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Abstract We study round-robin tournaments for n teams, where in each round a

fixed number (g) of teams is present and each team present plays a fixed number (m)

of matches in this round. In the tournament each match between two teams is either

played once or twice, in the latter case in different rounds. We give necessary combina-

torial conditions on the triples (n, g,m) for which such round-robin tournaments can

exist, and discuss three general construction methods that concern the cases m = 1,

m = 2 and m = g−1. For n ≤ 20 these cases cover 149 of all 173 non-trivial cases that

satisfy the necessary conditions. Of these 149 cases a tournament can be constructed

in 147 cases. For the remaining 24 cases the tournament does not exist in 2 cases, and

is constructed in all other cases. Finally we consider the spreading of rounds for teams,

and give some examples where well-spreading is either possible or impossible.

1 Introduction

The most common form for sports competitions is the round-robin tournament. In

such tournaments the number of matches between each pair of teams is the same: in a

single round-robin tournament this number of matches is 1, while in a double round-

robin tournament it is 2. If the competition contains n teams, there are 1

2
n(n − 1)

matches in a single round-robin, and n(n− 1) matches in a double round-robin. Often

the location of the match is important. In this case a match is home for one team,

while it is away for the other team.

If the matches are divided in rounds, the rounds are ordered in time, and a team

plays at most in one match per round, we have the notion of break. We say that a team
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has a break between two of its consecutive matches, if it plays in both matches home,

or in both matches away. It is well-known ([8,5,6]) that if n is even, and there are n−1

rounds with each team playing a match, then there are at least n − 2 breaks. For n

odd, the usual round-robin tournament contains n rounds with n − 1 teams present,

playing one match. In this case we can find a round-robin tournament without breaks,

and even more remarkable this schedule is essentially unique (see [7]).

In some competitions the round-robin tournament has a different structure for the

rounds: in a round only a (small) subset of all teams play one or more matches. The

reason for this format can be two-fold: the match is played in a sports hall or court,

which is rented for a (part of the) day by the league (see also [13,9]) or the teams

prefer to play twice or more on the same day; this preference is encountered regularly

for youth teams. While often in round-robin tournaments breaks are an important

issue, this is obviously not the case in this situation.

Our main motivation was provided by the Dutch Inline Skater Hockey League,

where in each round 3 or 4 teams play once against each other, leading to 3 or 6

matches in a round. Note that scheduling a competition in this form gives the compe-

tition organizer the possibility to cope with problems due to unavailabilities of teams,

an aspect important for the Dutch Inline Skater Hockey League, where teams can in-

dicate what dates they are not available. Hence the construction of the round-robin

tournaments in this case is in parallel to the construction of basic match schedules

(see [12]) in the usual round-robin tournaments: we make a schedule for dummy teams

which are matched to the real teams in a second phase leading to the fixture list.1

This is the setting we will study: the round-robin tournament for n teams is divided

in rounds which always contain a subset of teams of the same size (g), and all teams

play an equal number (m) of matches in this round. The schedule in this form we

will call an (n, g, m)-tournament. If necessary we will attach ‘single’ or ‘double’; for

example a double (5, 4, 2)-tournament.

In Section 2 we will derive some necessary conditions for the existence of an

(n, g, m)-tournament. In the Section 3 and 4 we will give our results for the single

round-robin tournaments, while Section 5 will discuss the double round-robin tourna-

ments. In Section 6 we will give some case studies on the well-spreading of (n, g, m)-

tournaments.

In this work we mainly investigate the existence of (n, g, m)-tournaments by using

different ‘standard’ techniques. The techniques used apply to any number (n) of teams.

We tried to be exhaustive for ‘small’ n, namely n ≤ 20: it is seldom that one encounters

competitions with more than 20 teams. Our standard techniques settle the existence

of most (n, g,m)-tournaments for n ≤ 20. Most remaining cases were solved by hand,

though we made an ILP formulation as well, and used CPLEX 11.2 to establish the

existence of some double round-robin tournaments. The solutions constructed are usu-

ally far from unique; we noted that the solutions constructed by hand are usually much

more regular than those found by CPLEX; examples of this can be found in Section 4.

