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Abstract. This paper presents a hyper-heuristic approach which hybridises low-
level heuristics to improve constructed timetables. The constructed timetable is
analysed and the exams causing a soft-constraint violation are identified. It is
observed that both the type of move performed and the order in which exams
are rescheduled in the timetable affect the quality of the solution produced. Af-
ter testing different combinations in a hybrid approach, the Kempe chain move
heuristic and swapping timeslots proved to be the best heuristics to use in a hy-
bridisation. Similarly, it was proved that ordering the exams using Saturation De-
gree and breaking any ties using Largest Weighted Degree produces the best re-
sults. Based on these observations, an iterative hybrid approach is developed to
adaptively hybridise these two heuristics in two stages. In the first stage, ran-
dom heuristic sequences are generated and applied to the problem. The heuris-
tic sequences are automatically analysed. The heuristics repeated in the best se-
quences are fixed while the rest are randomly changed in an attempt to find the
best heuristic sequence. The approach is tested on the Toronto benchmark and the
exam timetabling track of the second International Timetabling Competition, to
evaluate its ability to generalise. The hyper-heuristic with low-level improvement
heuristics approach was found to generalise well over the two different datasets
and performed comparably to the state of the art approaches.

1 Introduction

For more than 40 years exam timetabling has been one of the mostly studied domains
in the AI and OR research communities. This is due to its importance in many aca-
demic institutions worldwide. However, much of the research was aimed at develop-
ing methodologies that produce the best quality timetables for a single problem [24].
A more recent direction in this field, namely, hyper-heuristics, aims to raise the level
of generality of search methodologies to create algorithms that act well over a range
of problems. A hyper-heuristic is seen as a heuristic to choose heuristics [7]. In this
case the low-level heuristics represent the search space. The low-level heuristics can be
categorised as heuristics which construct a timetable or heuristics which perform cer-
tain moves to improve a constructed timetable. This paper presents a random iterative
hyper-heuristic approach which uses improvement low-level heuristics. This approach
has been tested on the Toronto benchmark and the second International Timetabling
Competition (ITC2007) exam timetabling problems. It proved to generalise well over
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the two datasets. Furthermore, very competitive results have been produced against
other approaches in the literature.

The following section presents a brief description of the benchmarks and an overview
on different approaches, including hyper-heuristic approaches, developed in the exam
timetabling domain. A random iterative hyper-heuristic to improve timetables is pro-
posed in section 3. An adaptive methodology to select low-level heuristics and the re-
sults obtained are presented in section 4. The future extensions of this work are sum-
marised in section 5.

2 Exam Timetabling

2.1 The Toronto Benchmark

An exam timetabling problem consists of a set of exams to be allocated to a given set
of timeslots. The generated timetable must satisfy the hard constraints of the problem,
which are the requirements that cannot be violated, e.g. no one student must be sched-
uled to sit two exams during the same period. A timetable which meets all the hard
constraints given is called a feasible timetable. A timetabling problem can also have a
set of soft constraints that can be violated. The violations of these constraints are usu-
ally used to determine the quality of the timetable generated, e.g. there must be a certain
number of periods between two exams sat by the same student. Therefore, high quality
timetables contain the least number of soft constraint violations. The Toronto bench-
mark problem is well known in the exam timetabling community since it was firstly
introduced by Carter et al. [11] in 1996. Over the years, a slightly different version has
been used to test some approaches in the literature. The characteristics of the two ver-
sions of this dataset are presented in table 1. The problem has one hard constraint where
conflicting exams cannot be assigned to the same time slot. In addition, a soft constraint
is present where conflicting exams should be spread throughout the timetable as far as
possible from each other. The goal here is to minimise the sum of proximity costs given
as follows:

∑4
i=0(wi x n)/S

where

– wi = 24−i is the cost of assigning two exams with i time slots apart. Only ex-
ams with common students and are four or less time slots apart are considered as
violations, i.e. i ε {0,1,2,3,4}

– n is the number of students involved in the conflict
– S is the total number of students in the problem

Since then this problem has been used to test and compare many approaches in the
literature. Recently, a more constrained set of benchmarks was made available as part of
the International Timetabling Competition (ITC2007) [17]. The next section describes
the ITC2007 dataset in detail.
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Problem Exams I/II Students I/II Enrolments I/II Density Time Slots
car91 682 16925 56877 0.13 35
car92 543 18419 55522 0.14 32

ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8057 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 I 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18

sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5417 0.19 35
tre92 261 4360 14901 0.18 23

uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.12 35
ute92 184 2750 11793 0.08 10

yor83 I 181 941 6034 0.29 21
yor83 II 180 919 6002 0.3 21

Table 1. Characteristics of the two versions of the Toronto Benchmark datasets

2.2 The International Timetabling Competition (ITC2007) dataset

The ITC2007 exam timetabling track could be considered as a complex and a more
practical dataset in comparison to the Toronto benchmark. This is due to the larger
number of constraints it contains. A full description of the problem and the evaluation
function can be found in [17]. In addition, the characteristics which define the instances
are summarised in table 2. The problem consists of the following:

– A set of timeslots covering a specified length of time. The number of timeslots and
their durations are provided.

– A set of exams which should be allocated to the timeslots.
– A list of the students enrolled in each exam.
– A set of rooms with different capacities.
– A set of additional hard constraints (e.g. exam X must be after exam Y or exam A

must use Room R).
– A set of soft constraints and their associated penalties.

In comparison to the Toronto benchmark, the ITC2007 dataset has more than one
hard constraint. The hard constraints are as follows:

– No student sits more than one exam at the same time.
– The capacity for each individual room should not be exceeded at a given period.
– Period lengths should not be violated.
– Additional hard constraints should be all satisfied.

The soft constraints violations are summarised as follows:

– Two Exams in a Row The number of occurrences where a student sits two exams
in a row on the same day.
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– Two Exams in a Day The number of occurrences where a student sits two exams
on the same day. If the exams are back to back then this is considered as a Two
Exams in a Row violation to avoid duplication.

– Period Spread The exams have to be spread a certain number of timeslots apart.
– Mixed Durations The number of occurrences where exams of different durations

are assigned to the same room.
– Larger Exams Constraint The number of occurrences where the largest exams are

scheduled near the end of the examination session. The number of the largest exams
and the distance from the end of the exam session are specified in the problem
description.

– Room Penalty The number of times where certain rooms, which have an associated
penalty, are used.

– Period Penalty The number of times where certain timeslots, which have an asso-
ciated penalty, are used.

Instance Conflict Density Exams Students Periods Rooms no. of Hard Constraints
exam 1 5.05 607 7891 54 7 12
exam 2 1.17 870 12743 40 49 14
exam 3 2.62 934 16439 36 48 185
exam 4 15.0 273 5045 21 1 40
exam 5 0.87 1018 9253 42 3 27
exam 6 6.16 242 7909 16 8 23
exam 7 1.93 1096 14676 80 15 28
exam 8 4.55 598 7718 80 8 21

Table 2. Characteristics of the ITC2007 dataset

2.3 Exam timetabling approaches for the ITC2007 dataset

A three phased approach was developed by Muller [18] to solve the problems in the
ITC2007 exam timetabling track. The first phase consists of an Iterative Forward Search
algorithm to find a feasible solution. Hill climbing is then used to find the local optima
in the second phase. Finally, a Great Deluge Algorithm is applied to further explore the
search space.

Gogos et al. [14] proposed a method which used a GRASP (Greedy Randomised
Adaptive Search Procedure). In the construction phase, five orderings of exams based
on various criteria are generated. Tournament selection is used to select exams until
they are all scheduled. A backtracking strategy using a tabu list is employed as required.
In the improvement phase, Simulated Annealing is used. Finally, room allocations are
arranged using integer programming in the third phase.

Atsuta et al. [3] used a constraint satisfaction solver incorporating tabu search and
iterated local search. The solver differentiates between the constraints and their corre-
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sponding weights during computation to improve performance. De Smet [12] also in-
corporated local search techniques in a solver called Drools, an Open-Source Business
Rule Management System (http://www.jboss.org/drools/).

