
The Erlangen Advanced Timetabling System (EATTS)
Unified XML File Format for the Specification of
Timetabling Systems

Johannes Ostler · Peter Wilke

Abstract It would be nice if all timetabling problems could be described in a canonical

and universal description language with standardized syntax. If such a description

would be available algorithms and/or frameworks could be used to interpret and/or

compile these descriptions, and solve the problem at stake. And systems, algorithms,

problems, etc. could be compared in a simple way.

Here we would like to suggest to step towards a standard, a XML format to define a

great number of different problems like Course Timetabling, High School Timetabling,

Employee Timetabling et cetera. In addition tools to edit these descriptions and to

apply algorithms to solve the described problem.

Keywords EATTS · Erlangen Advanced Timetabling System · XML · Benchmarks ·
File Format · Standard · Timetabling Systems · Timetabling Problems

1 Introduction

A common and widely accepted description format for timetabling problems and its so-

lution would be a great help when algorithms and/or frameworks are compared. When

looking at the literature there are description formats but they are too specific and

can’t be used for general problems. The narrow focused system evolved due to historic

reasons, specific domain properties or efficiency reasons, e.g. very often these descrip-

tion are incomplete because part of the problem is hard coded in the implementation.

In the year 2003 our research group published a approach for a unified timetabling

framework and format [GWB03]. In the following years we continued this work and

would like to suggest the next version of our description format.

Johannes Ostler
Universitaet Erlangen-Nuernberg, Informatik 5, Martensstrasse 3, 91058 Erlangen, Germany
Tel.: +49 (9131) 85-27998
E-mail: Johannes.Ostler@Informatik.Uni-Erlangen.DE

Peter Wilke
Universitaet Erlangen-Nuernberg, Informatik 5, Martensstrasse 3, 91058 Erlangen, Germany
Tel.: +49 (9131) 85-27998
E-mail: Peter.Wilke@Informatik.Uni-Erlangen.DE

447

2 Existing XML format for High School Timetabling Problems

There are some approaches on standardization of formats to define timetabling prob-

lems of a certain problem type. Especially the standardized format for benchmarks

in High School Timetabling [PAD+08] is interesting. In that paper a way is shown

to give a unified format for High School Timetabling problems of different countries.

The purpose is to provide a format for benchmark data interchange between indepen-

dent groups of researchers. ”The students are organized in base groups, and follow

lessons. The lessons of a (usually fixed) group of students in the same subject (like

math, arts, ...), usually with the same teacher, we will call a course.”[PAD+08, p.

3] Students, teachers and rooms are the three main groups of resources. Moreover

there are assets, which are organized in ”four categories: Time, Courses, Subjects, and

Resources”[PAD+08, p. 7]. Every time slot has a sequence number, the day and op-

tional the week is attached. ”A course is a collection of events that involves a group of

students and a subject. Events that refer to the same course, are called lessons of the

course. ... A resource is an entity with time restrictions. The most common resources

are the students, teachers, and rooms. ... Events are the basic scheduling object. An

event can represent either a single lesson, or a set of lessons, that have to be taught

at the same time.”[PAD+08, p. 8f] There are a set of standardized constraints, which

can be referenced in the XML. Their parameters can be set via XML tags.

The structure of the XML is:

<Problem >
<Instance >

<Assets > ... </Assets >
<Events > ... </Events >
<Constraints > ... </Constraints >

</Instance >
<Solutions > ... </Solutions >

</Problem >

Listing 1 Structure of High School Timetabling XML [PAD+08, p. 11f]

The Solutions tag includes an Event tag per event which stores information about

the assignments of this event. Information about the costs and/or the constraint vio-

lations also can be included.

3 Benefits of a new XML format

The existing formats can only describe a special class of timetabling problems. But the

need for flexibility requires to categorize and compare many different problems. One

approach would be to adapt our solver so that it can read many input file formats. But

if there is a unified format other research groups can use our benchmark files, too.

We decided to create a XML format for the following reasons. First of all XML

is a standard of information interchange using internet and good support to handle

easily XML data is available in most computer languages. XML is a structured format,

the syntax can be defined by a Document Type Definitin (DTD) [wik10] or a XML

Schema Definition (XSD) [W3C10a]. At least XML is easy to understand and many

software engineers are familiar with it. More information about XML can be found on

the websites of W3C R© [W3C10b].

448

4 The EATTS XML File Format for Problem Definitions

4.1 Entities of a Timetabling Problem

Descriptions start with the specification of the entities of a typical Timetabling Prob-

lem. In many cases a set of time slots has be assigned to a set of events. Usually this

assignment is subject to some constraints. In some cases other resources are not as-

signed fixed to the events. For example in Course Timetabling exactly one room has

be chosen from a set of rooms.

Our approach to describe different Timetabling problems distinguishes between

three main entity types: resources (including time slots), events and constraints. The

solution of a Timetabling problem is the assignment of resources of different resource

types to the events. Solution have assigned costs depending on the violated constraints.