1 The dates represent the times that a round can be played. For most competitions of the
Dutch Inline Skater Hockey League there are more dates than rounds, leading to even more
possibilities for the competition organizer.
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2 Conditions for the existence of (n, g, m)-tournaments

We consider round-robin tournaments for n teams, where in each round a subset of g

teams play m matches. There are two cases that we call trivial, and which we skip in

all our further considerations:

1. The case g = 2 and m = 1. In this case each match represents a round.

2. The case g = n and m = n−1. In this case a round is a complete single round-robin

tournament.

For the remaining cases we can state integrality conditions for the existence of an

(n, g, m)-tournament. This is formulated in the following theorem.

Theorem 1 Let S be an (n, g,m)-tournament for a round-robin tournament. Let d =

1 if S is a single round-robin tournament, and d = 2 if S is a double round-robin

tournament. Then the parameters n, g,m and d have the following relations.

(a) g is even or m is even.

(b) dn(n − 1) is a multiple of gm.

(c) d(n − 1) is a multiple of m.

Proof.

1. The number of matches in a round is 1

2
gm. Hence either g or m must be even.

2. The number of rounds in tournament S is
1

2
dn(n−1)

1

2
gm

, i.e. the total number of matches

divided by the number of matches per round. Since this fraction is integer, we have

that dn(n − 1) is multiple of gm.

3. The number of rounds for a team is
d(n−1)

m
. Hence d(n− 1) needs to be a multiple

of m. �

Theorem 1 restricts the number of possible combinations considerably. Table 2 gives

all possible combinations (g,m) for n ≤ 20 in the single round-robin case, 80 cases in

total. For example, for n = 7 there exist at most 3 single (7, g, m)-tournaments, namely

for (g, m) = (3, 2), (g,m) = (6, 1), and (g, m) = (7, 2). A similar table for double round-

robin tournaments can be found in Section 5.

At this point it is appropriate to discuss a graph theoretical setting for the single

round-robin tournaments. The existence of a single (n, g, m)-tournament is equivalent

to a decomposition of the complete graph Kn in m-regular subgraphs on g vertices,

such that all these subgraphs are edge-disjoint. There are some special cases of interest:

1. If g = n and m = 1 this decomposition is called a 1-factorization. Necessarily n is

even. This case corresponds to the regular round-robin tournament for n teams.

2. If m = 2 we have a decomposition of Kn in cycles. In our case the vertices in the

components add up to g. If we require that all cycles have the same length g the

decomposition is called a cycle decomposition.

3. If m = g− 1 we have that the teams present in a round all play against each other.

Consequently the (n, g, g− 1)-tournament is a collection of subsets of {1, 2, . . . , n},

all of size g, such that each pair of teams is member of exactly 1 subset. Such

collection of subsets is an (n, g, 1)-(block) design, see for example [3].

In the next section we will describe the results based on these ‘standard construc-

tions’, and some variations. Section 4 is devoted to the cases for which no standard

construction exists.
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n (g, m)

4 (4,1)
5 (4,1) (5,2)
6 (6,1)
7 (3,2) (6,1) (7,2)
8 (4,1) (8,1)
9 (3,2) (4,1) (4,2) (6,1) (6,2) (6,4) (8,1) (9,2) (9,4)
10 (6,1) (6,3) (10,1) (10,3)
11 (5,2) (10,1) (11,2)
12 (4,1) (6,1) (12,1)
13 (3,2) (4,1) (4,3) (6,1) (6,2) (12,1) (13,2) (13,4) (13,6)
14 (14,1)
15 (3,2) (5,2) (6,1) (7,2) (10,1) (10,7) (14,1) (15,2)
16 (4,1) (4,3) (6,1) (6,5) (8,1) (8,3) (8,5) (10,1) (10,3)

(12,1) (12,5) (16,1) (16,3) (16,5)
17 (4,1) (4,2) (8,1) (8,2) (16,1) (17,2) (17,4) (17,8)
18 (6,1) (18,1)
19 (3,2) (6,1) (6,3) (9,2) (18,1) (19,2) (19,6)
20 (4,1) (10,1) (20,1)

Table 2. Parameters (g, m) for which a single (n, g, m)-tournament can exist.

3 Standard constructions for single round-robin tournaments

In the previous section we described three special cases, which we will call ‘round-

robin’ construction, ‘cycle’ construction, and ‘block-design’ construction. We will de-

scribe the results of each of these combinatorial constructions in a separate subsection.