Pillay [19] introduced a biological inspired approach which mimics cell behaviour.
The exams are initially ordered using the saturation degree heuristic and scheduled
sequentially in the available ”cells” i.e. timeslots. If more than one timeslot is available,
the slot which causes the least overall constraint violations is chosen. Rooms are chosen
using the best fit heuristic. If a conflict occurs before all the exams are scheduled, the
timetable is rearranged to reduce the soft constraints violation. This is described as
cell division. If the overall soft constraint violation is not improved without breaking
hard constraints, cell interaction occurs. The timeslots are swapped in this process to
remove hard constraint violations. The process continues until a feasible solution is
achieved. Finally, the contents of cells having equal durations are swapped to improve
the solution. This is called cell migration.

McCollum et al. [16] proposed a two phased approach where an adaptive heuristic
is used to achieve feasibility during the first phase. The second phase improves the
solution through the employment of a variant of the Great Deluge Algorithm.

2.4 Exam timetabling approaches for the Toronto Benchmark

An approach which uses a sequential construction method, employed by Caramia et al.
[10], to assign exams in the least number of timeslots was able to produce the best qual-
ity timetables for four of the Toronto benchmark instances. It uses a greedy scheduler
to obtain a feasible solution. A penalty decreaser and trader are then applied to improve
the quality of the constructed solution. Burke et al. [6] introduced an approach which
combines a variable neighbourhood search with a genetic algorithm which produced
the best quality solution for one of the Toronto instances. In addition Burke et. al [5]
proposed a method where a hill-climber compares the candidate solution with a solu-
tion produced a couple of iterations back instead of the current solution. This was called
the ”late acceptance criteria” and it produced the best quality solutions for another four
instances. Yang et. al [26] employed Case-Based Reasoning to choose graph-heuristics
to construct initial solution which were improved using a Great Deluge algorithm. This
approach produced the best quality solution for one of the instances. The results ob-
tained by these approaches are presented in section 4.1.

2.5 Hyper-heuristics in exam timetabling

Recently, some new methods were investigated to automatically find the best heuris-
tic to solve a set of instances. This has led to the introduction of Hyper-heuristics. A
hyper-heuristic can be seen as a method to choose low-level heuristics depending on the
problems in hand. Furthermore, it could be used to adapt or tune heuristics and meta-
heuristics. Hyper-heuristics in exam timetabling can be categorised, according to the
low-level heuristics they use, into two types as follows:

1. Hyper-heuristics with constructive low-level heuristics
2. Hyper-heuristics with improvement low-level heuristics
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A Tabu search was developed by Burke et al. [8] to optimise a search space of
heuristic sequences comprised of two or more low-level heuristics. This work was ex-
tended in later research by Qu et al. [23] to construct heuristic sequences which pro-
duce feasible timetables. The combinations are then analyzed to find distribution pat-
terns of low-level heuristics, based on which the heuristic sequences are adaptively
adjusted to construct better timetables. In addition, hybridisations of the graph based
hyper-heuristic with local search methods was investigated in [22].

Asmuni et al. [1] used fuzzy logic to combine two out of three graph colouring
heuristics. The idea was to combine the two heuristics into a single value which calcu-
lates the difficulty of allocating an exam to a timeslot. The exams are ordered using this
value and are scheduled in order. Furthermore, the approach was extended to tune the
fuzzy rules instead of keeping them fixed [2].

Ersoy et al. [13] developed an approach called the hyperhill-climber where a hyper-
heuristic is embedded in a memetic algorithm. The aim of this hyper-heuristic was to
select the best hill-climber to apply or decide the best order in which hill-climbers
are executed. In addition, Pillay et al. [20] created another approach where genetic
programming was used to evolve hyper-heuristics.

Biligan et al. [4] presented different heuristic selection methods and acceptance cri-
teria for hyper-heuristics in exam timetabling. Finally, a different method of combining
heuristics was presented by Pillay et al. [21]. The low-level heuristics are combined
hierarchically and applied simultaneously instead of being applied sequentially.

3 A Hyper-heuristic with low-level improvement heuristics

Several low-level heuristics can be used to improve a timetable with varying quality.
The different low-level heuristics used could be considered as different methods for
escaping from local optima. However, the order in which exams are moved and the
type of moves performed play an important role in finding the best quality solution.
In our hyper-heuristic approach, an initial feasible solution is constructed using the
Largest Degree heuristic where the exams in the ordering are assigned randomly to a
timeslot causing the least penalty. Our objective is to analyse the performance of the
different low-level heuristics used to minimise the penalty incurred from a constructed
solution. In addition, we test the effect of using different orderings for the exams causing
penalties in the solution. Finally we develop an adaptive approach which orders the
exams causing violations and automatically selects the best heuristic to use for each
exam to produce an improvement.

