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Abstract In the context of personnel rostering, several levels of granularity
have been discussed. Typically, these levels range from very coarse grained (e.g.
days-off scheduling) to more finely granulated (e.g. tour scheduling). However,
in some cases a more detailed type of assignment is required. Not only shifts
need to be assigned to personnel, but also the allocation of tasks is incorporated
in the optimisation of the rosters. The present paper introduces a matheuristic
approach based on local search for the subproblem of assigning tasks to a
set of multi-skilled employees whose working times are already determined.
Experimental results show that the presented algorithm is capable of finding
new best solutions for the benchmark instances.

Keywords Integrated personnel rostering · Personnel task scheduling ·
Matheuristic · Local search · Constructive heuristic

1 Introduction

After several years of research, personnel rostering remains a relevant aca-
demic timetabling subject. As personnel costs have become the major part
of operational expenses, it is ever so important to try and organise a given
workforce as efficiently as possible in order to reduce the associated costs and
to increase employee satisfaction.

In the personnel scheduling literature, assigning shifts to personnel is often
the most fine-grained level at which the allocation is being discussed, even
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though some authors do incorporate elements at a more detailed level (Ernst
et al 2004). For example, Beer et al (2008) discuss the problem of assigning
breaks in shifts. The shifts are already assigned, and breaks need to be planned
such that various restrictions and requirements are met.

The assignment of particular tasks to employees during a shift is often not
incorporated in the construction of rosters. In some cases, employees know
automatically which tasks to perform during working hours. This is often the
case in hospitals, where nurses know exactly what they are supposed to do in
each shift (Burke et al 2004). However, in other cases tasks are assigned to em-
ployees in an ad hoc manner, often resulting in unnecessary usage of resources.
Therefore it is recommendable to incorporate the assignment of tasks in the
construction of rosters for employees, in order to reduce operational expenses
while maintaining a high quality of service.

The practical relevance of this problem is apparent in various contexts.
In the food production industry, due to the short batches being produced,
employees have to perform tasks on more than one machine during one shift.
In order to create efficient solutions, it is necessary to integrate the assignment
of shifts and tasks resulting in an structured problem combining personnel
rostering and task allocation.

The aforementioned problem has only been addressed by a few authors.
Meisels and Schaerf (2003) discuss a general class of employee timetabling
problems in which, during each shift, tasks need to be assigned to employees.
No temporal details concerning the tasks are incorporated in the assignment,
only the required number of employees for each task in each shift is given.
Detienne et al (2009) present two cut generation based approaches for another
employee timetabling problem. Their problem contains two decision stages.
First the working times of employees are determined. Second, for each em-
ployee and for each working period, the used qualification of the employee is
decided on. Guyon et al (2010) include scheduling decisions concerning spe-
cific activities. The integrated employee timetabling and production scheduling
problem is solved using both exact and heuristic approaches including Benders
decomposition and a cut generation approach based on the work of Detienne
et al (2009). The system presented by Dowling et al (1997) is developed for
rostering employees and assigning tasks to employees at an international air-
port. First, the personnel rostering problem is solved heuristically for a long
scheduling period (35 days). Afterwards individual tasks are allocated to the
available employees on a day-to-day basis.

Burke et al (2006) discuss a related personnel rostering problem in which
the coverage requirements are not specified per shift type, but in terms of
time intervals. The time interval coverage requirements are translated to shift
type coverage constraints. A metaheuristic is then used to solve the resulting
personnel rostering problem in an efficient way.

In the present paper we discuss a solution approach to the shift minimi-
sation personnel task scheduling problem (SMPTSP), originally introduced
by Krishnamoorthy and Ernst (2001). The problem considers assigning tasks
to multi-skilled employees, while minimising the number of employees used.
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Figure 1 shows an example of a solution for an SMPTSP instance, in which
60 tasks are assigned to 25 employees over a one day period. Krishnamoorthy
et al (2011) present a Lagrangean relaxation based approach that combines
two problem specific heuristics. They have found feasible solutions for 135 out
of 137 instances. For a large number of these instances their algorithm is capa-
ble of finding the optimal solution. Furthermore, they discuss some interesting
properties of the problem and present algorithms that can be used to solve
particular subproblems of the SMPTSP.

Fig. 1: Optimal solution for an SMPTSP instance.