In our approach the description consists of a model part and a data part. While the

model takes care of the general structure of the problem at hand the data part takes

care of the individual components of the problem. For a School Timetabling Problem

the model would contain the resource types like teachers and rooms, while the data

part would contain the individual teacher with names, hours per week, subjects, etc.

4.2 RECPlan

In the EATTS XML format a Timetabling Problem is declared by a RECPlan tag. REC

stands for Resources, Events and Constraints. The typical structure of this tag is shown

in the listing below.

<RECPlan name=" nameOfThePlan " planVersion="0">
<TimeFrame ... />
<ResourceTypes > ... </ResourceTypes >
<ResourceCollections > ... </ResourceCollections >
<Resources > ... </Resources >
<Events > ... </Events >
<EventCollections > ... </EventCollections >
<Constraints > ... </Constraints >

</RECPlan >

Listing 2 Structure of RECPlan

The TimeFrame tag defines the time frame of the planning period.

The defintion of resource types starts with the tag ResourceTypes. Resources

of a resource type can be subdivided into collections which are defined in the tag

ResourceCollections. The same mechanism is available to describe event types and

event collections. To specify the resources the tag Resources is used, similar for events

the tag Events.

The constraints have there own part in the description starting with the tag

Constraints.

4.3 TimeFrame

The planning period of a Timetabling Problem starts at absolute date start. All other

points in time and intervals of time are declared relatively to this date. Because of the

variety of timetabling problems it is necessary to define a time grid. Typically schedules

449

are represented as a table. Often the columns represents one day and the lines one hour

or parts of one hour. The time which lies between the first point in time of column

i and this of column i + 1 is called the horizontal scaling hs. The vertical scaling vs

is the minimal timespan between two vertical lines. The value of the time t is given

relatively to start, so tabs = t + start. A time slot (s, d) starts at the absolute point in

time tstart = s + start and ends at tend = tstart + d.

The following condition must be true to ensure that all sub-units can be mapped

correctly to the given time line.

{hs, t, s, d} ⊂ {x = n · vs | n ∈ N} (1)

<TimeFrame absoluteStart=" 1253526334272 " horizontalScaling="86400000"
verticalScaling="900000" cycleLength="7" repeatNCycles="1"/>

Listing 3 Structure of RECPlan

The attributes horizontalScaling and verticalScaling determine the horizontal and

vertical scaling. The unit of time values is milliseconds. The absolute start absoluteStart

is given as a Unix timestamp value. Unix time stamps are widely supported, even on

windows systems, e.g. Java VM. The period to be planned is typically a multiple of

hs, typical periods are a week respectively seven days (see above). In that case the

attribute cycleLength has the value seven. For School Timetabling the schedule of a

standard week will be valid for the following x weeks. So the attribute repeatNCycles

will have the value x.

4.4 Resource Types

Every family of Timetabling Problems has the same types of resources. For example

in Course Timetabling there are teachers, rooms, classes, students, and subjects, while

for rosters the resource types are employees, machines et cetera. The description starts

with the definition of resource types and after that the resources of each resource type

are defined. Every resource type has a denomination like Teacher or Employee and a

set of attributes. The definition of an attribute includes the name and the type of the

attribute’s value.

<ResourceTypes >
<Type name="TimeSlot">

<Attribute name="Slot" typeKind="S" typeDenom="TimeSlot" isList="false"/>
</Type>
<Type name="Room">

<Attribute name="Name" typeKind="S" typeDenom="String" isList="false"/>
<Attribute name="Size" typeKind="S" typeDenom="Integer" isList="false"/>

</Type>
...

</ResourceTypes >

Listing 4 Example of a ResourceTypes tag

The Type tag defines a resource type. The attribute name specifies its name. This

tag includes a set of Attribute tags, which represents the attribute definitions of

the resource type. The attribute typeKind typecasts the type of the attribute value.

Possible types are ”S” for simple, ”G” for group, ”R” for resource and ”E” for event.

The type simple includes elementary values like integers, floats, strings or time slots.

450

The attribute typeDenom specifies this type more precisely. The attribute values can

be single values or a list of values. This property will be defined by the attribute isList.

4.5 ResourceCollections

Resources of a certain type can be grouped in collections. There are four different kinds

of collections.

1. Simple groups are called resource group. A resource group includes a set of resources

of a certain resource type. The relationship between a resource and a resource group

is n : m. Every resource can be added to any number of collections and vice versa.

2. The union of the elements of a set of collections can be defined by the Union tag.

3. The Intersection specifies the intersection of the elements of a set of collections.

4. If the set Rrt is the set of all resources of the resource type rt and Grt is any

resource collection of the resource type rt, then INV (Grt) = {r ∈ Rrt|r /∈ Grt} is

the absolute complement of Grt. The tag Inverter defines such a complement of

a resource collection.

<ResourceCollections >
<ResourceCollectionsByType typeName="TimeSlot">

<Group name=" MorningSlots "/>
<Inverter name=" AfternoonSlots ">

<CollectionRef name=" MorningSlots "/>
</Inverter >
<Union name="AllSlots">

<CollectionRef name=" MorningSlots "/>
<CollectionRef name=" AfternoonSlots "/>

</Union>
...
</ResourceCollectionsByType >
...