3.1 The low-level heuristics

In this paper we investigate the effect of using different low-level heuristics or neigh-
bourhoods to improve timetables. A combination of two improvement low-level heuris-
tics is used in our approach. The following is a list of the heuristics investigated:

1. Move Exam (ME): This heuristic selects an exam and reassigns it to the timeslot
causing the least penalty.
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2. Swap Exam (SE): This heuristic selects an exam and tries swapping it with a sched-
uled exam leading to the least penalty timetable.

3. Kempe Chain Move (KCM): This is similar to the SE heuristic but is more complex
as it involves swapping a subset of conflicting exams in two distinct timeslots. This
neighbourhood operator proved success when it was previously used in [6] and
[25].

4. Swap Timeslot (ST) : This heuristic selects an exam and swaps all the exams in the
same timeslot with another set of exams in a different timeslot. After testing all the
timeslots, the swap producing the least penalty timetable is applied.

3.2 The random iterative hyper-heuristic

The study presented in this paper takes a similar approach to that presented in [23]
where a random iterative hyper-heuristic generates heuristic sequences of different qual-
ity to solve the benchmark problem mentioned in section 2.1. Instead of using the
heuristic sequences to construct solutions, the heuristic sequences are used here to im-
prove constructed feasible solutions by rescheduling exams causing penalties. Figure
1 presents the pseudo-code of this random iterative hyper-heuristic. The process starts
by constructing an initial feasible solution. Since the initial solution constructed affects
the improvement process, a random largest degree graph colouring heuristic which or-
ders exams according to the number of conflicts each exam has with others is used [6].
This allows us to compare our approach to other approaches in the literature which use
a similar method in construction. At every iteration, the exams causing violations in
the constructed solution are identified and a random sequence of moves is generated.
A move is the application of one of the low-level heuristics described in section 3.1.
The sequence of moves is then applied to the sequence of exams as they are unsched-
uled one by one. Only moves that improve the current solution are accepted. If a move
does not improve the solution, it is skipped and the exam stays in its current position.
A sequence is discarded if an improvement is not obtained after the whole sequence is
employed.

This approach was applied to four instances (hec92 I, sta83 I,yor83 I and tre92) of
the Toronto benchmark exam timetabling problems described in section 2.1 for off-line
learning of the best heuristic hybridisations and the order of execution leading to the
best improvement. After running this process for (ex50) times, where e is the number of
exams causing soft constraint violations in the constructed solution, a set of sequences
and the penalties of their corresponding solutions are obtained for further investigation
on the effectiveness of the different heuristics used. Finally, an adaptive approach was
developed and applied to the Toronto benchmark. Furthermore, to test the generality of
the approach, it was applied to the ITC2007 exam timetabling track. The approach is
presented in section 4.

3.3 Analysis of hybridising improvement low-level heuristics

In order to clearly observe the effect of the different low-level heuristics in improving
solutions, the heuristic sequences generated consist of two heuristics. We use the Kempe
chain move(KCM) heuristic as the basic heuristic in the sequences as it has proved to

142



Fig. 1. The pseudocode of the random iterative hyper-heuristic with low-level improvement
heuristics

be successful in previous work [6, 25]. The rest of the heuristics (ME, SE and ST) are
randomly hybridised into the list of KCM.

The random sequences are generated with different percentages of hybridisation by
inserting n ME, SE or ST, n = [1,..,e] in the sequences. For each hybridisation of KCM
with either ME, SE or ST, fifty samples are obtained for each amount of hybridisation.

We applied this approach to four instances of the Toronto benchmark exam timetabling
problems [11]. Table 3 presents the results obtained using ME, SE and ST in a hybridi-
sation with KCM as well as a comparison against using KCM only.

hec92 I yor83 I sta83 I tre92
KCM without hybridisation Best 13.50 43.84 160.43 8.99

KCM with ME Best 12.03 43.84 157.48 8.91
KCM with SE Best 12.03 42.37 157.75 8.75
KCM with ST Best 11.30 41.79 157.27 8.57

Table 3. Best results using KCM without a hybridisation and with several different moves.