The approach presented in this paper is a very large-scale neighbour-
hood search algorithm in which neighbouring solutions are reached by solv-
ing a heuristically selected subproblem to optimality. This solution approach
is based on the principles of matheuristics (Maniezzo et al 2009), in which
(meta)heuristics and exact approaches are combined to exploit the strengths
of both solution techniques.

Della Croce and Salassa (2010) describe a matheuristic based on a variable
neighbourhood search for a real world nurse rostering problem. Different neig-
bourhoods are searched by including additional constraints. These constraints
fix particular variables which are selected heuristically. Computational results
show that this matheuristic approach significantly outperforms exact com-
mercial general purpose solvers. Matheuristic approaches have been applied
in various other contexts such as vehicle routing (Doerner and Schmid 2010),
permutation flow shop scheduling (Della Croce et al 2011) and the multidi-
mensional knapsack problem (Hanafi et al 2010).

The rest of the paper is organised as follows. The problem definition is pro-
vided in Section 2. In Section 3 the solution approach is presented. Details are
provided for both a constructive heuristic and the hybrid improvement heuris-
tic. The experimental setup and results are discussed in Section 4. Section 5
concludes the paper and presents future work.
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2 Problem definition

Let J = {1, ..., n} be the set of tasks to be assigned to employees and W =
{1, ...,m} the set of employees. Each task j ∈ J has a duration dj , a start time
sj and a finish time fj = sj + dj . Each employee w ∈ W has a set of tasks
Tw ⊆ J which he/she can perform. Similarly, there exists a set Pj ⊆ W for
each task j ∈ J which contains all employees that can perform task j. Both
Tw and Pj are defined based on required qualifications and time windows.

An interval graph G = (J,A) can be defined with J the set of nodes and
A the set of arcs. Two nodes i and j are connected when their respective time
intervals, [si,fi] and [sj ,fj ], overlap. The set of maximal cliques in the interval
graph is defined as C. For interval graphs, this set can be found in polynomial
time by first sorting the nodes based on start time and then applying a forward
pass algorithm. The set C = {K1, ...,Kt} consists of sets Kt ⊆ J such that
any pair of tasks in Kt overlaps in time and Kt is maximal. There are no tasks
in J \ Kt which overlap with any of the tasks in Kt. In terms of the SMPTSP,
it is obvious that overlapping tasks, represented by nodes in Kt, should be
assigned to different employees. For each employee w ∈W , the set of maximal
cliques Cw = {Kw

1 , ...,Kw
t } is constructed in the same way as C, but for Cw,

only the set of tasks for which the employee is qualified is considered. An
employee w can only be assigned to one of the tasks from each set Kw

t ∈ Cw.
This ensures that there are no overlapping assignments in a solution.

To solve the SMPTSP, a feasible solution has to be found in which all tasks
in J are assigned to qualified employees from W in a non-preemptive manner,
while minimising the number of workers used.

Two sets of decision variables are defined for the mathematical model:

xjw =

{
1 if task j ∈ J is assigned to employee w ∈W
0 otherwise

yw =

{
1 if employee w ∈W is used
0 otherwise

The SMPTSP can now be defined as follows (Krishnamoorthy et al 2011):

min
∑
w∈W

yw (1)

s.t.
∑
w∈Pj

xjw = 1 ∀ j ∈ J (2)

∑
j∈Kw

t

xjw ≤ yw ∀ w ∈W, Kw
t ∈ Cw (3)

0 ≤ yw ≤ 1 ∀ w ∈W (4)

xjw ∈ {0, 1} ∀ j ∈ J, w ∈W (5)

The objective function (1) states that the number of used employees should
be minimised. Constraints (2) ensure that each task is only performed by one
employee, and that no infeasible assignments in terms of qualifications are
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made. Constraints (3) make sure that tasks are only assigned to employees
who are active in the final solution. Furthermore, these constraints do not
allow for overlapping tasks to be assigned to an employee. Finally, constraints
(4) and (5) set bounds for the decision variables.

The SMPTSP can be seen as an application of list colouring on interval
graphs, which is NP-complete. Colours correspond to employees and vertices
correspond to tasks. The qualifications of the employees are represented by the
list of feasible colours on each vertex. Other applications of list colouring on
interval graphs include room allocation (Carter and Tovey 1992) and register
assignment (Zeitlhofer and Wess 2003).