Before turning to these constructions, we formulate a general construction, the merg-

ing of rounds. Note that this theorem is valid for both single and double round-robin

tournaments.

Theorem 2 Suppose an (n, g,m)-tournament exists with R rounds, where g = n, and

m′ is a multiple of m, as well as a divisor of mR. Then an (n, g, m′)-tournament exists

as well.

Proof

Starting with an (n, n, m)-tournament, we can unite groups of m′/m rounds to obtain

the (n, n, m′)-tournament. �

3.1 Round-robin constructions

The constructions for (n, n, 1)-tournaments (n even) and (n, n− 1, 1)-tournaments are

well-known ([8,6]). We will call these tournaments the regular round-robin tournaments

(single or double) for the given number of teams. Based on a regular tournament we can

construct other tournaments as well. The next theorem is valid for single and double

round-robin tournaments.

Theorem 3 Let M be the number of matches in the round-robin tournament. An

(n, g, 1)-tournament exists in the following cases:

(a) For n even, g even, and g a divisor of n.

(b) For n odd, g even, and g is divisor of n − 1.
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(c) For n even, g even, 1

2
g a divisor of M , and g ≤

1

2
n + 1.

(d) For n odd, g even, 1

2
g a divisor of M , and g ≤

1

2
(n + 1).

Proof

(a) Starting with a regular (n, n, 1)-tournament, we can split the 1

2
n matches of a round

in groups of 1

2
g matches each. All the matches in a round contain different teams,

hence we end up with an (n, g, 1)-tournament.

(b) The proof is similar to case (a), starting with a regular (n, n − 1, 1)-tournament.

(c) The construction resembles case (a), but we have to do a little more work. Consider

a regular (n, n, 1)-tournament, and order the matches in this schedule according to

the rounds. What we need to do is to refine this ordering such that picking the next
1

2
g matches each time, results in an (n, g, 1)-tournament. (Note that the number

of matches M is required to be a multiple of 1

2
g.) To construct the next round in

the (n, g, 1)-tournament, we pick the next 1

2
g consecutive matches: these fall within

round (say) r and round r + 1. What could happen is that the matches in round

r + 1 contain the same teams as those selected from round r. We show that the

order of the matches can be adjusted to avoid this. Suppose k matches are in round

r: these k matches contain 2k teams. Hence there are at most 2k matches in round

r + 1 with those teams. Consequently there remain at least 1

2
n − 2k matches in

round r + 1 that can be used in the (n, g, 1)-tournament. The number of matches

in round r + 1 is 1

2
g − k. Hence we need 1

2
g − k ≤

1

2
n − 2k, or 1

2
g + k ≤

1

2
n. Since

k < 1

2
g, and g ≤

1

2
n + 1, this condition is satisfied.

(d) The analysis is similar to case (d), starting with a regular (n, n− 1, 1)-tournament.

�

Theorem 3 settles the existence of 34 parameter combinations in Table 2, namely

all cases with m = 1 except the cases (9, 6, 1), (15, 10, 1), (16, 10, 1), and (16, 12, 1).

Applying Theorem 2 yields the cases (10, 10, 3), (16, 16, 3), and (16, 16, 5).

3.2 Cycle constructions

The decomposition of graphs by cycles of fixed length has been studied extensively.

This research lead to the end result for complete graphs [1,11], stating that the obvious

necessary conditions are also sufficient, see Theorem 4.

Theorem 4 Suppose n is odd and 3 ≤ g ≤ n, such that g divides 1

2
n(n− 1). Then the

complete graph Kn can be decomposed in edge-disjoint cycles of length g. �

Comparing this sufficient condition with the necessary conditions in Theorem 1, we see

that for the existence of (n, g, 2)-tournaments the necessary conditions are sufficient.

Hence all 22 (n, g, 2)-tournaments in Table 2 exist. Using Theorem 2 we get additionally

the existence of all 6 (n, n, m)-tournaments for n odd and m > 2 even. Note that the

results in [11,1] use cycles of fixed length. This can be used to obtain the following

construction.

Theorem 5 Suppose n is odd, g is even and 1

2
g divides n. Then a single (n, g, 1)-

tournament exists.