<ResourceCollections >

Listing 5 Example of a ResourceCollections tag

All collections of a plan are enclosed in ResourceCollections tag. The Resource-

CollectionsByType tag is a container for all definitions of collections of a certain

resource type. The attribute typeName specifies the corresponding resource type by its

name.

A simple collection of resources is defined by a Group tag. The name attribute

determines the denomination of the collection. This name must be unique for all col-

lections of the same type. This tag does not include any information regarding which

resources are members of the group. A CollectionRef tag references a collection by

its name. A union or intersection can include any number of other collections while an

inverter can include only one.

4.6 Resources

The resource definitions are encapsulated in Resources and ResourcesByType tags

following the collections. The Resource tag defines one resource. Every resource has its

unique id which is declared in the id attribute. Enclosed in a AttributeValues tag the

AttributeValue determines the value of the attribute which is referenced by the value

of the name attribute. The resource defines to which resource groups it is assigned to.

451

<Resources >
<ResourcesByType typeName="Class">

<Resource id="Class0">
<AttributeValues >

<AttributeValue name=" classRoom">
<ResourceRef id="Room16" resourceType="Room"/>

</AttributeValue >
<AttributeValue name="name">

<String >1A</String >
</AttributeValue >
<AttributeValue name="grade">

<String >1</String >
</AttribteValue >
<AttributeValue name="teacher">

<ResourceRef id="Teacher7" resourceType="Teacher"/>
</AttributeValue >
<AttributeValue name="group">

<ResourceCollectionRef name="students 1A" resourceType="Student"/>
</AttributeValue >

</AttributeValues >
<ContainingGroups >

<CollectionRef name="sports male of grade 1"/>
<CollectionRef name="sports female of grade 1"/>

</ContainingGroups >
</Resource >

</ResourcesByType >
</Resources >

Listing 6 Example of Resources tag

The values of the attributes are enclosed in tags which depend on the type of the

value. Possible Tags and their meaning are listed in the following table.

Value Tag Type of Value

String string literals
Integer integer numbers
Float floating-point numbers
Boolean boolean values
Time relative time values
TimeSlot relative time spans
ResourceRef references to resources
ResourceCollectionRef references to a resource collection
EventCollectionRef references to a event collection

Table 1 Value types of attributes

4.7 Events

The planning process is all about events. The time table - as a result of the planning

process - determines which resource is assigned to which event. Below rt a resource

type and e an event of the plan is shown. For every event it can be declared how much

resources of a certain resource type have to be assigned as minimal mine,rt or maximal

maxe,rt value so that the resulting time table is a valid solution. Two additional subsets

of resources of this type can be defined: one which is assigned fixed to this event and/or

one subset of resources which could be assigned, at least one of them must exist.

452

Let Fe,rt and Oe,rt be a subset of Rrt. Fe,rt is the set of resources of the resource

type rt which is assigned fixed to the event e and Oe,rt is the set of resources from

which the planning component can select. Let s be a result of the timetabling problem,

so s(e, rt) is the set of resources of resource type rt which are assigned to the event e

and s(r) is the set of events assigned to the resource r.

The following must be true:

Fe,rt ⊂ Re,rt ⊂ Fe,rt ∪Oe,rt (2)

The following condition should be true to avoid constraint violations.

mine,rt ≤ |Re,rt| ≤ maxe,rt (3)

<Events >
<Event name="5A_Maths">

<ResourceLists >
<ResourceList resourceTypeName="TimeSlot" max="4" min="4" fixed="true">

<OptionalGroup name=" MorningSlots "/>
</ResourceList >
<ResourceList resourceTypeName="Class" max="1" min="1" fixed="true">

<FixedGroup name="class 5A"/>
</ResourceList >

...
<ResourceList resourceTypeName="Teacher" max="1" min="1" fixed="true">

<OptionalGroup name="teachers of 5A_Maths"/>
</ResourceList >
...

</ResourceLists >
<ContainingGroups >
<EventCollectionRef name="Maths Lessons">
<EventCollectionRef name="Lessons of 5A">

</ContainigGroups >
</Event >

</Events >

Listing 7 Example of Events tag

The Event tag defines an event. Its name is set by the name attribute. For every

resource type this tag includes a ResourceList tag, which defines mine,rt by the

attribute min or maxe,rt by max. Fe,rt is declared by the tag FixedGroup, Oe,rt by

the OptionalGroup tag. If one of these group tags is missing the corresponding group

is believed to be an empty set, but at least one of them must be not empty. The sets

are referenced by the name of the group, which is stored in the resourceTypeName

attribute. Just like the resources events can also be classified into collections. The

EventCollectionRef tags in the ContainingGroups tag determines to which event

group this event is assigned to.

The assignments of resources of a certain type rt to a set of events {e1, ...en} can

be linked. That means that s(e1, rt) = s(e2, rt) = ... = s(en, rt). For this purpose the

attribute baseEvent must be added to the ResourceList tags of {e2, ...en}. The value

of this attribute is the name of e1.