A class of problems similar to the SMPTSP are the interval scheduling
problems (Kolen et al 2007). Here, a set of jobs with fixed start and end times
are given as well as a set of machines that can process the jobs. The goal is to
decide which jobs to assign and to which machines, while e.g. maximising the
value of the assigned jobs. The difference between the basic interval schedul-
ing problem and the SMPTSP lies in the fact that in the SMPTSP not all
machines (employees) are qualified for all jobs, and that machines (employees)
are not always available. Furthermore, all tasks should be assigned in a feasible
solution for the SMPTSP.

3 A hybrid heuristic approach

We present a hybrid heuristic local search algorithm for the SMPTSP, based
on the principles of matheuristics. The solution approach is hybrid in the sense
that neighbouring solutions are reached by solving a randomly selected part
of the problem to optimality using a general purpose solver. Details on the
local search procedure and the explored neighbourhood are given in Section
3.2. To ensure feasibilty of the final solution, the algorithm remains in the
feasible search space during the length of the search. A constructive heuristic,
described in Section 3.1, is designed to provide a feasible initial solution.

3.1 Constructive heuristic

Krishnamoorthy et al (2011) state that when the qualification constraints are
relaxed, i.e. when all employees are qualified to perform all tasks, the resulting
problem can be solved in polynomial time. For this purpose, they describe a
forward pass maximal clique algorithm on an interval graph (Gupta et al 1979).
This algorithm assigns all tasks in order of increasing starting time, using, if
possible, an employee who already has tasks assigned. This characteristic of the
SMPTSP is incorporated in our constructive heuristic by sorting all tasks j ∈ J
on start time sj in ascending order. Ties are broken by taking into account
the qualifications of employees. For this purpose, the tasks are additionally
sorted based on the number of qualified personnel able to perform them, also
in ascending order. This results in an ordering in which tasks with the smallest
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number of feasible personnel are before others. These highly constrained tasks,
which are the most difficult to assign, will then be assigned first.

An additional mechanism is introduced to ensure that the constructive
heuristic finds feasible solutions in those cases where tasks can only be per-
formed by a limited number of employees. Whenever there is a task j which
cannot be assigned to a qualified employee due to other overlapping tasks, a
qualified employee is randomly selected and his/her assigned tasks overlapping
with j are removed. Task j is then assigned to this employee and the removed
tasks are assigned to other employees.

Algorithm 1 shows pseudo code of the constructive heuristic.

Algorithm 1 Constructive heuristic
sj := Start time of task j ∈ J
Oj := Jobs overlapping with task j
Pj := Employees qualified for task j
Re := Tasks assigned to employee e

Order all j ∈ J by (sj + |Pj |) in ascending order
while J 6= ∅ do

Remove task j from the first position in J
Assign j to the first feasible employee
if Cannot feasibly assign j then

Select random employee e ∈ Pj

Remove the conflicting tasks Oj from Re

Assign j to employee e
Add the previously removed tasks OJ to the list of tasks to be assigned J

end if
end while

Experiments performed on realistic problems from literature (Section 4.2)
and problems based on real world data provided by an industrial partner 1,
show that Algorithm 1 is capable of finding feasible solutions for problems
with realistic dimensions. Algorithm 1 will not terminate if an instance has no
feasible solution. To resolve this issue, additional mechanisms could be added
to the algorithm which e.g. do not assign all visits or include dummy employees
in the set of available employees.

3.2 Matheuristic based local search

Typically, the initial solution can still be improved. For this purpose, an im-
provement procedure based on local search is used.

To ensure feasibilty throughout the search trajectory of the algorithm only
feasible neighbouring solutions are considered. These are reached by randomly
selecting k employees and optimally solving the subproblem composed of them
and their assigned jobs, using a general purpose solver. The initial solution is

1 SAGA Consulting
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feasible and therefore solutions in this neighbourhood are also always feasible,
thus forcing the local search only to explore the feasible search space.

Figure 2 illustrates the move used to reach new solutions. A gray roster
indicates employees that are not considered by the move, i.e. the assignments
of these employees remain unchanged during the move. In the example, the
subproblem is composed of the selected employees (2, 3, 4 and 5) and their
assigned jobs (4, 5, 6, 7, 8, 9 and 10). All tasks can be performed by all
employees, except for task 8 for which only employees 2, 3 and 4 are qualified.
This subproblem is then solved to optimality by a general purpose solver. In the
resulting neighbouring solution (Figure 2b), employee 4 is no longer required
to perform any tasks. The objective value of the new solution is thus one
lower than the current solution. k should be limited to ensure computational
feasibilty. Based on initial experimentation k was set to 40 employees. However,
when k > |W |, k was set to the total number of employees.