Proof

According to Theorem 4 the complete graph Kn can be decomposed in cycles of length

n. Choose in each of these cycles groups of 1

2
g non-adjacent edges. Letting these edges
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correspond to the matches of a round between the corresponding nodes, we obtain the

required (n, g, 1)-tournament. �

This construction yields several of the (n, g, 1)-tournaments constructed before. In

addition it yields the existence of a single (9, 6, 1)-tournament and a single (15, 10, 1)-

tournament.

3.3 Block design constructions

As explained in Section 2 we can use block designs for the construction of (n, g, g− 1)-

tournaments. We formulate this equivalence in the following theorem.

Theorem 6 A single (n, g, g − 1)-tournament exists if and only if an (n, g, 1)-design

exists. �

Consequently, we can use the extensive tables (see for instance §II.1 in [3]) on block

designs to settle the existence of (n, g, g − 1)-tournaments. For n ≤ 20 it yields the

following results.

– A (13, 4, 3)-tournament and a (16, 4, 3)-tournament exist.

– A (16, 6, 5)-tournament does not exist.

Note that we have the first negative result. This implies that the necessary conditions in

Theorem 1 are in general not sufficient. Another remark is on the (16, 4, 3)-tournament.

Such a tournament was used in [10] to obtain a regular round-robin tournament for 16

teams with at least 40 breaks. This block design is a so-called resolvable block design

(see also Definition 2): there exist 5 groups of 4 rounds each, where these 4 rounds

contain exactly all 16 teams. Splitting this resolution into 2 parts again, we obtain a

(16, 8, 3)-tournament.

Concluding we settled the existence of 4 additional tournaments, leaving only 9

cases from Table 2 unaccounted for; these cases we will study in the next section.

4 Ad hoc constructions of single round-robin tournaments

In this section we study the 9 cases in Table 2 that remained unsolved. We devote a

separate subsection to most of these cases.

4.1 The (9, 6, 4)-tournament

This tournament does not exist, which we can prove as follows. The 36 matches have

to be divided over 3 rounds, and each teams appears in 2 rounds only. If we look at

round 3, there are three teams not present, say the teams 1, 2, and 3. These all have

to appear in the rounds 1 and 2, while all other teams (4 to 9) appear in exactly one

of the rounds 1 and 2, say the teams 4, 5, 6 in round 1, and the teams 7, 8, 9 in round

2. Consequently the teams 1, 2, and 3 all have to play the teams 4, 5, and 6 in round

one, and the teams 7, 8, and 9 in round 2. The last matches for the teams 1, 2, 3

are the 3 mutual matches, to be played in 2 rounds. This is impossible, because the

(3, 3, 1)-tournament does not exist. Hence the claim follows.
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4.2 The (10, 6, 3)-tournament

The tournament has 5 rounds. Group the 10 teams in pairs, and require that in round

r the pairs r− 1, r and r +1 (cyclically) are present. With this basis a tournament can

be constructed. The tournament in Table 4.2 has the rounds permuted, to improve the

spreading.

Round 1 Round 2 Round 3 Round 4 Round 5

1-5 1-7 3-6 1-2 5-9
2-6 2-8 4-8 4-10 6-10
3-4 9-10 5-7 3-9 7-8
1-6 1-8 3-8 1-4 5-10
3-5 7-9 4-7 2-9 8-9
2-4 2-10 5-6 3-10 6-7
1-3 1-9 3-7 4-9 5-8
2-5 2-7 6-8 1-10 7-10
4-6 8-10 4-5 2-3 6-9

Table 4.2. A single (10, 6, 3)-tournament

4.3 The (15, 10, 7)-tournament

This tournament has 3 rounds, and each team plays in 2 of these rounds. We put the

teams 1-5 in group 1, 6-10 in group 2 and 11-15 in group 3. We can require that in round

1 the groups 1 and 2 play, in round 2 the groups 1 and 3, and in round 3 the groups

2 and 3. In a round all matches between teams of different groups have to be played.

Note that the teams within a group play according to a single (5, 5, 2)-tournament,

which exists. Hence we can construct a schedule, which is given in Table 4.3.