It was observed that using a Kempe chain only produces the worst results. After
introducing other heuristics in a hybridisation with the Kempe chain moves, better re-
sults are obtained. Another observation from table 3 is that swapping timeslots and
performing Kempe chain moves produces the best improvement for all the instances.
One possible reason may be that swapping timeslots allows the search to be more di-
verse and to sample different areas of the search space to find good solutions faster. In
addition, no obvious trends could be obtained on the amount of ST hybridisation within
the best heuristic sequences. However, in all the sequences leading to the best timeta-
bles, the ST heuristic is randomly distributed within the sequences and the percentage
of hybridisation is less than 50%.
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3.4 Variations of Orderings of the exams causing a penalty

To analyse the effect of ordering the unscheduled exams causing a soft constraint vi-
olation in a solution, we decided to test different orderings while using the Kempe
Chain and swapping timeslot hybridisation stated in the previous section. After the ex-
ams causing violations are identified, they are ordered first before being reassigned to a
timeslot. Several orderings can be used to guide the search as follows:

– Largest Degree (LD) : The exams are ordered decreasingly according to the number
of conflicts each exam has with others.

– Largest Weighted Degree (LWD) : The exams are ordered similarly to LD but the
exams are weighted according to the number of students involved in the conflict.

– Saturation Degree (SD) : The exams are ordered increasingly according to the num-
ber of remaining timeslots available to assign them without causing conflicts. In the
case where ties occur, LWD is used as a tie breaker. From our previous work it was
shown that SD produces the best results when LWD is used to break ties in the
ordering [9].

– Largest Penalty (LP) : The exams are ordered decreasingly according to the penalty
they incur in the current solution.

– Random Ordering (RO) : The exams are ordered randomly.

Table 4 presents the average and best results of applying different orderings to the
unscheduled exams, then running a random heuristic sequence of KCM and ST to assign
them to better timeslots.

hec92 I yor83 I sta83 I tre92
KCM with ST + RO Average 11.99 42.63 159.74 8.91

KCM with ST + RO Best 11.60 41.33 158.46 8.64
KCM with ST + LD Average 12.15 42.09 159.39 9.00

KCM with ST + LD Best 11.32 39.69 157.76 8.66
KCM with ST + LWD Average 12.06 42.08 159.74 9.02

KCM with ST + LWD Best 11.39 39.69 157.49 8.66
KCM with ST + LP Average 12.69 42.10 163.32 8.91

KCM with ST + LP Best 12.50 39.69 159.50 8.51
KCM with ST + SD tb LWD Average 12.69 41.74 159.21 8.90

KCM with ST + SD tb LWD Best 11.19 39.47 157.18 8.49

Table 4. Results of hybridising KCM with ST using different orderings of the exams causing a
soft constraint violation. The notation ”X tb Y” means heuristic Y is used to break ties in heuristic
X

As shown in table 4, we found that using SD and breaking any ties in the order-
ing using LWD produced the best results. This is because SD orders the unscheduled
exams according to the number of remaining timeslots available to assign them with-
out causing conflicts. Therefore, the chances of moving exams at the top of the SD list
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and finding better timeslots for them becomes higher. Ordering the exams according
to the penalty they incur proved to be the second best ordering after SD. LD and RO
performed the worst when applied.

4 Adaptive Selection of Low-level Heuristics for Improving Exam
Timetables

Figure 2 presents the initialisation stage of the adaptive approach. The exams causing a
penalty are first identified and are unscheduled. They are then put in a list and ordered
using SD. Random heuristic sequences are generated using KCM and ST to reschedule
the exams. The sequences are then applied to the ordered exams and the corresponding
solutions are saved.

Fig. 2. The pseudocode of the initialisation stage of the adaptive hyper-heuristic with low-level
improvement heuristics

The above observations indicate that the best solutions were obtained when ordering
the exams causing violations using SD, and rescheduling them using either a Kempe-
chain move or swapping timeslots. It was also observed that the heuristic sequences
resulting in the best solutions used the same move for the majority of the exams (i.e. the
same heuristic appears in the same position in the majority of the sequences). There-
fore, we developed an intelligent approach that performs an analysis to the best 5% of
the sequences produced to generate a new set of sequences. The new set of sequences
obtained better results for all the problem instances. The adaptive approach was tested
and showed to be effective and comparable with the best approaches in the literature.