(a) Current solution

(b) New solution

Fig. 2: Illustration of a move with k = 4. Employees with grayed out rosters
are not considered in the move.

The aforementioned neighbourhood is explored with a very large-scale
neighbourhood search algorithm. In order to further guarantee computational
feasibility of the solution approach, only one neighbouring solution is sampled
at each iteration. In terms of iterations per minute, a trade-off exists between
the number of sampled solutions in each iteration and the number of employ-
ees k selected for composing the subproblem. Smaller values for k result in
faster solution times for the subproblem, making it possible to sample more
neighbouring solutions in each iteration. Initial experimentation showed that
better results were achieved by limiting the number of sampled solutions and
increasing the size of the subproblems.

The pseudo code of the local search algorithm is shown in Algorithm 2.
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Algorithm 2 Local search algorithm
F (C) := Evaluation function
H := Move to reach a neighbouring solution
C0 := Initial solution
C ← C0

while Termination criterion not met do
C′ ← H(C)
if F (C′) ≤ F (C) then

C ← C′

end if
end while

4 Experiments

4.1 Experimental setup

We evaluate the presented solution approach using instances from a benchmark
dataset 2. According to Krishnamoorthy et al (2011) these instances are based
on their experience with real world problems. Information with regard to the
number of employees and the number of tasks is shown in Figure 3. The
dimensions of the instances range from small (23 employees and 40 tasks) to
very large (245 employees and 2105 tasks).

Fig. 3: Number of employees and jobs in the instances. The horizontal axis
represents the different problem instances.

The experiments are carried out on an Intel Core 2 Duo at 3.16GHz with
4GB RAM operating on Windows 7. All algorithms are coded in Java and
CPLEX 12.2 is used as general purpose solver. Experiments with the lo-
cal search algorithm are each carried out five times. Results regarding the
constructive heuristic are reported by one value since initial experimentation
showed that, for the available benchmark instances, the same solution was
obtained each time the algorithm was executed. The execution time for the
local search procedure is limited to 1800 seconds per run.

2 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html
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4.2 Experimental results

Tables 1, 2 and 3 show the results of the constructive heuristic (CH), the
average solution quality of the matheuristic local search (LSavg) and the best
solution of five runs (LSbest) compared with 1) a lower bound obtained by
CPLEX (LB) and 2) results from a Lagrangean-based heuristic as presented
by Krishnamoorthy et al (2011) (LH). Furthermore, the time required by
the constructive heuristic and the local search are given by tCH and tLS ,
respectively.

Figure 4 shows the relative quality gap between solutions obtained with the
constructive heuristic and the lower bound (gap to LB), and the constructive
heuristic and the Lagrangean heuristic (gap to LH). Positive values indicate
a relatively worse solution by the constructive heuristic. The average gap be-
tween the constructive heuristic and the lower bound is 4.22% whereas the
average gap between the constructive heuristic and the Lagrangean heuristic
is 0.08%. Based on Figure 4, two observations can be made. First, the perfor-
mance of the constructive heuristic remains relatively stable for all problem
sizes. This shows that the constructive heuristic is able to generate high qual-
ity solutions, even for very large instances. Second, from a certain problem size
onward, the constructive heuristic outperforms the Lagrangean heuristic. This
mostly indicates that the Lagrangean heuristic has difficulties with increasing
problem size. For 7 out of 137 instances, the constructive heuristic finds the
optimal solution, while for 100 out of 137 instances the solution is only 5%
worse than the lower bound. Note that the constructive heuristic is capable of
finding feasible solutions for all benchmark instances.

Fig. 4: Relative quality gap between the constructive heuristic and the lower
bound (gap to LB) and the constructive heuristic and Lagrangean heuristic
(gap to LH). The horizontal axis represents the different problem instances,
from small to large.

