts to reschedule all the 

allocated exams. The hyper-heuristic using a choice function for heuristic 

selection with simulated annealing for move acceptance was found to outperform 

the other hyper-heuristic combinations. 

Ozcan et al. (2009) also implement a perturbation hyper-heuristic to solve the 

examination timetabling problem.  The move acceptance component employs a 

late acceptance strategy.  Instead of comparing the current candidate solution to 

that obtained on the previous iteration, the move acceptance component compares 

it to a solution from n previous iterations.  Heuristic selection methods tested 

include simple random, greedy, reinforcement learning, reinforcement learning 

with tabu search, and a choice function.  Four low-level heuristics are 

implemented.  The first is a mutation operator which attempts to reschedule all 

exams. The remaining three heuristics reschedule exams so as to reduce constraint 

violations. Tournament selection is used to select an exam and to select a slot to 

reschedule the examination in.  The hyper-heuristic using simple random for 

heuristic selection and late acceptance strategy for move acceptance produced the 

best results. 

Burke et al. (2010b) have implemented a Monte Carlo selection perturbative 

hyper-heuristic to solve the capacitated version of the Carter benchmark set (Qu et 

al. 2009) of examination timetabling problems.  This set consists of data collected 

from thirteen different institutions.  Methods tested for heuristic selection include 

simple random, a greedy method, a choice function and reinforcement learning.  

Similarly, different methods were made available for move acceptance, namely, 

simulated annealing, simulated annealing with reheating and an exponential 
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Monte Carlo method. Three low-level perturbative heuristics are used.  The first 

reschedules an exam based on the number of conflicts the examination is involved 

in.  The second reschedules exams so as to meet the capacity constraint while the 

third reschedules an examination randomly. The hyper-heuristic producing the 

best results for the benchmark set used the choice function for heuristic selection 

and simulated annealing for move acceptance. 

Burke et al. (2010c) employ a hyper-heuristic to improve the quality of an 

initial feasible solution created using the largest degree construction heuristic.  

The hyper-heuristic uses four low-level perturbative heuristics, namely, move 

exam, swap exam, Kempe chain move and swap timeslot.  All four heuristics aim 

at producing the least penalty timetable.  Preliminary studies indicated that Kempe 

chain in combination with swap timeslot performed the best over problems of 

differing characteristics.  The best hybridization (i.e. percentage occurrence and 

position) of these two heuristics in an optimal heuristic combination is problem 

dependent.  An adaptive component is built into the hyper-heuristic to perform the 

hybridization of these two heuristics.  The saturation degree is used to choose an 

examination, causing a soft constraint violation,  which the move operator is 

applied to. The hyper-heuristic was used to find solutions to problems from the 

Carter benchmark set and the benchmark set for the second international 

timetabling competition. 

Ozcan et al. (2012) have implemented a selection perturbative hyper-heuristic 

employing reinforcement learning for heuristic selection and great deluge for 

move acceptance. The hyper-heuristic was used to improve an initial solution.  

Three types of low-level heuristics were used.  The first type aims at rescheduling 

the examination causing the most constraint violations in a set of n examinations.  

The second reschedules the examination that has the highest impact on the 

capacity violation for a particular period from a set of n periods with capacity 

violations.  The last type of low-level heuristic attempts to reschedule all allocated 

examinations probabilistically. The hyper-heuristic was used to induce timetables 

for Yeditepe University and the Carter benchmark set. 

In the study conducted by Sin and Kham (2012) reinforcement learning is 

used for heuristic selection and great deluge for move acceptance. Three variants 

of great deluge were tested, namely, flex deluge, non-linear great deluge, and 

extended great deluge. Low-level heuristics focused on changing timeslots of 

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 323



 

examinations or swapping subsets of examinations between two timeslots. The 

hyper-heuristic was used to improve an initial solution created using the largest 

enrollment construction heuristic.  Evaluation on the Carter benchmark set 

revealed that the hyper-heuristic using the extended great deluge for move 

acceptance was the most effective.  