4.8 Constraints in general

In the preceding sections a unified model for defining different Timetabling Problems

was described. Now it’s time to develop a uniform way to declare constraints. First of

453

all lets have a look at different solutions si of the same problem. A constraint measures

the quality of a solution from a certain point of view. It defines a cost function qc(si).

The codomains of these functions are subsets of R+
0 . Let C be the set of all constraints

of a problem. The quality of a solution si is defined as Q(si).

Q(si) =
X
c∈C

qc(si). (4)

The only aspect in which the solutions sk and sl can differ are the different assign-

ments of resources to the events. If the costs of a constraint does not depend on these

assignments this means that they are fixed costs for all solutions and can’t be reduced

by any planning algorithm. For simplicity they should not be part of the description,

i.e. only variable costs should be defined in the model.

A constraint is defined by its scope scopec and a function qc(s, y), whereby s is a

solution and y is an element of the scope. It is typical that the constraints differ in

weight. So a weight function wc : N→ R must be defined for every constraint c. That

way there must be a function violc(s, y) : S × scopec → N which counts the number of

violations against constraint c in the solution s on the view of y.

A view of a resource or event can be understood as looking at the solution showing

only the parts where this resource or event is involved. E.g. a student wants to see his

personal time table and not the whole plan of the entire school.

qc(s, y) = wc(violc(s, y)) (5)

qc(s) =
X

y∈scopec

qc(s, y) (6)

<Constraints >
<OperationLists > ... </OperationLists >
<Selectors > ... </Selectors >
<Variables > ... </Variables >
<TimeClashConstraint >

<ConstraintProperties name=" TimeClash for Teacher" type="hard">
<PenaltyFunction weight="50.0" coefA="1.0" coefB="0.0" exponent="2.0"/>
<Description >

No teacher can give more than one lesson at the same point in time.
</Description >

</ConstraintProperties >
<ResourceTuple >

<ResourceCollectionRef name=" Teacher_All " resourceType="Teacher"/>
</ResourceTuple >

</TimeClashConstraint >
</Constraints >

Listing 8 Constraints tag

The definitions of the constraints are enclosed in the Constraints tag. To define

standardized constraints we use lists of operations, selectors and variables. These enti-

ties will be explained in the sections 4.9, 4.10, and 4.12 below. Now the typical structure

of a constraint definition is shown using the example of a TimeClashConstraint tag.

The constraint of the example is violated if one teacher gives more than one lesson at

the same time. The ConstraintProperties tag declares all properties common to all

types of constraints. Every constraint has a denomination given by the name attribute

and a type. In our description language constraints come in three different flavours:

the familiar hard and soft constraints and in addition soft hard constraints. In normal

mode the latter are considered as hard constraints but in exception mode - when no

454

feasible solution could be found in normal mode - they are considered as soft con-

straints. This eases the burden on the planning algorithm. Every constraint c must

have a weight function wc. We use a standardized weight function which depends on

four float parameters: weight, coefA, coefB and exponent. These parameters are set by

the corresponding attributes of the PenaltyFunction tag.

wc(x) =


weight · (coefA · xexponent + coefB)

0
if

x ∈ N+

x = 0
(7)

The Description offers the opportunity to document additional information.

The ResourceTuple tag declares that this constraint must be evaluated for every

resource of the resource type Teacher. The view of a constraint definition can be one of

the following: the view of an event, the view of a relation between events or the view

of one resource. An example for the latter is the view of a teacher. So there are three

different main types of constraints in the model: event, event relation and resource

constraints.

4.9 Event Constraints

An event constraint ec measures a solution s from the view of a single event e. The

costs of the event e of ec for the solution s are defined by the function violec(s, e).

Every event constraint has a scope Scopeec ⊂ E.

Let’s have a look at the declaration of viol(s, e). Let A(s, e) be the assigned re-

sources of event e in the solution s. The violation count function viol(s, e) indicates if

the constraint is violated in regards to event e in the context of solution s. Typically

viol(s, e) is composed of three parts: two operations evari(A(e)) and evarj(A(e)) and

a relational operator rop. An event variable evar is composed of three parts too: a

selection function sel(A(e)) : A(s, e) → s(e, rti) ⊂ Rrti , an attribute value selection

function attr : Rrti → V , and an operation op : V → V ′. Hereby V and V ′ are sets of

lists of attribute values. The function rop maps the cross product V ′l × V ′r into the set

of natural numbers.

evar(A(s, e)) = op(attr(sel(A(s, e))) (8)

violec(s, e) = rop(evari(A(s, e)), evarj(A(s, e))) (9)

An example of an event constraint if the Room Size Constraint which is violated

if the capacity of one of the assigned rooms is less than the number sc of assigned

students.

viol∗ec(e, s, r) =


1 if capacity(r) < sc

0 else
(10)

violec(e, s) =
X

r∈s(e,Room)

viol∗ec(e, s, r) (11)

<Selectors >
<EventSelector name="Room Capacity Selector" lookAtEveryResourceSingle="

true">
<TupleValue type="Room" attribute="Capacity"/>

</EventSelector >

455

<EventSelector name="Student Count Selector" lookAtEveryResourceSingle="
false">

<TupleValue type="Student"/>
</EventSelector >

</Selectors >

Listing 9 Selectors of Room Size Constraint

The Room Capacity Selector returns the capacity values of the assigned rooms.