Figure 5 shows the relative difference between the quality of solutions ob-
tained by the local search and the lower bounds (gap to LB) and the local
search and Lagrangean heuristic (gap to LH). The results clearly show that

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 153



the local search performs very well, with a maximum gap to the lower bound of
7.56% and an average gap of 0.67%. Furthermore, the presented matheuristic
is capable of finding the optimal solution for 72 out of 137 instances, while
for 135 out of 137 instances the local search finds solutions within 5% of the
lower bound. Compared to the Lagrangean heuristic the hybrid local search
also performs very well with an average improvement of 3.34%. Overall, 68
new best solutions are found by the presented matheuristic approach.

Fig. 5: Relative quality gap between the local search and the lower bound
(gap to LB) and the local search and Lagrangean heuristic (gap to LH). The
horizontal axis represents the different problem instances, from small to large.

When comparing the computation times in Tables 1, 2 and 3, it can be
observed that, for all instances, the constructive heuristic requires less than
one second of computation time to construct a solution. The computation time
of the local search algorithm is plotted in Figure 6. This plot shows that if the
matheuristic finds the optimal solution it finds it rather quickly. In these cases
the average computation time is 74.58 seconds. However, once the dimensions
of problems increase, the matheuristic does not find the optimum anymore
within the time limit.

Fig. 6: Computation times of the local search algorithm (time limit set to
1800s). The horizontal axis represents the different problem instances.
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The relative improvement obtained by the local search procedure over the
constructive heuristic is shown in Figure 7. It can be seen that for the smaller
instances, larger relative improvements are found than for the larger instances.
These differences can possibly be explained by the value chosen for k. For the
smaller instances, k is relatively large compared to the instance size, imply-
ing that each subproblem will consider a large part of the original problem.
However, for the larger instances, the same value for k will consider a much
smaller part of the problem as subproblem, and thus making it more diffi-
cult to optimise the solution as a whole. If the number of employees in the
subproblem k would be chosen higher, larger improvements could be found
in the local search phase. However, it is possible that other phenomena play
an important role in the observations from Figure 7. Further investigation is
required to determine other influencing factors.

Fig. 7: Relative improvement obtained by the local search algorithm compared
to the constructive heuristic. The horizontal axis represents the different prob-
lem instances.

5 Conclusions and future work

The paper is focussed on a hybrid heuristic approach to the SMPTSP. The
constructive component of the heuristic is capable of generating feasible solu-
tions in a very short computation time. Furthermore, the constructed solutions
are of high quality, with an average gap to the lower bound of 4.22% on a set
of benchmark instances from the literature.

A hybrid local search algorithm, based on the principles of matheuristics, is
employed for further improving the initial solution. In this algorithm, neigbour-
ing solutions are reached by randomly selecting a number of employees and
solving the thus delineated subproblem to optimality. Due to computational
feasibility issues, the number of sampled solutions in each neighbourhood at
each iteration is limited, as well as the number of selected employees for the
subproblem.
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Experimental results showed that the hybrid heuristic performs very well,
reaching solutions on average less than 1% worse than the lower bound. Anal-
ysis of the computation times showed that, if the algorithm is capable of
reaching the optimum, it does so rather quickly with an average computation
time of 74.58 seconds. Furthermore, the presented matheuristic found 68 new
best solutions for the available benchmark instances.

In order to reach better solutions for larger instances, a high level strategy
for the local search, i.e. a metaheuristic, can be used. Additional improvements
to the existing algorithm can further increase the algorithmic performance. For
example, another neighbourhood can be explored by probabilistically selecting
employees in the subproblem instead of randomly selecting them.