2.3 Selection generative hyper-heuristics 

Asmuni et al. (2005; 2007; 2009) combine low-level graph heuristics, namely, 

largest degree, saturation degree and largest enrollment, using a fuzzy logic 

function. The fuzzy function combines two to three heuristics and the single value 

produced is used to sort examinations to be scheduled according to difficulty. The 

hyper-heuristic was used to solve the Carter benchmark set of problems.  

Pillay and Banzhaf (2009b) proposed that low-level heuristics be combined 

hierarchically allowing them to be applied simultaneously instead of combining 

them linearly and applying them sequentially.  The use of conditional and 

logically operators have facilitated the hierarchical combination and simultaneous 

application of low-level construction heuristics chosen from largest degree, largest 

weighted degree, largest enrollment, saturation degree and highest cost heuristics. 

Four such combinations were created and tested on the Carter benchmark set of 

problems.  These combinations produced results competitive to other hyper-

heuristics tested on the same benchmark set of problems. Pillay (2009a) automates 

the process of creating the hierarchical heuristic combinations.  In this study 

genetic programming is used to evolve these combinations comprised of 

conditional and logical operators and the low-level heuristics. 

Pais and Burke (2010) use a Choquet integral to combine five low-level 

construction heuristics, namely, largest degree, colour degree, largest weighted 

degree, largest enrollment and saturation degree.  The single value produced by 

the Choquet integral estimates the difficulty of scheduling an examination.  The 

examinations are sorted in decreasing order according to this value and allocated 

accordingly.  The performance of the Choquet integral is compared to that of each 

of the low-level heuristics applied individually to sort the examinations.  The low-

level heuristics and the Choquet integral were evaluated on the Carter benchmark 

problems and the benchmark set for the second international timetabling 

competition.  The Choquet integral produced the best results for eleven of the 
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thirteen Carter problems and for five of the eight timetabling competition 

problems.  Burke and Pais (2011) extend this work and evaluate differential 

evolution to induce fuzzy measures to estimate examination difficulty. This 

improved the performance of the hyper-heuristic.  

2.4 Summary of Hyper-Heuristic Performance 

This section summarizes the performance of the different types of hyper-

heuristics in solving the examination timetabling problem.  There are essentially 

two benchmark problem sets that these hyper-heuristics have been applied to, 

namely, the Carter (also known as the Toronto) benchmark set (Qu et al. 2009c) 

and the benchmark set used for the second international timetabling competition 

ITC’ 2007 (McCollum et al. 2008). A majority of the hyper-heuristics have been 

evaluated on the Carter benchmark set.  The characteristics of the problems 

included in this benchmark set are listed in Table 1 in Appendix A.  This 

benchmark set has been constructed by collecting data from real-world 

educational institutions. The density of the clash matrix is a ratio of the number 

students involved in clashes to the total number of students and is a measure of 

the difficulty of the problem.  The hard constraint for this set of problems is that 

there must be no clashes, i.e. a student must not be scheduled to write more than 

one examination at a time.  The soft constraint is that the examinations must well-

distributed over the examination period for any one student.  A distance formula is 

used to calculate the soft constraint cost (Qu et al. 2009c).  Performance of 

selection constructive, selection perturbative and generation constructive hyper-

heuristics applied to the Carter benchmarks are tabulated in Appendix B, 

Appendix C and Appendix D respectively.  Note that only those studies that have 

reported these results are included.  

From the results presented in Appendix B the hybrid approach combining 

cased-based reasoning with the great deluge algorithm appears to have performed 

the best.  The evolutionary algorithm hyper-heuristic, using a combination of 

three different representations for individuals, has also produced fairly good 

results. Selection perturbative hyper-heuristics have only been applied to subsets 

of Carter benchmark problems and need to be evaluated further.  The best 

performing selection perturbative hyper-heuristic is the adaptive selection 

perturbative hyper-heuristic implemented by Burke et al. (2012c).  However, the 
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results produced by this hyper-heuristics is not as good as that of the selection 

constructive hyper-heuristics listed in Appendix B. Similarly, the generation 

constructive hyper-heuristics presented in Appendix D do not perform as well as 

the selection constructive hyper-heuristics on the Carter benchmark set.   

The comparison in this section has been restricted to examination timetabling 

as there has not been sufficient research into university course timetabling and 

school timetabling to do the same. 