Figure 3 presents the pseudo-code of the approach which hybridises ST with KCM
in two stages. The process is presented as follows:

1. In the first stage, the best 5% of heuristic sequences are collected and analysed. If
the same heuristic is used in more than 75% of the heuristic sequences, then it is
stored. Otherwise the heuristic is neglected and the position is randomly assigned
as KCM or ST.
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2. n x 5 sequences for the large instances (uta92 I, uta92 II, car91 and car92) and n x
10 sequences for the small instances are generated, respectively. The new sequences
are then applied to the instance.

Fig. 3. Adaptive generation of heuristic sequences hybridising KCM and ST

4.1 The Toronto Benchmark Results

We tested this approach on the Toronto benchmark exam timetabling problems and
present the results in tables 5 and 6. The average computational time across the instances
is also presented for 30 runs on a Pentium IV machine with a 1 GB memory.
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hec92
I

yor83
I

ear83
I

sta83 I car92 car91 uta92
I

ute92 lse91 tre92 kfu93

AIH Aver-
age

12.69 41.74 38.98 159.21 4.49 5.39 3.56 27.97 11.45 8.90 15.54

AIH Best 11.19 39.47 35.79 157.18 4.31 5.19 3.44 26.70 10.92 8.49 14.51
Time(s) 397 1683 1692 759 41954 97961 61284 641 1466 4293 2745

Table 5. Results from the the Adaptive Improvement Hyper-heuristic (AIH) approach on the
Toronto Benchmark dataset.

hec92 II yor83 II ear83 II sta83 II uta92 II
AIH Average 12.43 50.49 41.98 35.00 3.54

AIH Best 11.35 49.72 39.60 32.57 3.45
Time (s) 498 1374 2792 1888 81316

Table 6. Contd. Results from the the Adaptive Improvement Hyper-heuristic (AIH) approach on
the Toronto Benchmark dataset.

The best results stated in the literature are presented in table 7. These include the
hill-climbing with a late acceptance strategy implemented by Burke et al. [5], the vari-
able neighbourhood search incorporating the use of genetic algorithms used by Burke
et al. [6], the sequential construction method developed by Caramia et al. [10] and the
Case-Based Reasoning approach employed by Yang et al. [26]. These algorithms are
described in section 2.4.

Problems AIH Burke(2008) Burke(2010) Caramia(2008) Yang(2005)
Best Best Best Best Best

[5] [6] [10] [26]
hec92 I 11.19 10.06 10.00 9.20 10.83
sta83 I 157.18 157.03 156.90 158.20 158.35
yor83 I 39.47 34.78 34.90 36.20 36.35
ute92 26.70 24.79 24.80 24.40 25.39

ear83 I 35.79 32.65 32.80 29.30 33.70
tre92 8.49 7.72 7.90 9.40 7.92
lse91 10.92 9.86 10.00 9.60 10.35
kfu93 14.51 12.81 13.00 13.80 13.82
car92 4.31 3.81 3.90 6.00 3.93

uta92 I 3.44 3.16 3.20 3.50 3.14
car91 5.19 4.58 4.60 6.60 4.50

Table 7. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
the best approaches in the literature on the Toronto Benchmark
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The results obtained indicate the generality of our approach to different constructed
timetables. We also make a comparison with other hyper-heuristics which produced
the best results in the literature in table 8. In comparison with the graph-based hyper-
heuristic in [8], our approach performs better in all the cases reported. In addition, it
performs better in 8 out of 11 cases in comparison with the hyper-heuristics investigated
in [21] and [22]. Finally, it performs better in 10 out of 11 cases compared to the Tabu
search hyper-heuristic investigated in [15]. Only the problems presented in table 8 were
compared to other results since the results for the other instances in table 1 were not
reported in the literature.