Future work includes the incorporation of the presented solution approach
for the SMPTSP in the larger problem of assigning tasks and shifts to em-
ployees in the same process. The speed of the constructive heuristic combined
with the high quality solutions it generates present a particularly interesting
opportunity in developing algorithms for the larger integrated problem.
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Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 1 23 40 66 20.00 20.00 20.00 20.00 20.00 0.00 0.03
data 2 24 40 33 20.00 20.00 22.00 20.00 20.00 0.00 0.02
data 3 25 40 66 20.00 20.00 21.00 20.00 20.00 0.00 0.03
data 4 23 59 33 20.00 20.00 23.00 20.00 20.00 0.00 0.08
data 5 25 60 33 20.00 20.00 23.00 20.00 20.00 0.00 0.03
data 6 48 80 66 40.00 40.00 41.00 40.00 40.00 0.00 0.10
data 7 51 80 66 40.00 40.00 41.00 40.00 40.00 0.00 0.13
data 8 48 85 33 40.00 40.00 45.00 40.00 40.00 0.00 0.38
data 9 49 104 33 40.00 41.00 45.00 40.00 40.00 0.00 0.84
data 10 51 111 66 40.00 40.00 42.00 40.00 40.00 0.00 2.19
data 11 24 119 33 20.00 21.00 24.00 20.00 20.00 0.00 0.30
data 12 49 119 33 40.00 40.00 44.00 40.00 40.00 0.00 0.95
data 13 25 120 33 20.00 20.00 25.00 20.00 20.00 0.00 0.24
data 14 75 124 33 60.00 60.00 63.00 60.00 60.00 0.00 0.38
data 15 72 126 33 60.00 60.00 65.00 60.00 60.00 0.00 0.69
data 16 75 131 66 60.00 60.00 62.00 60.00 60.00 0.00 2.19
data 17 23 139 66 20.00 20.00 23.00 20.00 20.00 0.00 1.08
data 18 48 160 66 40.00 40.00 42.00 40.00 40.00 0.00 1.19
data 19 97 160 33 80.00 80.00 82.00 80.00 80.00 0.00 0.44
data 20 99 163 33 80.00 80.00 85.00 80.00 80.00 0.00 0.92
data 21 93 175 33 80.00 80.00 86.00 80.00 80.00 0.00 78.58
data 22 47 180 66 40.00 40.00 42.00 40.00 40.00 0.00 33.88
data 23 74 180 66 60.00 60.00 62.00 60.00 60.00 0.00 1.48
data 24 110 200 33 100.00 100.00 104.00 100.00 100.00 0.00 0.75
data 25 120 200 33 100.00 100.00 103.00 100.00 100.00 0.00 1.05
data 26 116 203 66 100.00 100.00 102.00 100.00 100.00 0.00 11.81
data 27 49 204 66 40.00 40.00 42.00 40.00 40.00 0.00 3.73
data 28 75 208 66 60.00 60.00 62.00 60.00 60.00 0.00 73.82
data 29 22 219 66 20.00 20.00 22.00 20.00 20.00 0.00 2.73
data 30 25 219 66 20.00 20.00 23.00 20.00 20.00 0.00 3.31
data 31 90 230 66 80.00 80.00 82.00 80.00 80.00 0.00 0.88
data 32 70 236 66 60.00 60.00 61.00 60.00 60.00 0.00 0.81
data 33 76 240 66 60.00 60.00 62.00 60.00 60.00 0.00 2.08
data 34 152 240 33 120.00 120.00 122.00 120.00 120.00 0.00 1.06
data 35 171 280 33 140.00 140.00 143.00 140.00 140.00 0.02 0.30
data 36 175 280 33 140.00 140.00 142.00 140.00 140.00 0.00 2.57
data 37 145 321 33 120.00 121.00 126.00 120.67 120.00 0.00 316.42
data 38 147 347 66 120.00 120.00 120.00 120.00 120.00 0.02 0.37
data 39 45 351 66 40.00 41.00 43.00 40.00 40.00 0.00 49.97
data 40 138 360 33 120.00 120.00 124.00 120.00 120.00 0.00 9.48
data 41 144 360 66 120.00 120.00 122.00 120.00 120.00 0.00 9.13
data 42 101 380 66 80.00 80.00 81.00 80.00 80.00 0.00 0.70
data 43 156 387 66 140.00 140.00 141.00 140.00 140.00 0.00 240.18
data 44 121 400 33 100.00 100.00 104.00 100.00 100.00 0.00 16.32
data 45 67 420 33 60.00 67.00 66.00 60.00 60.00 0.02 308.35
data 46 147 423 33 120.00 121.00 126.00 120.67 120.00 0.02 1800.00
data 47 150 430 33 120.00 121.00 126.00 120.00 120.00 0.02 34.63
data 48 120 434 66 100.00 100.00 101.00 101.00 101.00 0.02 1800.00
data 49 211 446 66 180.00 182.00 185.00 184.33 184.00 0.02 1800.00
data 50 187 447 66 160.00 160.00 163.00 160.00 160.00 0.02 136.13