3. Hyper-Heuristics for University Course 

Timetabling 

The use of hyper-heuristics to solve the university course timetabling problem is 

not as well researched as for the university examination timetabling problem.  

Most of the research in this area has focused on the use of selection constructive 

hyper-heuristics to find solutions to this problem. 

3.1 Selection constructive hyper-heuristics 

Rossi-Doria and Paechter (2003) implement an evolutionary algorithm selection 

constructive hyper-heuristic. Each chromosome is a comprised of two rows of 

integers representing heuristics. The first row represents heuristics to choose 

which event to schedule next and are chosen from largest degree, largest colour 

degree, least saturation degree, maximum weighted number of event correlations, 

maximum number of students, maximum number of features by events, minimum 

number of possible rooms, event with room suitable for most events, least 

saturation degree with room consideration.  The second row represents heuristics 

used to select room and timeslots, e.g. smallest possible room, least room suitable, 

least used room, latest or earliest timeslot in the day. The evolutionary algorithm 

is steady-state and uses binary tournament selection. One point crossover and 

mutation is used to produce offspring. The hyper-heuristic was tested on five 

generated problems of medium difficulty and produced competitive results for 

two of these problems. 

A case-based hyper-heuristic is proposed in Burke et al. (2006) to solve the 

university course timetabling problem.  The case base stores previously solved 

problems in terms of problem features and steps of the construction process and 

the low-level construction heuristic used to schedule each event.  Each new 
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problem is solved by finding a match to stored cases at each stage of the timetable 

construction process. The hyper-heuristic was used to solve generated university 

course timetabling problems.  

Burke et al. (2007) implement a tabu search to explore a space of heuristic 

combinations of low-level construction heuristics. These heuristics include, 

random ordering, largest degree, saturation degree, largest colour degree, largest 

enrollment and largest weighted degree. The hyper-heuristic was used to solve 

eleven benchmark course timetabling problems (Socha et al. 2002). 

Qu et al. (2009a) evaluate various search methods for use by a selection 

constructive hyper-heuristic.  The hyper-heuristic, using different search 

techniques, was tested on eleven benchmarks problem made available by Socha et 

al. (2002). The hyper-heuristic employing variable neighbour search to explore 

the space of heuristic combinations comprised of low-level construction heuristics 

produced the best results for the benchmark set.  The low-level construction 

heuristics used include largest degree, largest weighted degree, largest colour 

degree, largest enrollment, saturation and random ordering heuristics.  A variation 

of the hyper-heuristic employing iterative local search to explore the solution 

space at various stages during the timetable construction process was found to 

improve the performance of the hyper-heuristic. 

3.2 Selection perturbative hyper-heuristics 

The selection perturbative hyper-heuristic implemented by Bai et al. (2007a, 

2007b) uses simulated annealing for move acceptance. Heuristic selection is 

initially random until a heuristic performance history has been developed and is 

then based on the performance of the low-level heuristics in the previous 

iterations.  Three low-level perturbative heuristics are available for use by the 

hyper-heuristic. The first reschedules a randomly selected event. The second 

swaps the periods of two randomly chosen events. The third swaps the events of 

two randomly selected periods.  The hyper-heuristic is used to improve an initial 

feasible solution. The hyper-heuristic was tested on two benchmark problem sets. 

The first set contained five small, five medium and one large problem and the 

second twenty problems. The hyper-heuristic performed better than two other 

hyper-heuristics and meta-heuristics applied to the problems in the first 

benchmark set and to one of the problems in the second benchmark set. 
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3.3 Generation Perturbative Hyper-Heuristic 

In the study conducted by Rattadilok (2010) an initial solution is created using a 

random or greedy approach and is improved using a generation perturbative 

hyper-heuristic. A choice function is used for heuristic selection. This function 

selects low-level heuristics based on their previous performance.  Swap operators 

are used as low-level heuristics.  Each operator is created by making configuration 

decisions, namely, a number of candidates involved in the swap, swap candidate 

sets and acceptance criteria for termination.  Sub-controllers are used to formulate 

configuration decisions. Ten low-level swap heuristics are used.  The hyper-

heuristic was applied to data sets from the first international university course 

timetabling competition.   

