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Abstract Seven algorithms are applied to two common time tabling problems: school

and course time tabling. The algorithms were implemented using the EATTS (Erlangen

Advanced Time Tabling System) which allows to compare and evaluate the algorithms

regarding their performance and ability to solve the problems.
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1 Introduction

Recently we had to deal with two real world problems, namely school and course time

tabling, and jumped on this opportunity to investigate regarding their ability and

performance to solve the given problems. All algorithms have been implemented using

the current version of EATTS (Erlangen Advanced Time Tabling System [Wil10]), to

allow comparison and evaluation.

2 The Problems

2.1 School 2009 Time Tabling

The data for our School 2009 time tabling problem represents an existing school with

students from year 1 to 10. In this scenario the classes and their subjects are given,

while class rooms and time slots have to be assigned to the events. Teachers can be

assigned fixed to class/subject pairs, but don’t have to. Here it is sufficient that one

student represents the entire class, details given in table 1.
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Events: 178
Resources of type TimeSlot: 81
Resources of type Class: 14
Resources of type Student: 14
Resources of type Teacher: 28
Resources of type Room: 37
Resources of type Subject: 78
Resources of type Asset: 0
Resources of type LessonProperties: 178
Resources of type Building: 1
Resources: 431
Resources to be assigned: 118

Number of possible solutions: > 10439

Table 1 The main characteristics of the School 2009 example

2.2 MuT 2009 courses at a university

Our university organises a girl-and-technology (in german:
”
Maedchen und Technik“,

abbreviated MuT) week each year to attract more female students to technical subjects.

In this scenario the tutors and time slots for the events are fixed while students (not

classes) have to be assigned to the project of their choice, details given in table 2.

Events: 229
Resources of type TimeSlot: 57
Resources of type Subject: 52
Resources of type Girl: 170
Resources: 279
Resources to be assigned: 170

Number of possible solutions: > 10656

Table 2 The main characteristics of the MuT 2009 example

3 Algorithms

The following algorithms were implemented:

– Genetic Algorithms

– Immune System

– Harmony Search

– Tabu Search

– Simulated Annealing

– Great Deluge

– Walk Down Jump Up

Table 3 shows the used algorithms and their main characteristics, indicated by a

mark in the corresponding row. The characteristics are:

428



population In each iteration one or more solution candidates are produced and sub-

stitute older solutions.

trajectory In each iteration only one solution candidate exists.

history The algorithms depends (at least partial) on its history of computational

steps.

limit At each step of the computation the limit, which may vary during the computa-

tion, determines if the newly generated solution is accepted as new current solution

candidate.

round based In each round, i.e the iteration step, one or more solutions are generated,

but only one solution is selected for the next iteration step.

references For detailed information about the algorithms please consider the recom-

mended bibliographic references for reading.
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Genetic Algorithms x [Gol89,GD91,Whi89,Sys91,BT95a,
BT95b]

Immune System x x [MKM06]
Harmony Search x [ABKG08,Gee09]
Tabu Search x x x [GS01,KH05]
Simulated Annealing x x x [Hel04,vL87,FSAPMV08]
Great Deluge x x x [BBNP04]
Walk Down Jump Up x x [Kil09,WK10]

Table 3 Used Algorithms and their characteristic properties

All algorithms were implemented using the EATTS Erlangen Advanced Time Tab-

ling System framework and all runs were performed using computers as specified in

table 4.

The following results are achived with sequential versions for Simulated annealing,

Great Deluge, Walk Up Jump Down, while parallel versions were used for Genetic

Algorithm, Harmony Search, Immune System and Tabu Search. All experiments were

run on the same computer so results are comparable.

Two different setups for the experience where used. One setup was designed to

achieve the fastest reduction of costs. The other setup was used to see the long term

improved behaviour of the algorithms, e.g. does the algorithms profit form excessive

computation. Both setups starts with randomly generated initial solutions.

3.1 Simulated Annealing

Basically Simulated Annealing maps the cooling down process of matter to optimization

problems. The standard version uses an acceptance probability function which is fixed

during cool down, in our implementation we allow modifications of this function over

time, i.e. the probability of making the transition from the current state s to a candidate
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QuadCore DuoCore

CPU: Intel Core4Quad 2.8 GHz Intel Core2Duo 3,0 GHz
RAM: 8 GB 4 GB
OS: Debian Linux Kernel 2.6 x86-64 Suse Linux Kernel 2.6 i686
JVM: Java 6 32 Bit Server JVM Java 6 32 Bit Server JVM

Table 4 Specs of the computers used

new state s’ is specified by the acceptance probability function P(e,e’,T,t), that depends

on the energies e = E(s) and e’ = E(s’) of the two states, on a global time-varying

parameter T called the temperature, and the time t representing the time spend on

the cooling process so far. In our simulations we used this parameter to adapt the

temperature decrease on the maximum available time to cool down, i.e. the temperature

always reaches it’s minimum when the computation deadline is reached.