Table 1: Detailed computational results for SMPTSP benchmark instances
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Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 51 196 480 33 160.00 160.00 165.00 160.00 160.00 0.02 23.31
data 52 205 480 66 160.00 160.00 162.00 160.00 160.00 0.02 45.65
data 53 127 487 66 100.00 101.00 100.00 100.00 100.00 0.02 1.97
data 54 175 492 66 140.00 140.00 142.00 141.00 141.00 0.02 1800.00
data 55 85 493 66 70.00 72.00 71.00 70.33 70.00 0.00 17.10
data 56 163 500 66 140.00 140.00 142.00 140.33 140.00 0.02 255.40
data 57 88 508 66 70.00 72.00 72.00 70.67 70.00 0.02 1800.00
data 58 158 517 66 140.00 140.00 142.00 140.67 140.00 0.02 1800.68
data 59 70 525 33 59.00 68.00 68.00 60.00 60.00 0.02 1800.00
data 60 181 549 66 139.00 139.00 140.00 139.33 139.00 0.02 2.87
data 61 121 557 66 100.00 100.00 101.00 101.00 101.00 0.02 1800.00
data 62 101 571 33 80.00 90.00 87.00 80.67 80.00 0.02 1800.00
data 63 97 577 66 80.00 82.00 82.00 81.00 81.00 0.02 1800.00
data 64 176 595 66 160.00 160.00 161.00 160.00 160.00 0.03 1.34
data 65 179 596 66 159.00 159.00 160.00 159.00 159.00 0.03 85.10
data 66 348 600 33 300.00 300.00 303.00 300.00 300.00 0.03 5.62
data 67 371 600 66 300.00 300.00 301.00 300.00 300.00 0.05 16.72
data 68 359 613 66 300.00 300.00 302.00 301.00 301.00 0.06 1800.00
data 69 148 614 33 120.00 125.00 126.00 120.33 120.00 0.02 1518.01
data 70 192 623 66 160.00 160.00 161.00 160.00 160.00 0.03 3.74
data 71 197 624 33 158.00 158.00 165.00 159.00 159.00 0.02 1800.00
data 72 205 624 66 160.00 160.00 160.00 160.00 160.00 0.03 0.70
data 73 155 661 66 120.00 123.00 122.00 121.67 121.00 0.03 1800.00
data 74 209 664 33 180.00 180.00 183.00 180.00 180.00 0.02 159.15
data 75 72 665 33 60.00 71.00 68.00 61.00 61.00 0.02 1800.00
data 76 162 683 66 140.00 140.00 140.00 140.00 140.00 0.03 1.83
data 77 180 688 33 160.00 162.00 167.00 163.00 163.00 0.02 1800.00
data 78 199 688 66 160.00 160.00 162.00 162.00 162.00 0.03 1800.00
data 79 94 689 33 80.00 93.00 87.00 81.00 81.00 0.00 1800.00
data 80 112 691 33 99.00 107.00 107.00 100.00 100.00 0.02 1800.00
data 81 97 692 66 80.00 83.00 82.00 81.00 81.00 0.02 1800.00
data 82 89 697 66 80.00 82.00 81.00 81.00 81.00 0.03 1800.00
data 83 222 700 66 180.00 180.00 180.00 180.00 180.00 0.05 0.87
data 84 136 718 66 120.00 120.00 121.00 120.67 120.00 0.05 761.00
data 85 217 720 66 180.00 180.00 182.00 181.00 181.00 0.05 1800.00
data 86 178 721 33 140.00 146.00 146.00 141.33 141.00 0.03 1800.00
data 87 203 735 33 170.00 174.00 179.00 173.00 173.00 0.03 1800.00
data 88 137 777 66 120.00 123.00 121.00 120.67 120.00 0.03 1800.00
data 89 88 788 33 70.00 86.00 79.00 71.33 71.00 0.02 1800.00
data 90 157 791 66 139.00 140.00 140.00 139.67 139.00 0.05 8.35
data 91 147 851 66 118.00 124.00 120.00 119.33 118.00 0.05 1800.00
data 92 126 856 66 98.00 106.00 99.00 99.00 99.00 0.03 1800.00
data 93 141 856 66 119.00 125.00 120.00 120.00 120.00 0.05 1800.00
data 94 93 881 33 80.00 91.00 87.00 81.00 81.00 0.02 1800.00
data 95 204 882 33 170.00 177.00 174.00 171.33 170.00 0.03 1800.00
data 96 98 886 66 80.00 83.00 82.00 80.33 80.00 0.05 962.12
data 97 383 895 33 300.00 300.00 304.00 300.00 300.00 0.06 146.39
data 98 91 896 33 80.00 90.00 87.00 81.33 81.00 0.03 1800.00
data 99 176 956 66 160.00 160.00 162.00 161.33 161.00 0.08 1800.00
data 100 194 956 66 160.00 160.00 161.00 160.00 160.00 0.08 1800.00