4. School Timetabling 

There has not been much research conducted into the use of hyper-heuristics for 

solving the school timetabling problem.  There have basically been two studies, 

one investigating the use of a selection constructive hyper-heuristic and the 

second evaluating a generation constructive hyper-heuristic in solving the school 

timetabling problem. 

4.1 Selection constructive hyper-heuristics 

Pillay (2010c) implements an evolutionary algorithm hyper-heuristic to solve the 

school timetabling problem.  The evolutionary algorithm explores a space of 

heuristic combinations of low-level construction heuristics.  Construction 

heuristics used include random ordering, largest degree, saturation degree, class 

degree, teacher degree and class-teacher degree.  The hyper-heuristic was tested 

with different subsets of low-level heuristics from which the elements of each 

heuristic combination are chosen.  The subset consisting of largest degree and 

saturation degree produced the best results. The incorporation of hill-climbing in 

the genetic operators was found to improve the performance of the EA hyper-

heuristic. The EA hyper-heuristic produced competitive results in solving a 

difficult generated problem and outperformed a neural work and greedy search 

applied to the same problem.  Pillay (2011a) applied this EA hyper-heuristic to 

solving the school timetabling problem for a South African primary school.  In 

this study the low-level construction heuristic set included largest degree, 
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saturation degree, double degree and period preference degree.  A Pareto function 

of the hard and soft constraint costs was found to be the most effective option to 

evaluate the fitness of each heuristic combination. The EA hyper-heuristic 

produced a solution of better quality than that currently being used by the school. 

4.2. Generation constructive hyper-heuristics 

Pillay (2011b) employed genetic programming to evolve heuristics for the school 

timetabling problem.  The function set was composed of arithmetic operators, 

arithmetic logical operators and conditional operators. The terminal set contains 

variables to represent the characteristics of the problem, namely, the number of 

class-teacher meetings a class is involved in and the number of class-teacher 

meetings a teacher is involved in as well as the heuristics that are traditionally 

used in solving the school timetabling problem, namely, largest degree and 

saturation degree.  The hyper-heuristic was tested on a difficult generated problem 

and performed better than the saturation degree and largest degree applied to the 

same problem.   The generation hyper-heuristic also performed better than a tabu 

search, the evolutionary algorithm hyper-heuristic described in section 4.1, a 

Hopfield neural network and greedy search in solving the same problem. 

5. Discussion and Future Research Directions 

As is evident from the above discussion most of the research into using hyper-

heuristics for solving educational timetabling problems has been on examination 

timetabling and on selection constructive hyper-heuristics for this domain. 

Furthermore selection constructive hyper-heuristics appear to perform the best for 

examination timetabling. However, this may not be a fair comparison at this stage 

as the other types of hyper-heuristics have not been as well researched. Hyper-

heuristic research for the three different types of educational timetabling have 

been conducted in isolation of each other.  Future research should aim at 

investigating the effectiveness of the different types of hyper-heuristics for 

educational timetabling as a whole.  The hyper-heuristics also need to be more 

widely tested.  The two benchmark sets available for examination timetabling are 

the Carter benchmark set (Qu et al. 2009c) and the benchmark set of problems 

used for the examination timetabling track of the second international timetabling 

competition (McCollum et al. 2008). There are three benchmark sets available for 
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the university course timetabling problem, namely, that provided by Socha et al. 

(2002), the problem set used for the first international timetabling competition 

(Paechter et al. 2003) and the data sets for curriculum-based and post enrolment 

university course timetabling tracks of the second international timetabling 

competition. The third international timetabling competition (Post 2011) is 

focused on school timetabling and various real-world school timetabling data sets 

have been made available for the competition.   

A fair amount of research has been conducted into using selection constructive 

hyper-heuristics to solve the different educational timetabling problems. In a 

majority of these studies a metaheuristic has been employed to explore the space 

of heuristic combinations.  These heuristic combinations are comprised of low-

level construction heuristics.  The low-level heuristics that have been used for this 

purpose have generally been the graph colouring heuristics, namely, largest 

degree, largest weighted degree, largest colour degree, largest enrollment and 

saturation degree.  Some studies have introduced other low-level heuristics, 

namely, highest cost which estimates the soft constraint cost (Pillay and Banzhaf 

2009b) and period and room heuristics introduced by Rossi-Doria and Paechter 

(2003). Metaheuristics used to search such a heuristic space include tabu search, 

iterated local search, variable neighbourhood search and evolutionary algorithms.  