The performance of Simulated Annealing can be characterized as a slow starter

but winner, see fig. 9. It’s clearly visible that Simulated Annealing reduces the costs

slower than all other algorithms except Great Deluge, which is designed to perform in

an linear manner, see section 3.6.

Fig. 1 shows the details of the descent of the costs. The dots show the current

solutions under review and the line indicates the current best solution. The gap between

the dots and the line is the middle range of a distribution of solutions. The ranges is

determined by an acceptance criteria (upper limit) and the current best solution (lower

limit).

Remark: To make results more easily to interpret the x-axis (time) in the perfor-

mance plots has been scaled to extend phases of fast decline and to condense phases

of stagnation.

Experiments with parallel versions of the Simulated Annealing algorithms haven’t

shown sufficient results and will be subject to a closer investigation.

The starting temperature is chosen randomly as part of the random initial solution.

Cooling rate was initialy 0.99 and was adapted linearly to reach 0.0 at the end of the

given computation time.

3.2 Tabu Search

Tabu Search algorithm is trajectory based but can effectively be computed using multi

threading because for the calculation of a new solution at first a set of neighbours is

calculated and evaluated and this can be done in parallel. The best speed up is achieved

when the number of threads matches the number of available cores respectively CPUs.

On a Core2Quad CPU 19.4 iterations/second are computed when only one core is used,

the multi-threading version achieves 45.3 iterations/second yielding a speed up factor

of 2.33.

Fig. 2 shows the details when Tabu Search solves the MuT 2009 example. In contrast

to the nearly evenly solution candidate distribution of Simulated Annealing here the

solution candidates are concentrated near the currently best solution.

The size of the tabu list was 40, 200 neighbours were generated in each step and

the champion was the initial solution of the next iteration.
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Fig. 1 Simulated Annealing solving the School 2009 problem
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Fig. 2 Tabu Search solving the MuT 2009 problem

3.3 Genetic Algorithm

In our implementation all genetic operators have a complement operator, which re-

verses the effect of the operator. This speeds up the computation because it enables

multiple operator applications. A crossover requires significant more computing time

than a mutation, therefore reversal of a mutation leading to a lethal chromosome af-

ter a successful crossover avoids the waste of the time spend for the crossover. So

our implementation reverses all genetic operations when they don’t lead to a better

solution.

Genetic Algorithms are population based and therefore a good candidate for parallel

computation. We implemented an Island Ferry concept [CP95] which we optimized for

use on multi-core CPUs. For each CPU core a genetic algorithm instance is started and
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all instances exchange their best solutions periodically over time, so all populations

reach the current global lowest cost value.

Fig. 3 shows the usual descent of a Genetic Algorithm with its typical plateaus.

Experiments were run with population sizes of 10 or 100, approx. half of the pop-

ulation is replaced in each generation. A two-point cross-over and a mutation rate of

0.005 was used.
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Fig. 3 Genetic Algorithm solving the School 2009 problem

3.4 Harmony Search

We first modified the original Harmony Search algorithm to allow variants with a wider

bandwidth as suggested by [MFD07]. But the results were disappointing. Better results

were achieved when stagnation was dissolved using randomly generated parameter

values or chosen from an interval (shake).

In each iteration Harmony Search generates a new solution which can be post-

processed by the same hybrid operators as used in Genetic Algorithms.

Harmony Search can be computed in threads, but the threads depend on the same

Harmony Memory. The number of threads should match the number of cores/CPUs,

otherwise threads sharing a core/CPU will fall behind the other threads and produce

solution candidates which are based on outdated versions of the Harmony Memory.

This means that precious computing time is dissipated.

Fig. 4 shows a rapid decline in the first seconds followed by a much smoother

and slower descent, a quite different behaviour compared to the other algorithms.

This nearly 90 degree turn is an extreme example but in all our Harmony Search

experiments similar turns were observed. The parameters used were Harmony Memory

Consideration Rate 0.99, Pitch Adjusting Rate PAR 0.01, Harmony Memory Size HMS

10 or 100, bandwidth = 0.1.
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Fig. 4 Harmony Search solving the MuT 2009 problem

3.5 Immune System

The original Immune System suggests three variants: clonal selection, immune network

and negative selection. Best results on our problems were achieved using the negative

selection variant which basically eliminates candidates (so called detectors) with fitness

under the mean fitness value of the population.

Because Immune System is population based it is a good candidate for multi

threaded computation. The detectors can be generated and evaluated in parallel be-

cause they don’t depend on each other. The main algorithm wait until all detectors are

generated and evaluated, therefore it is recommended for efficiency reasons to generate

generators in numbers which are multiples of the number of available cores/CPUs.

Fig. 5 shows a remarkable pattern in the distribution of solution candidates. Three

clearly distinct bands are visible: the first close above the champion, the second a short

gap above the first and a very thin third quite far away from the other two. The first

two bands represent the candidates below/above the mean fitness.

Fig 6 shows even more bands. The gap between the bands corresponds to the given

penalty cost. The line indicating the drops down immediately after start and is stable

for the rest of the run.