Because lookAtEveryResourceSingle has the value true the capacity of every assigned

room must be compared with the right operand. The Student Count Selector collects

all assigned students into a list of resources. Because only the count of students matters

no attribute value is selected.

<OperationLists >
<OperationList name="List Length">

<Operation >list_size </Operation >
</OperationList >

</OperationLists >
...

<Variables >
<EventVariable name="Student Count" typeDenom="Integer">

<EventSelectorRef name="Student Count Selector"/>
<OperationListRef name ="List Length"/>
</EventVariable >
<EventVariable name="Room Capacity" typeDenom="Integer">

<EventSelectorRef name=" RoomCapacitySelector "/>
</EventVariable >

</Variables >

Listing 10 Variables of Room Size Constraint

The values returned by the selectors will be handled by the variables. Student Count

returns the size of the students list of the Student Count Selector, hereby it uses the

operation list List Length.

<EventConstraint relOpDenom="geq">
<ConstraintProperties name="Room size" type="soft" slopeType="split">

<PenaltyFunction weight="50" coefA="1" coefB="2" exponent="1"/>
<Description >The room size must be >= student count</Description >

</ConstraintProperties >
<EventVariableRef name="Room Capacity"/>
<EventOperand >

<EventVariableRef name="Class Capacity"/>
</EventOperand >
<CollectionRef name=" Events_All "/>

</EventConstraint >

Listing 11 Room Size Constraint

The relational operator ≥ is declared by the attribute relOpDenom. There is a list

of different relational operators which can be referenced by name. The CollectionsRef

tag defines the scope of the constraints, in this case all events. The event operand can

also be a constant.

A special type of event constraints is the MinMaxConstraint. The scope of this

constraint is a set of events and the constraint is defined for a certain resource type

rt. The resource list, which is associated with event e and resource type rt, defines a

minimal min(e, rt) and maximal max(e, rt) count of resources giving the interval in

which the number of resources assigned to event e should lie.

456

violminmax rt(e) =

8<:
mine,rt − |s(e, rt)| if |s(e, rt)| < mine,rt

|s(e, rt)| −maxe,rt if |s(e, rt)| > maxe,rt

0 else

(12)

<MinMaxConstraint type="minmax">
<ConstraintProperties name="TimeSlot MaxConstraint " type="hard">

<PenaltyFunction weight="100.0" coefA="1.0" coefB="2.0" exponent="0.0"/>
<Description/>

</ConstraintProperties >
<ResourceTypeRef name="TimeSlot"/>
<CollectionRef name="All"/>

</MinMaxConstraint >

Listing 12 MinMaxConstraint tag

The attribute type defines which limit must be checked. Possible values are ’min’

(only the minimal limit), ’max ’ (only the maximal limit), and ’minmax ’ (check both

limits). The tags ResourceTypeRef references the resource type rt, and CollectionRef

defines the scope of the constraint.

4.10 Resource Constraints

The view of a resource constraint is the view of a single resource or a tuple of resources.

A special example of the first case is shown above with the TimeClashConstraint. If

a student stud can choose between courses of the same subject sub, there will be a

constraint necessary to ensure that the student will participate only at one of these

courses. One possibility to express this constraint is to define a maximal number of

events to which both (stud and sub) are assigned to.

In this case the view of this constraint are tuples (stud, sub) whereby stud ∈
RStudent and sub ∈ RSubject. Below the definition of a resource constraint by the

example of a Workload Constraint is given. Every teacher has an attribute workload

and this limit should not be exceeded by the generated solution.

A resource tuple selector rts maps the set of all resources to a set of resource

tuples. The codomain Codom(rts) of rts is a subset of Trt1,...,rtn the set of all tuples

of resources of the resource types rt1, ..., rtn.

Codom(rts) ⊆ Trt1,...,rtn

Trt1,...,rtn = {tuple ∈ Rrt1 × ...×Rrtn : rti 6= rtj ∀i, j ∈ [1, n] ∧ i 6= j} (13)

Let tuple t = (r1, ..., rn) be an element of Trt1,...,rtn . There are two ways to define

the associated events, on the one hand the intersection way IS(t), on the other hand

the union way U(t).

IS(t) = {e ∈ E | e ∈ s(ri) ∀i ∈ [1, n]} (14)

U(t) = {e ∈ E | (∃i ∈ [1, n] : e ∈ s(ri))} (15)

A resource selector rs includes a resource tuple selector rtsrs and defines whether

US or IS will be applied. The resource selector rsrc of a resource constraint rc defines

the scope scoperc.