Cased-based reasoning has also been used for low-level heuristic selection. The 

best performing hyper-heuristic was a hybrid combining case-based reasoning and 

greatest deluge.  Processes that automate the hybridization of low-level heuristics 

that perform well have also been studied for selection constructive hyper-

heuristics.  The effectiveness of searching both the solution space and heuristic 

space during the construction of a timetable has also been illustrated.  This needs 

to be investigated further for educational timetabling in general. 

The use of selection perturbative hyper-heuristics for solving educational 

timetabling problems, have also been researched.   Low-level heuristics 

commonly used by these hyper-heuristics include hill-climbing operators, 

mutation operators, rescheduling events with high constraint violation costs, 

swapping events or subsets of events, swapping timetable periods, unscheduling 

and rescheduling events.  Techniques commonly used for heuristic selection 

include simple random, greedy, a choice function, reinforcement learning and tabu 

search.  Methods evaluated for move acceptance are the late acceptance strategy, 
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simulated annealing, Monte Carlo and the great deluge algorithm.  Selection 

perturbative hyper-heuristic heuristic selection and move acceptance pairs that 

have performed well for different timetabling problems include a choice function 

with either simulated annealing, Monte Carlo or the great deluge algorithm and 

simple random with the late acceptance strategy.  Further research into the 

effectiveness of different methods for driving this category of hyper-heuristics as 

well as a more expansive evaluation of these hyper-heuristics needs to be 

conducted. 

There has not been much research into the use of generation hyper-heuristics 

in solving educational timetabling problems.   Fuzzy logic and genetic 

programming are the most popular methods used to induce constructive low-level 

heuristics.  There has only been one study into generation perturbative hyper-

heuristics for solving timetabling problems, namely, that conducted by Rattadilok 

(Rattadilok 2010) to configure swap operators. The generation of low-level 

construction heuristics for timetabling needs to researched further.  Generally, 

graph colouring heuristic have been used as low-level heuristics for timetable 

construction.  The induction of heuristics based on problem characteristics need to 

be studied. Given its success in other domains (Burke et al. 2009a), genetic 

programming can be investigated for this purpose.   

Most selection constructive hyper-heuristics have focused on constructive 

heuristics for selecting which event to schedule next.  There is a need for 

investigations into developing selection and generation hyper-heuristics that cater 

for construction heuristics for choosing timetable periods and rooms in addition to 

heuristics for event selection.    

An area that has not been investigated is that of hybrid hyper-heuristics that 

combine different types of hyper-heuristics, e.g. combining selection constructive 

and perturbative hyper-heuristics.  Furthermore, should such combinations be 

sequential, i.e. apply one type of hyper-heuristic followed by another, or should 

there be an alternating application of the different hyper-heuristics. 
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Appendix A – Carter Benchmark Data Set 

Table 1. Characteristics of problems in the Carter benchmark set 

Data Institution Periods No. of 

Exams 

No.  of 

Students 

No. 

Enrolments 

Density 

of 

Conflict 

Matrix 

car-f-92 I Carleton University, Ottawa 32 543 18419 55522 0.14 

car-s-91 I Carleton University, Ottawa 35 682 16925 56877 0.13 

ear-f-83 I Earl Haig Collegiate Institute, Toronto 24 190 1125 8109 0.27 

hec-s-92 I Ecole des Hautes Etudes Commerciales, 

Montreal 

18 81 2823 10632 0.42 

kfu-s-93 King Fahd University of Petroleum and 

Minerals, Dharan 

20 461 5349 25113 0.06 

lse-f-91 London School of Economics 18 381 2726 10918 0.06 

pur-s-93 I Purdue University, Indiana 43 2419 30029 120681 0.03 

rye-s-93 Ryerson University, Toronto 23 486 11483 45051 0.08 

sta-f-83 I St Andrew’s Junior High School, Toronto 13 139 611 5751 0.14 
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tre-s-92  Trent University, Peterborough, Ontario  23 261 4360 14901 0.18 

uta-s-92 I Faculty of Arts and Sciences, University of 

Toronto 

35 622 21266 58979 0.13 

ute-s-92  Faculty of Engineering, University of 

Toronto 

10 184 2749 11793 0.08 

yor-f-83 I York Mills Collegiate Institute, Toronto 21 181 941 6034 0.29 

 