Round 1 Round 2 Round 3

group 1 - group 2 group 1 - group 3 group 2 - group 3
1-2, 3-4, 5-1, 2-3, 4-5 1-3, 5-2, 4-1, 3-5, 2-4 6-8, 10-7, 9-6, 8-10,7-9

6-7, 8-9, 10-6, 11-12, 13-14, 15-11, 11-13, 15-12, 14-11,
7-8, 9-10 12-13, 14-15 13-15, 12-14

Table 4.3. A single (15,10,7)-tournament

4.4 The (16, 8, 5)-tournament

This tournament has 6 rounds, and each team appears in 3 rounds. This suggests to

divide the teams in 4 groups of size 4 (1-4, 5-8, 9-12, and 13-16), and let 2 groups to

play in a round. Since there are 6 pairs of groups, this exactly fits. In a round the teams

of one group have to play against all other teams in the other one, and one team of

the same group. This leads to the tournament in Table 4.4.
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Round 1 Round 2 Round 3

group 1 - group 2 group 3 - group 4 group 1 - group 3
1-2, 3-4, 5-6, 7-8 9-10, 11-12, 13-14, 15-16 1-3, 2-4, 9-11, 10-12

Round 4 Round 5 Round 6

group 2 - group 4 group 1 - group 4 group 2 - group 3
5-7, 6-8, 13-15, 14-16 1-4, 2-3, 13-16, 14-15 5-8, 6-7, 9-12, 10-11

Table 4.4. A single (16,8,5)-tournament

4.5 The (16, 10, 1)-tournament and the (16, 12, 1)-tournament

These were constructed ad hoc from a (16, 16, 1)-tournament. Hence they both exist,

but the (extensive) schedules are not presented here.

4.6 The (16, 10, 3)-tournament

There are 8 rounds, and each team plays in 5 rounds. We require in round r the teams

10r − 9 to 10r, where the team number is taken modulo 16 from {1, 2, . . . , 16}. So in

the first round appear the teams 1 to 10, in round 2 the teams 11 to 16 and 1 to 4,

and round 3 the teams 5 to 14, etcetera. With some care the schedule in Table 4.6 can

be constructed.

R1 R2 R3 R4 R5 R6 R7 R8

1-7 11-1 5-11 15-5 9-15 3-10 13-4 7-14
2-8 12-2 6-12 16-6 10-16 4-9 14-3 8-13
1-9 11-3 5-13 15-7 9-2 3-12 13-6 7-16
2-10 12-4 6-14 16-8 10-1 4-11 14-5 8-15
3-9 13-3 7-13 1-8 11-2 5-12 15-6 9-16
4-10 14-4 8-14 2-7 12-1 6-11 16-5 10-15
1-5 11-15 5-9 15-3 9-13 3-8 13-2 7-12
2-6 12-16 6-10 16-4 10-14 4-7 14-1 8-11
3-7 13-1 7-11 1-6 11-16 5-10 15-4 9-14
4-8 14-2 8-12 2-5 12-15 6-9 16-3 10-13
3-5 13-15 7-9 1-3 11-13 5-8 15-2 9-12
4-6 14-16 8-10 2-4 12-14 6-7 16-1 10-11
5-7 15-1 9-11 3-6 13-16 7-10 1-4 11-14
6-8 16-2 10-12 4-5 14-15 8-9 2-3 12-13
9-10 3-4 13-14 7-8 1-2 11-12 5-6 15-16

Table 4.6. A single (16, 10, 3)-tournament

4.7 The (16, 12, 5)-tournament

This tournament contains 4 rounds, and each team appears in 3 rounds. This suggests

to divide the teams in 4 groups of 4, and per round to leave out one of these groups.

Since each pair of groups appears twice, we let each team play against 2 teams from a

different group, and one team from the own group. This leads to the schedule in Table

4.7. Here (a, b)-(c, d) denotes the matches a-c, b-d, a-d, and b-c.
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Round 1 Round 2 Round 3 Round 4

(1,2)-(5,6) (1,2)-(7,8) (1,2)-(11,12) (5,6)-(11,12)
(3,4)-(7,8) (3,4)-(5,6) (3,4)-(9,10) (7,8)-(9,10)
(5,6)-(9,10) (5,6)-(13,14) (9,10)-(13,14) (9,10)-(15,16)
(7,8)-(11,12) (7,8)-(15,16) (11,12)-(15,16) (11,12)-(13,14)
(9,10)-(1,2) (13,14)-(1,2) (13,14)-(3,4) (13,14)-(7,8)
(11,12)-(3,4) (15,16)-(3,4) (15,16)-(1,2) (15,16)-(5,6)