For Immune System a population size of 10 or 100 was used and approx. half of

the population was replaced in each iteration. Parameters were maxMultiMoves 10.0,

Multimove tweak, allEqualFactor 1.1, all equal tweak.

3.6 Great Deluge

The original Great Deluge algorithm has a linear descending limit. Generated solutions

with cost above this limit are rejected and below are accepted. The best solution is

always saved. A small modification is the introduction of a best solution backup. When

current solution cost can’t get below the limit for a certain amount of time, the saved

best solution can be restored if it has lower cost, so the algorithm is revived.
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Fig. 5 Immune Systeme solving the MuT 2009 problem
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Fig. 6 Immune System solving the School 2009 problem

Fig. 7 shows the behaviour of Great Deluge in detail. The line indicates the best

solution while the dots represent solution candidates. The sharp edge on top of the

solution cloud is due to the limit function.

The linear decreasing rate was adopted to the expected runtime, i.e. initial cost

divided by runtime in seconds giving the value to be subtracted in each step.

3.7 Walk Down Jump Up Algorithm

Walk Down Jump Up [WK10,Kil09] combines hill climbing, jump operator and Great

Deluge. It begins with an initial random solution and starts it’s descent until a local
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Fig. 7 Great Deluge solving the MuT 2009 problem

minimum is reached. Then the jump operator is used to set an higher acceptance limit,

i.e. all newly generated solutions with costs below this limit are accepted and each

following iteration will decrease this limit until a new local minimum is reached. If the

new local minimum is not better than the old one the height of the jump is increased,

otherwise the search continues from the newly found local minimum and jump height

is reset. A small modification is best solution backup, when current solution reached a

local minimum which is above best solution, then best solution is restored before next

jump.

Walk Down Jump Up is trajectory based and again therefore multi threading is

not really straight forward. Because the Jump Up operator can jump pretty far even

if the current solution is quite good it males sense to start the Walk Down Jump Up

algorithm on all available cores/CPUs and use the Island Ferry mechanism to exchange

the best solutions.

Fig. 8 shows details of the performance. Walk Down Jump Up has a very steep

descent phase of approximately 200 seconds at the very beginning followed by a long

stagnation phase for the rest of the 20.000 seconds run.

4 Summary

The performance of all 7 algorithms applied to the 2 real world problems is shown in fig.

9. The diverse nature of the problems has different impacts on the algorithms. While

the Immune System algorithms is leading head on head with Simulated Annealing and

Walk Down Jump Up when solving the MuT 2009 example, is comes in second to last

when solving the School 2009 example. Great Deluge shows excellent performance on

the School 2009 example, but is extremely bad on the MuT 2009 example.

Table 5 resp. 6 show the results achieved in 10 hours.

While all algorithms except the Great Deluge algorithm show nearly equal perfor-

mance, the situation for the School 2009 example is quite heterogeneous. Here the field

is lead by Walk Up Jump Down, Great Deluge and Simulated Annealing, a mid field
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Fig. 8 Walk Down Jump Up solving the MuT 2009 problem

consisting of Genetic Algorithm and Harmony Search, and trailed by Immune System

and Tabu Search.

MuT 2009 for 10h solved final cost stagnation after

Genetic algorithm yes 2216 6h:6m
Great Deluge no 7300 no
Harmony Search yes 2196 9h:42m
Immune System yes 2142 1h:48m
Simulated Annealing yes 2130 2h:56m
Tabu Search yes 2273 2h:5m
WalkDownJumpUp yes 2138 4h:6m

Table 5 Comparison of all 10h runs for the MuT 2009 problem

School 2009 for 10h solved final cost stagnation after

Genetic algorithm no 628 9h:56m
Great Deluge yes 256 4h:57m
Harmony Search yes 319 9h:18m
Immune System no 1055 5h:5m
Simulated Annealing yes 206 1h:10m
Tabu Search no 1182 0h:0m:5s
WalkDownJumpUp yes 278 0h:12m

Table 6 Comparison of all 10h runs for the School 2009 problem

A closer look on the time available for the computation shows that two algorithms,

namely Genetic Algorithm and Harmony Search, can profit from additional computing

time, while the others don’t improve their costs significantly relative to the solutions
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found after only 10 seconds, but the hard constraints become fulfilled, so the solutions

become ”more and more” valid. This observation is true for both examples.

Overall winner is Simulated Annealing, best results and least expensive runtime

costs make this algorithm the best choice for the given problems.

Fig. 9 Performance of all algorithms solving the MuT-Problem over 5 hours

Fig. 10 Performance of all algorithms solving the School-Problem over 5 hours

5 Conclusion

The investigations have shown that it is a good idea to test several algorithms on their

ability to solve a given problem, even if the problems look quite similar.

Future work will be the extension of our database of problem descriptions and

implementation of additional algorithms.
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Fig. 11 All algorithms and their performance on the MuT 2009 example

Fig. 12 All algorithms and their performance on the School 2009 example
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