Appendix B – Performance of Selection Constructive Hyper-Heuristics 

Table 2. Comparison of selection constructive hyper-heuristic performance 

Data Yang & 

Petrovic 

(2004) 

Burke et 

al. 

(2007) 

Burke et 

al. (2009) 

Qu & 

Burke 

(2005) 

Pillay 

(2012) 

Qu & 

Burke 

(2009a) 

Qu & 

Burke 

(2009b) 

Sabar et 

al. (2011) 

car-f-92 I 3.93 4.84 4.74 4.7 4.22 4.77 4.32 4.70 

car-s-91 I 4.50 5.41 5.48 5.4 4.95 5.3 5.11 5.14 

ear-f-83 I 33.71 38.19 37.71 37.29 35.95 38.39 35.56 37.86 

hec-s-92 I 10.83 12.72 12.41 12.23 11.27 12.72 11.62 11.90 

kfu-s-93 13.82 15.76 16.84 15.11 14.12 15.09 15.18 15.30 
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lse-f-91 10.35 13.15 12.29 12.27 10.76 12.72 11.32 12.33 

pur-s-93 I - - - - - - - 5.37 

rye-s-93 8.53 - - - 9.23 - - 10.71 

sta-f-83 I 151.52 141.08 163.63 159.1 157.69 159.2 158.88 160.12 

tre-s-92  7.92 8.85 9 8.67 8.43 8.74 8.52 8.32 

uta-s-92 I 3.14 3.54 3.62 3.56 3.33 3.32 3.21 3.88 

ute-s-92  25.39 32.01 30.01 30.23 26.95 30.32 28 32.67 

yor-f-83 I 36.53 40.13 42.54 43 39.63 40.24 40.71 40.53 

 

Appendix C – Performance of Selection Perturbative Hyper-Heuristics 

Table 3. Comparison of selection perturbative hyper-heuristic performance 

Data Kendall & Hussin (2005) Ersoy et al. (2007) Burke et al. (2010c) 

car-f-92 I 4.67 - 4.31 

car-s-91 I 5.37 - 5.19 

ear-f-83 I 40.18 - 35.79 

hec-s-92 I 11.86 11.6 11.19 

kfu-s-93 15.84 15.8 14.51 
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lse-f-91 - 13.2 10.92 

pur-s-93 I - - - 

rye-s-93 - - - 

sta-f-83 I 157.38 157.7 157.18 

tre-s-92  8.39 - 8.49 

uta-s-92 I - - 3.44 

ute-s-92  27.6 26.3 26.7 

yor-f-83 I - 40.7 39.47 

 

Appendix D – Performance of Generation Constructive Hyper-Heuristics 

Table 4. Comparison of generation constructive hyper-heuristic performance 

Data Asumni et al. (2005) Asumni et al. (2007) Asumni et al. (2009) Pillay & Banzhaf (2009b) 

car-f-92 I 4.56 4.51 4.54 4.28 

car-s-91 I 5.29 5.19 5.29 4.97 

ear-f-83 I 37.02 36.16 37.02 36.86 

hec-s-92 I 11.78 11.61 11.78 11.85 

kfu-s-93 15.81 15.34 15.81 14.62 

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 339



lse-f-91 12.09 11.35 12.09 11.14 

pur-s-93 I - - - 4.73 

rye-s-93 10.35 10.02 10.38 9.65 

sta-f-83 I 160.75 159.09 160.75 158.33 

tre-s-92  8.67 8.62 8.67 8.48 

uta-s-92 I 3.57 3.52 3.57 3.4 

ute-s-92  27.78 27.64 28.07 28.88 

yor-f-83 I 40.66 39.25 39.80 40.74 
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