457

scoperc = Codom(rtsrc) (16)

Let t ∈ scoperc be a tuple.

rs(t) =


IS(t)

U(t)
(17)

<Selectors >
<ResourceSelector name="Events of a Teacher" unionType="Union">
<ResourceTuple >
<ResourceCollectionRef name=" Teacher_All "

resourceType="Teacher" type="elem"/>
</ResourceTuple >

</ResourceSelector >
<ResourceSelector name="Student x Subject" unionType=" Intersection ">
<ResourceTuple >
<ResourceCollectionRef name=" Student_All " resourceType="Student"

type="elem"/>
<ResourceCollectionRef name=" mainSubjects "

resourceType="Subject" type="group"/>
</ResourceTuple >

</ResourceSelector >
</Selectors >

Listing 13 Resources Selectors

Events of a teacher represents the view of one teacher and returns whose assigned

Events. The second resource selector Student×Subject is a little bit more complex. Its

view is a tuple of a student and a set of subjects subjects. If the attribute type is ’group’

the tuples will be generated with a set of all resources of the group. An example is the

group of all main subjects mainSubjects. So tuples between all students of the collection

Student ALL (’elem’) and the collection mainSubjects (’group’) can be generated. The

return values are the events to those the student and at least one subject of subjects

is assigned to. IS is selected because the unionType is set to Intersection.

A resource variable rv is based on a resource selector rsrv. It can be expanded by

an event variable evrv and an operation list olrv. Every resource variable rvrc maps a

tuple t ∈ scoperc to a value rvrc(t). This value is the left operand of violrc(t).

EVrv(x) =


evrv(x) if evrv is set

x else
(18)

OLrv(x) =


olrv(x) if olrv is set

x else
(19)

rvrc(t) = OLrv(EVrv(rsrv(t))) (20)

<Constraints >
<OperationLists >

<OperationList name="Duration"> ... </OperationList >
</OperationLists >
<Selectors >

<EventSelector name=" timeSlotsSelector ">
<TupleValue type="TimeSlot" attribute="slot"/>

</EventSelector >
...

</Selectors >
<Variables >

<EventVariable name="timeSlots">
<EventSelectorRef name=" timeSlotsSelector "/>

458

</EventVariable >
<ResourceVariable name="Workload of Teacher">

<ResourceSelectorRef name="Events of a Teacher"/>
<OperationListRef name="Duration"/>
<EventVariableRef name=" timeSlots"/>

</ResourceVariable >
</Variables >

Listing 14 Variables of Work Load of a Teacher

The event variable timeSlots maps the list of events given by the resource selector

Events of a Teacher to a list of time slots. The operation list Duration computes the

sum of durations of these time slots. This is the result of the evaluation of the resource

variable Workload of Teacher.

A resource constraint rc consists of a relational operator rop, a resource variable

rv as left operand and a right operand right. The scope of the constraint is defined by

rsrv. The violation count function violrc(s, tuple) is defined by the following equation:

violrc(tuple) = rop(rv(tuple), right(tuple)); (21)

qrc(s) =
X

tuple∈scoperc

wrc(violrc(s, tuple)) (22)

The operand on the right hand side of a resource constraint can be a constant value.

This value has one of the types which are available for the definition of attributes. In

some cases it is necessary to refer to an attribute value attr of a resource r of the tuple

tuple.

<ResourceConstraint relOpDenom="DISTTIME">
<ConstraintProperties name="Work load of a teacher" type="soft">

<PenaltyFunction weight="50.0" coefA="1.0" coefB="2.0" exponent="1.0"/>
<Description >A teacher should work the given work load </Description >

</ConstraintProperties >
<ResourceVariableRef name=" workloadOfTeacher "/>
<ResourceOperand >

<TupleValue type="Teacher" attribute="workload"/>
</ResourceOperand >

</ResourceConstraint >

Listing 15 Work Load of a Teacher

4.11 Event Relation Constraints

In some cases the view of one event or one resource tuple is not sufficient to express all

constraints involved. An example is the Same Resource Constraint which is violated if

for a certain resource type rt s(e1, rt) 6= s(e2, rt). This relation is postulated for a the

resource type rt and a set of events Erel with e1 ∈ Erel ∧ e2 ∈ Erel. An event relation

constraint erc sets two collections of events Eleft and Eright in a relation. The scope

of this constraint is scopeerc = Eleft×Eright. So the owner of a constraint violation is

a tuple of events s(el, er)withel ∈ Eleft∧er ∈ Eright. The parameters of the violation

count function violerc are this tuple and the solution s. As said before the tuple consists

of two parts el and er. For each of this parts a reference to an event variable evleft

resp. evright is defined. And a relational operator roperc must be defined.

459

For each event of this tuple must be referenced event variables evleft and evright

and a relational operator roperc must be set.

violerc((el, er)) = roperc(evleft(el), evright(er)) (23)

<EventRelationsConstraint relOpDenom="SET_EQUAL">
<ConstraintProperties name="Sports 1A at Same Time" type="soft">

<PenaltyFunction weight="10.0" coefA="1.0" coefB="2.0" exponent="1.0"/>
<Description >The sports lessons of the class 1A should be at the same

time</Description >
</ConstraintProperties >
<EventRelationOperand >
<EventVariableRef name=" timeSlots"/>
<CollectionRef name="Sports Male 1A"/>

<EventRelationOperand >
<EventRelationOperand >
<EventVariableRef name=" timeSlots"/>
<CollectionRef name="Sports Female 1A"/>

<EventRelationOperand >
</EventRelationsConstraint >

Listing 16 Event Relation Constraint: Same Time

In the example above the left operand returns the assigned time slots of the male

sports lessons, the right operand the time slots of the female sports lessons. The re-

lational operator SET EQUAL compares this two lists and returns 0 if there is no

difference and a value x > 0 otherwise. Another possibility is to declare two events at

the same time to link the resource lists of these events.