1-2, 3-4 1-3, 2-4 1-4, 2-3 5-8, 6-7
5-6, 7-8 5-7, 6-8 9-11, 10-12 9-12, 10-11

9-10, 11-12 13-14, 15-16 13-15, 14-16 13-16, 14-15

Table 4.7. A single (16, 12, 5)-tournament

4.8 The (19, 6, 3)-tournament

The (19, 6, 3)-tournament does not exist. This was established by formulating the con-

struction problem as an IP problem, and let CPLEX run to establish infeasibility.

5 Existence of double round-robin tournaments

The construction of double round-robin tournaments follows along the lines of the

single round-robin tournaments, but in addition there are two general constructions

from the single round-robin case. These we formulate in the following theorem.

Theorem 7 Suppose a single (n, g,m)-tournament exists. Then

(a) A double (n, g, m)-tournament exists.

(b) A double (n, g, 2m)-tournament exists.

Proof

(a) To construct the double round-robin tournament, we can repeat the single tourna-

ment.

(b) To construct the double round-robin tournament, we can repeat the matches in one

round. �

Case (b) is a construction that is usually not preferred as the two matches between

two teams are played in the same round. More generally, we define a proper round-

robin tournament as a tournament with only different matches in a round. We will

study exclusively proper round-robin tournaments from now on. There exist parame-

ters (n, g,m) for which the improper tournament exists, although a proper (n, g, m)-

tournament does not exist. This is for example the case for the double (15, 5, 4)-

tournament: since the single (15, 5, 2)-tournament exists, we can construct a double

(15, 5, 4)-tournament. However, a proper double (15, 5, 4)-tournament corresponds to

a (15, 5, 2)-design, which does not exist; see also Subsection 5.3.

The construction in case (a) is often preferred, or even required. However sometimes

it is better to use two different single round-robin tournaments, instead of one, see

Section 6.

In Table 5 we list all combinations (n, g, m) that satisfy the necessary conditions

in Theorem 1 for the double round-robin case. Because of Theorem 7(a) we omit the

triples for which the single tournament exists; hence we omit all triples from Table 2,
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n (g, m)

4 (3,2) (4,2)
5 (4,2)
6 (3,2) (4,1) (5,2) (6,2)
7 (4,1) (4,3) (6,2) (7,4)
8 (4,2) (7,2) (8,2)
9 (6,4) (8,2)
10 (3,2) (4,1) (4,3) (5,2) (6,2) (9,2) (10,2) (10,6)
11 (4,1) (5,4) (10,2) (11,4)
12 (3,2) (4,2) (6,2) (8,1) (11,2) (12,2)
13 (4,2) (6,4) (8,1) (8,3) (12,2) (13,8)
14 (4,1) (7,2) (13,2) (14,2)
15 (4,1) (5,4) (6,2) (7,4) (10,2) (12,1) (12,7) (14,2) (15,4)
16 (3,2) (4,2) (5,2) (6,2) (6,5) (8,2) (8,6) (10,2) (10,6)

(12,2) (12,10) (15,2) (16,2) (16,6) (16,10)
17 (8,4) (16,2)
18 (3,2) (4,1) (6,2) (9,2) (12,1) (17,2) (18,2)
19 (4,1) (4,3) (6,2) (6,3) (9,4) (12,1) (12,3) (18,2) (19,4)

(19,12)
20 (4,2) (5,2) (8,1) (10,2) (19,2) (20,2)

Table 5. Parameters for which only a double (n, g, m)-tournament can exist.

except the cases (9, 6, 4), (16, 6, 5), and (19, 6, 3). This leads to 93 cases to investigate

for n ≤ 20.

We will discuss the basic construction methods in this case, and establish the

existence of double (n, g, m)-tournaments for n ≤ 20.

5.1 Round-robin constructions

We can use Theorem 3 to construct tournaments from the regular double round-robin

tournament. This leads to 9 (n, g, 1)-tournaments: only the cases (12, 8, 1), (13, 8, 1),

(15, 12, 1), (18, 12, 1), and (19, 12, 1) remain open. Using Theorem 2 leads to the exis-

tence of 12 (n, n, m)-tournaments with n even and m > 1.