Table 2: Detailed computational results for SMPTSP benchmark instances
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Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 101 166 997 66 140.00 144.00 141.00 141.00 141.00 0.03 1800.00
data 102 179 997 66 138.00 147.00 139.00 138.33 138.00 0.03 1800.00
data 103 348 1024 33 300.00 303.00 305.00 302.67 302.00 0.05 1800.00
data 104 181 1057 33 146.00 165.00 154.00 150.67 150.00 0.02 1800.00
data 105 173 1075 66 150.00 156.00 151.00 151.00 151.00 0.05 1800.00
data 106 121 1096 33 100.00 113.00 107.00 101.67 101.00 0.02 1800.00
data 107 114 1112 33 100.00 112.00 108.00 101.33 101.00 0.02 1800.00
data 108 162 1115 33 128.00 145.00 136.00 132.00 132.00 0.02 1800.00
data 109 205 1115 33 157.00 176.00 164.00 161.33 161.00 0.03 1800.00
data 110 183 1143 66 155.00 167.00 157.00 157.00 157.00 0.05 1800.00
data 111 155 1211 33 139.00 155.00 150.00 141.67 141.00 0.03 1800.00
data 112 200 1213 33 169.00 194.00 173.00 171.00 171.00 0.03 1800.00
data 113 141 1221 66 110.00 114.00 112.00 111.33 111.00 0.05 1800.00
data 114 157 1227 33 138.00 157.00 143.00 141.33 141.00 0.03 1800.00
data 115 228 1257 33 177.00 199.00 183.00 180.33 179.00 0.03 1800.00
data 116 205 1262 66 176.00 190.00 176.00 176.00 176.00 0.08 1800.00
data 117 192 1285 33 149.00 170.00 153.00 152.00 151.00 0.03 1800.00
data 118 180 1302 33 147.00 165.00 155.00 151.67 151.00 0.03 1800.00
data 119 236 1335 33 188.00 208.00 193.00 191.67 191.00 0.05 1800.00
data 120 228 1341 33 187.00 208.00 192.00 190.67 190.00 0.05 1800.00
data 121 147 1345 33 120.00 140.00 127.00 123.33 123.00 0.03 1800.00
data 122 422 1358 66 324.48 348.00 349.00 349.00 349.00 0.33 1800.00
data 123 187 1376 33 159.00 178.00 162.00 161.00 160.00 0.08 1800.00
data 124 198 1383 33 158.00 182.00 163.00 162.33 162.00 0.08 1800.00
data 125 157 1448 33 130.00 152.00 135.00 132.33 132.00 0.08 1800.00
data 126 193 1462 33 167.00 191.00 176.00 172.33 172.00 0.09 1800.00
data 127 192 1472 66 167.83 185.00 170.00 170.00 170.00 0.19 1800.00
data 128 207 1542 66 175.29 205.00 179.00 178.67 178.00 0.22 1800.00
data 129 233 1546 33 178.00 206.00 183.00 182.00 181.00 0.11 1800.00
data 130 176 1562 66 138.35 145.00 140.00 140.00 140.00 0.17 1800.00
data 131 415 1610 33 344.07 359.00 352.00 351.00 351.00 0.34 1800.00
data 132 216 1645 33 186.00 211.00 192.00 190.67 190.00 0.13 1800.00
data 133 211 1647 33 185.00 193.00 190.33 190.00 0.14 1800.00
data 134 184 1776 66 157.56 179.00 161.00 161.00 161.00 0.27 1800.00
data 135 213 1988 33 179.00 206.00 185.00 181.67 180.00 0.19 1800.00
data 136 216 2000 66 180.00 179.67 179.00 0.36 1800.00
data 137 245 2105 33 190.00 223.00 194.00 193.33 192.00 0.22 1800.00

Table 3: Detailed computational results for SMPTSP benchmark instances
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