Problems AIH Kendall(2004) Burke(2007) Pillay(2009) Qu(2009)
Best Best Best Best Best

[15] [8] [21] [22]
hec92 I 11.19 11.86 12.72 11.85 11.94
sta83 I 157.18 157.38 158.19 158.33 159.00
yor83 I 39.47 - 40.13 40.74 40.24
ute92 26.70 27.60 31.65 28.88 28.30

ear83 I 35.79 40.18 38.19 36.86 35.86
tre92 8.49 8.39 8.85 8.48 8.60
lse91 10.92 - 13.15 11.14 11.15
kfu93 14.51 15.84 15.76 14.62 14.79
car92 4.31 4.67 4.84 4.28 4.16

uta92 I 3.44 - 3.88 3.40 3.42
car91 5.19 5.37 5.41 4.97 5.16

Table 8. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
other hyper-heuristics approaches in the literature on the Toronto Benchmark

4.2 The International Timetabling Competition (ITC2007) Results

To test the generality of our approach, we applied it to the ITC2007 exam timetabling
dataset. The initial solution is constructed by ordering the exams according to their
saturation degree. The exams are assigned a random timeslot in the situation where
more than one timeslot is available. After a feasible solution is constructed the Adaptive
Improvement Hyper-heuristic was applied to the constructed solution. To allow a fair
comparison with the reported competition results, the approach was run for the same
amount of time using 11 distinct seeds for each instance. Table 9 presents the results we
obtained in comparison with the best in the literature. The description of the approaches
used for comparison are presented in section 2.3. We do emphasise that the objective
here is not to beat the best reported results but to demonstrate the generality of our
approach to different problems with different constraints. A dash in the table means
that no feasible solution was achieved.

The Extended Great Deluge in [16] obtained the best results for 5 out of the 8
instances. However, the approach was run for a longer time as it was developed after
the competition. In the competition, the best results for all the 8 instances were reported
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in [18] using a three phased approach. The GRASP used in [14] produced the second
best results.

In comparison to the Constraint Based Solver developed in [3], our approach per-
formed better in 3 out of the 8 instances. The approach using the Drools solver in [12]
obtained feasibility for only 5 instances. Our approach outperformed it as we were able
to gain feasibility for all the 8 instances. This demonstrates the generality of our ap-
proach to solving exam timetabling problems. Finally, our approach performed better
on 6 of the 8 instances in comparison with the biologically inspired approach proposed
in [19].

Instances AIH McCollum(2009) Muller(2008) Gogos(2008) Atsuta(2008) De Smet(2008) Pillay(2008)
Best Best Best Best Best Best Best

[16] [18] [14] [3] [12] [19]
Exam 1 6235 4633 4370 5905 8006 6670 12035
Exam 2 2974 405 400 1008 3470 623 3074
Exam 3 15832 9064 10049 13862 18622 - 15917
Exam 4 35106 15663 18141 18674 22559 - 23582
Exam 5 4873 3042 2988 4139 4714 3847 6860
Exam 6 31756 25880 26950 27640 29155 27815 32250
Exam 7 11562 4037 4213 6683 10473 5420 17666
Exam 8 20994 7461 7861 10521 14317 - 16184

Table 9. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
the best approaches in the literature on the ITC2007 dataset

5 Conclusions

The study presented in this paper implements a hyper-heuristic approach which adap-
tively adjusts heuristic combinations to achieve the best improvement for constructed
timetables. An investigation is made on the low-level heuristics used and the order in
which exams causing soft constraint violations are rescheduled. The analysis is per-
formed on a set of four benchmark instances of differing difficulty in an off-line learning
process. It is shown that, of the heuristics tried, the best to combine with Kempe chains
is swapping timeslots. In addition, better solutions are produced when ordering the ex-
ams causing a soft constraint violation using Saturation Degree and breaking any ties
with Largest Weighted Degree. Based on the output of the learning process, an adaptive
approach which analyzes and adjusts some randomly generated sequences is imple-
mented and applied to the rest of the instances. Furthermore, the approach is applied to
a different and more constrained dataset, the ITC2007 dataset. The hyper-heuristic pro-
duced very competitive results compared to other approaches in the literature on both
datasets.

Future research directions include performing improvements during the timetable
construction stage instead of performing the improvements at the end of the construc-
tion. Using hybridisations of more than two low-level heuristics could also be investi-
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gated. Finally, the approach investigated in this paper can be applied to course timetabling
problems.
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