5.2 Cycle constructions

For cycle constructions for the double round-robin tournament we need the directed

version of Theorem 4, which can be found in [2].

Theorem 8 Suppose Dn is the complete digraph on n vertices and M = n(n−1) arcs,

and 3 ≤ g ≤ n, such that g divides M . Then Dn can be decomposed into edge-disjoint

directed cycles of length g. �

As in the single tournament case, this theorem leads to the conclusion that all double

(n, g, 2)-tournaments, satisfying the necessary conditions in Theorem 1 exist. Hence in

Table 5 we get the existence of the 43 remaining cases with m = 2. Using Theorem 2

we get the existence of the 6 (n, n, m)-tournaments, with n odd and m > 2 even.

By using Theorem 8 we can prove the ‘even’ version of Theorem 5:
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Theorem 9 Suppose n is even, g is even and 1

2
g divides n. Then a double (n, g, 1)-

tournament exists. �

From this theorem it follows that the (12, 8, 1)-tournament and the (18, 12, 1)-tournament

exist.

5.3 Block design constructions

A theorem similar to Theorem 6 also exists for double round-robin tournaments.

Theorem 10 A proper double (n, g, g− 1)-tournament exists if and only if a (n, g, 2)-

design exists. �

Hence we can settle these cases by using the tables for block designs.

– The (7, 4, 3)-tournament, the (10, 4, 3)-tournament, the (11, 5, 4)-tournament, the

(16, 6, 5)-tournament, and the (19, 4, 3)-tournament exist.

– A (proper!) (15, 5, 4)-tournament does not exist. As noted before there exists an

improper (15, 5, 4)-tournament.

5.4 The remaining cases

We have 15 cases left, 8 cases with m even and 7 cases with m odd. The cases with

m even are: (9, 6, 4), (13, 6, 4), (15, 7, 4), (16, 8, 6), (16, 10, 6), (16, 12, 10), (17, 8, 4), and

(19, 9, 4). Note that in all these cases an improper tournament exists. The proper cases

we solved with CPLEX: they all exist. The 7 remaining cases with m odd remain are:

(13, 8, 1), (13, 8, 3), (15, 12, 1), (15, 12, 7), (19, 6, 3), (19, 12, 1), and (19, 12, 3). These

were all constructed manually, but are not presented here.

There is an interesting series among these remaining cases, already starting with the

single (7, 3, 2)-tournament and the double (11, 5, 4)-tournament, and continuing with

two cases in the list above: the (15, 7, 4)-tournament and the (19, 9, 4)-tournament.

These tournaments are related to (4n− 1, 2n− 1, n− 1)-designs, where in our case n =

2, 3, 4, 5. The blocks of the block design are used to determine the teams in the round1.

For the (7, 3, 2)-tournament and the double (11, 5, 4)-tournament this determines the

tournament as well (all teams in a round play against each other). For n = 4, 5 each

pair of teams appears in n − 1 rounds. To compose the tournament we have to choose

which teams play against each other in which round. This can be done for n = 4, 5.

The (4n−1, 2n−1, n−1)-design is a symmetric block-design, also called a Hadamard

design of order n. For small n the Hadamard designs are constructed by using different

techniques, but for bigger values of n the existence is unknown. For one of the latest

results on Hadamard designs we refer to [4].

6 Spreading of rounds for teams

Till now we discussed parameters (n, g, m) for which (n, g, m)-tournaments might exist.

If such tournament exists, there are usually (but not always) many solutions. In this

1 Note that this is an extra restriction on the construction of the tournament.
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section we discuss an additional property that is important in practice, namely the

spreading of rounds for a team. This is especially important in cases that a team

appears in a few rounds only, few compared to the total number of rounds. In such

cases we would prefer that the rounds in which a team appears are ‘spread’ over all

rounds. Since we require this for all individual teams, it is not obvious that we can

achieve that. Before continuing it is wise to give a definition of what we mean by

‘well-spread’.

Definition 1 We call an (n, g, m)-tournament well-spread if after any number of

rounds, the number of rounds played by the teams differ at most 1.