4.12 Operation Lists

In the sections 11 and 14 we used operation lists without defining this entity. An

operation list ol is a sequence of operations (op1, ..., opn).

ol(x) = opn(...(op2(op1(x))

domain(ol) = domain(op1) ∧ codomain(ol) = codomain(opn)

codomain(opi) ⊂ domain(opi+1) ∀ i ∈ [1; n− 1]

(24)

The operations are defined in a XML file. This file of definitions can be used by

an editor to create a selection of available operations. The definition of operations

must be expressed in a programming language as part of the code of the solver tool.

At this point the designer of a timetabling system has to decide whether be would

prefer to modify the solver program code for performance reasons or to interpret the

specification and to preserve the flexibility. The same approach is used for defining

relational operators.

5 EATTS XML File Format for Results

5.1 Requirements to a Result Format

In section 4 we have described the EATTS format to define different timetabling prob-

lems. The purpose of planning is to generate a time table of high quality, i.e. with low

costs. After a couple of runs of the planning framework there is a list of solutions. Then

460

these results must be compared. In some cases this comparison could be based on the

absolute costs of the solution, but in other cases it must be a bit more precise. So a list

of constraint violations and their owner would be nice. Let ec be an event constraint

and viol(e, s) > 0. So ec is violated on the view of the event e. So there is a constraint

violation of ec with owner e. The owner of a resource constraint violation is a resource

tuple. The owner of an event relation constraint violation is a tuple of events.

A result file should contain information about the plan it is linked to, certainly the

assignments of the solution, the absolute costs and the constraint violations and its

owners. But there is another problem. If a plan is accepted it will be used by many

people. These users are interested in various views of this plan, but they are usually

not interested in the problem definition. So the result file should include all data to

generate all the required views on the plan.

5.2 The Structure of EATTS Result Format

The format is also XML based, because of the benefits shown in section 3.

<TTResult >
<Plan/>
<Events >...</Events >
<TimeModel >...</TimeModel >
<Resources >...</Resources >
<ConstraintViolations >...</ConstraintViolations >

</TTResult >

Listing 17 Structure of EATTS Result Format

The Plan stores a reference to the problem definition file. A list of all events with

name and index is enclosed in the Events tag. For visualization it is necessary to

have some informations regarding the time model. The common style of timetable

visualization is a table. This table has cycleLength columns and r rows. Every timeslot

must be assigned to one cell or a set of cells in this table. So every time slot resource

gets a day-index which defines the column, and vertical start and end index, which set

the rows. Resources includes all resources sorted by resource types. Every Resource

has a name and an index attribute and contains a list of the events it is assigned to.

The total costs of the solution is the value of the attribute totalCost of the Con-

straintViolations. This tag includes a list of the constraint violations sorted by

constraints in their order of appearance in the XML file. The ConstraintViolation

tag has information about its cost and its owner.

6 Conversion of High School Timetabling XML into EATTS XML Format

6.1 Conversion of Time, Resources, and Events

In this section we want to show how a problem given in the existing format for High

School Timetabling can be described in the EATTS format. TimeGroups, including

Week and Day, can be converted into resource groups of the type TimeSlot. Resources

of this type must be generated automatically so that there is a 1:1 mapping between

Time elements telem and the resources of the type TimeSlot timeSlot. As example

Mon 1 will be mapped to a time resource with start time 8 hours and duration 1

461

lesson, whereby the start of the planning period is Monday 0 : 00 and the duration of

one lesson must be set. The membership to time groups of telem must be adopted to

the corresponding resource groups of type TimeSlot.

The concept of resource types, resources and resource groups is very similar in both

formats so that a conversion is possible without a hitch. It should be considered that

the names of resource types and resource groups in EATTS format must be unique.

The name of the resources will be stored in attribute name of type String.

The conversion of courses and events is a little bit more difficult. In the EATTS

concept a course consists of one event or a set of events with their linked time slot

resources. In some cases the accumulated working time may differ from the time which

should be credited to the work load account, i.e. a premium, a Properties resource type

with an attribute workCredit and a property resource must be assigned fixed to every

event. If a class is split into two or more courses, like for sports, for each of these courses

a group of the participating students must be declared. If these courses should be at

the same time an event relation constraint can be added or the TimeSlot resource lists

can be linked to ensure that they are assigned to the same time slots.

6.2 Conversion of Constraints

Now will be shown how the constraints can be defined with the concept of EATTS

format. There is a list of constraints in the paper [PAD+08, p. 10f]. AssignTimSlot-

Constraint and AssignResourceConstraint can be converted to a MinMaxConstraint.

The LinkedEventsConstraint and the AvoidSplitAssigmnetsConstraint can be matched

to an event relation constraint, as shown in section 4.11, or the according resource lists

can be coupled.