In the regular (n, n, 1)-tournaments (n even) the number of rounds played by the teams

is the same after any number of rounds. For all other (n, g, m)-tournaments this is not

the case. For this reason we allowed a difference of 1 in Definition 1. The regular round-

robin tournaments are well-spread. The tournaments constructed by using Theorem

3(a) and (c) are well-spread as well. This is not the case for the tournaments constructed

by Theorem 3(b) and (d).

There is another class of tournaments for which the rounds can be ordered such

that the tournament is well-spread: the resolvable tournaments. This term is borrowed

from the theory of block designs.

Definition 2 We call a (n, g, m)-tournament resolvable if it is possible to construct

an (n, n, m)-tournament from it, by only merging rounds of the (n, g, m)-tournament

to a new round in the (n, n, m)-tournament.

For a resolvable (n, g, m)-tournament g is a divisor of n. The regular (n, n, 1)-tournaments

(n even) are (trivially) resolvable, as well as the tournament constructed from it by

Theorem 3(a). Also in other cases resolvable tournaments can exist. We mentioned

already the (16, 4, 3)-tournament in Subsection 3.3. The cases with m = 2 can be

constructed from resolvable g-cycle systems (see Section V1.12 in [3]). Such 3-cycle

system exists in K9, leading to a resolvable single (9, 3, 2)-tournament. (By accident

this tournament also corresponds to a resolvable (9, 3, 1)-design.) For K15 there exist

3-cycle, 5-cycle, and 7-cycle systems, leading to well-spread (15, 3, 2)-, (15, 5, 2)-, and

(15, 7, 2)-tournaments.

There are parameters (n, g, m) for which no well-spread tournament exists. A beau-

tiful example of this situation is the single (7, 3, 2)-tournament. It corresponds to a

(7, 3, 1)-design, which is unique (up to permutations of the teams). This tournament is

given in Table 6 if one only selects the first 3 matches in each round.

Note that any 2 rounds have exactly 1 team in common; this reflects the fact that

this design corresponds to a projective plane (Fano plane). Hence after 2 rounds, there

is one team that played 2 rounds (team 2), there are 4 teams that played 1 round

(the teams 1,3,4,5) and 2 teams that didn’t play at all (the teams 6 and 7). So the

tournament is not well-spread. However for the double (7, 3, 2)-tournament we can find

a well-spread tournament, by weaving two permuted single (7, 3, 2)-tournaments. Such

tournament is given in Table 6 as a double (7, 6, 2)-tournament: by separating the first

3 and second 3 matches in a round to consecutive rounds, we obtain the well-spread

double (7, 3, 2)-tournament.

Another example is the double (6, 3, 2)-tournament, which corresponds to a (6, 3, 2)-

design. This design is unique and has the property that any two subsets have one team

in common. Hence the (6, 3, 2)-tournament is not well-spread.
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R 1 R 2 R 3 R 4 R 5 R 6 R 7

1-2 2-3 3-4 4-5 5-6 6-7 7-1
1-4 2-5 3-6 4-7 5-1 6-2 7-3
2-4 3-5 4-6 5-7 6-1 7-2 1-3
3-5 4-6 5-7 6-1 7-2 1-3 2-4
3-6 4-7 5-1 6-2 7-3 1-4 2-5
5-6 6-7 7-1 1-2 2-3 3-4 4-5

Table 6. A double (7, 6, 2)-tournament

7 Conclusions

We studied an interesting extension of the regular single and double round-robin tour-

naments for n teams, which we called the (n, g,m)-tournaments. We derived necessary

conditions on the parameters (n, g,m) for the existence of a (n, g,m)-tournament. For

n ≤ 20 there are 173 combinations of (n, g,m) satisfying the necessary conditions; only

in 4 cases the (proper) (n, g, m)-tournament does not exist.

The (n, g, m)-tournaments appear in practice, especially for the case that 2 matches

are played in a round for a subset of teams (m = 2). From the theory of graph de-

composition we established that such tournaments exist, if the number of teams in a

round is a divisor of the total number of matches in the tournament. The case that

more matches are played in a round can be interesting as well. One could think of a

competitions where many short matches are played in a round, for example in a bridge

competition.

Our focus was on the existence of the tournaments. We only touched on one addi-

tional property, namely the spreading of rounds for a team. Another requirement could

be the spreading of the matches of a team within a round, (see [9]).
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