NoResourceClashConstraint is a resource constraint, for every tuple of resources

must the count of events, which are assigned to all resources of the tuple, less or

equals 1. For the constraints WorkloadAssignment, IdleTimesConstraint and Time-

SlotAmountConstraint an operation must be applied to the list of assigned time slots

of a certain resource. This operation must compute the duration of these time slots or

the count or must measure the idle times.

The selector of a SubjectSequenceConstraint selects the assigned events to a com-

bination of a class or student and a collection of subjects. The resource variable selects

the time slots of these events and applies an operation on the time slots list which

measures the sequences. The viol(class, subjectCollection) function can compare the

result of the operation with the allowed sequence length. The ClusterTimeSlotCon-

straint is similar, the count of events assigned to a resource and a collection of Time-

Slots should lie between minimum and maximum. The CourseSpreadingConstraint can

also be matched to a resource constraint by selecting the event groups over the fixed

assigned property resources. In that case there must be a 1:1 relation between property

resource and event.

6.3 Conversion of Solutions

The conversion of the solutions needs a framework which computes the constraint

violations. In the first step the problem must be read. Then the assignments must be

set according to the solution. Now the framework can compute the total cost and the

462

constraint violations. In the last step the data can be written to the solutions file in

EATTS format.

6.4 Conversion of EATTS XML format into High School Timetabling XML Format

This way of conversion would in most cases be senseless, at least if the statement of the

problem is not concerned with High School Timetabling. But if there is a well defined

problem definition for High School Timetabling like the result of the conversion above,

an inversion of this process is possible. Let 2HST be the set of all timetabling problems

which can be defined with the High School Timetabling format and 2EATTS the set

of all timetabling problems which can be described with the EATTS format. Above we

have shown that there is a conversion C : 2HST → 2EATTS . Let Codom(2HST) be the

codomain of 2HST in 2EATTS , so Codom(2HST) (2EATTS . The inverse function C′

is defined by the following equation.

C′ : Codom(2HST)→ 2HST ; C′(C(hst)) = hst ∀ hst ∈ 2HST (25)

7 EATTS XML File Format Tools

The EATTS framework provides a set of tools to handle XML files defined in the

format described above. First of all there is a web based editor. It can be used to

create new timetabling problems, the input mask will be automatically adapted to

the user defined resource types with different attributes. There is also a tool, called

plan viewer, to visualize timetables from various views like the view of an event or

of a resource. Often the generated plans should be changed manually after planning.

So an application would be nice which gives support on changing the assignments,

whereby the costs and constraint violations must be updated just in time. The work

on this will be finished soon. At least the core of an automatic timetabling framework

must be a solver for generating as good as possible timetables. Our solver is written

in JAVA and provides classes to read and write the EATTS XML format and a set

of optimization algorithms which can be applied to all timetabling problems defined

by the XML. So the framework can be used to compare different algorithms on many

various timetabling problems.

8 Conclusion

Our approach is to define different types of timetabling problems with one format. The

existing formats are not flexible enough, because they can only describe timetabling

problems of one class. So we declared the EATTS XML format with regard to the

possibility of describing as much as possible problems.

Some very special constraints, like counting idle times, are not easy compatible

with the EATTS general approach of constraint definition. In these cases must be im-

plemented very special operations in the solver. Often these operations can be used

for other problems, too. The XML definition of some constraints could be very incon-

venient and need many tags, especially in case of event relation constraints. But this

should not be a big problem if the problem definition is automatically generated.

463

The main future work is to describe many different real world problems with our

format. On this way we will adapt the XML format and define a set of operations.

Then we want to categorize these problems and test the solver. We think a group of

types will need a special set of operators, like neighborhood or genetic operators, to get

good time tables. We want to have a special look on reusability and standardization.

We like to get problem definitions and suggestions at any time.

Acknowledgements We would like to thank Eugen Kremer for his participation in the
EATTS project and especially the XML file format.

References

[GWB03] Matthias Gröbner, Peter Wilke, and Stefan Büttcher. A standard framework for
timetabling problems. In Practice and Theory of AutomatedTimetabling IV, volume
2740 of Lecture Notes in Computer Science, pages 24–38. Springer Berlin / Heidel-
berg, 2003. ISBN 978-3-540-40699-0. ISSN 0302-9743 (Print) 1611-3349 (Online).
URL http://www.springerlink.com/content/2mj0rwlpbp5uvh1v/.

[PAD+08] Gerhard Post, Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngas,
Cimmo Nurmi, David Ranson, and Henri Ruizenaar. An xml format for benchmarks
in high school timetabling. In Proceeding of the 7th international conference on the
Practice and Theory of Automated Timetabling. Patat2008, 2008. URL http://w1.
cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/Papers/Post-WD2a.p% df.

[W3C10a] W3C R©, January 2010. http://www.w3.org/XML/Schema.
[W3C10b] W3C R©, January 2010. http://www.w3.org/XML/.
[wik10] wikipedia, January 2010. http://en.wikipedia.org/wiki/Document Type Definition.

464

