
Curriculum-based Course Timetabling with SAT and
MaxSAT

Roberto Aśın Achá · Robert Nieuwenhuis

Abstract We introduce novel and strong techniques based on propositional satisfiabil-

ity (SAT) solvers and optimizers (MaxSAT solvers) for handling the Curriculum-based

Course Timetabling problem.

Out of 32 standard benchmark instances derived from the last International Time-

tabling Competition, our techniques improve the best known solutions for 10 of them

(4 of these 10 being optimal), and for another 9 we match the best known solution (8

of them to optimality).

There is still much room for improvement in the encodings we use as well as in the

underlying general-purpose SAT and MaxSAT solvers.

Keywords Timetabling · SAT · MaxSAT

1 Introduction

The problem of deciding the satisfiability of propositional formulas (SAT) does not only

lie at the heart of the most important open problem in complexity theory (P vs. NP),

it is also at the basis of many practical applications in such areas as Electronic Design

Automation, Verification, Artificial Intelligence and Operations Research. Thanks to

recent advances in SAT-solving technology, propositional solvers are becoming the tool

of choice for attacking more and more practical problems by encoding them into SAT.

Example 1 The propositional clause set { ¬x1 ∨ ¬x2 ∨ ¬x3, x1, x2 ∨ ¬x3 } is

satisfiable: the assignment {x1, x2,¬x3} is a model of it. If the clause ¬x1∨x3 is added,

the set of clauses becomes unsatisfiable. A (complete) SAT solver is a tool that, given

a set of clauses, either finds a model for it or reports its unsatisfiability. ut

There exist several optimization versions of the SAT problem. In MaxSAT the aim

is to find a model that maximizes the number of satisfied clauses. In Partial MaxSAT

the input consists of two sets of clauses, the hard ones and soft ones, and the problem

Both authors address: Technical University of Catalonia, Barcelona, www.lsi.upc.edu/~rasin
and ~roberto. Both are partially supported by Spanish Min. of Educ. and Science through the
LogicTools-2 project (TIN2007-68093-C02-01).

42



is to find a model for the hard clauses that maximizes the number of satisfied soft

clauses. In Weighted (Partial) MaxSAT each soft clause has a weight and the aim is

to minimize the sum of the weights of the falsified soft clauses.

Here we apply novel SAT, Partial MaxSAT, and Weighted (Partial) MaxSAT encod-

ings for handling the Curriculum-based Course Timetabling problem. For this purpose

we have used our own general-purpose Barcelogic SAT and Partial MaxSAT solvers,

as well as several other solvers for (Weighted) Partial MaxSAT. We emphasize that

these solvers are based on complete search, that is, they always terminate (when given

sufficient resources), in SAT returning a model or an unsatisfiability answer, and in

MaxSAT, they always find the optimal solution.

Out of 32 standard benchmark instances derived from the last International Time-

tabling Competition (Di Gaspero et al (2007)), our techniques improve the best known

solutions for 10 of them (4 of these 10 being optimal), and for another 9 we match

the best known solution (8 of them to optimality). These facts can be checked at the

website http://tabu.diegm.uniud.it/ctt. There is still much room for improvement

in the encodings we use as well as in the underlying general-purpose SAT and MaxSAT

solvers.

This paper is structured as follows. In Section 2 we give basic definitions and back-

ground about SAT and SAT solvers, MaxSAT and MaxSAT solvers, about encoding

cardinality constraints into (Max)SAT, and we define the Curriculum-based Course

Timetabling problem.

In Section 3 we give a first encoding into SAT, where also the soft constraints of the

timetabling problem are made hard. Therefore, for those timetabling instances where

our Barcelogic SAT solver finds a model, this provides a zero-cost solution. Surprisingly

it turns out that this is indeed the case in six of the 32 instances, and in less than 10

seconds.

In Section 4 we give MaxSAT encodings where different soft constraints of the

timetabling problems are made soft, and we report on the corresponding experiments.

Section 5 summarizes all our results, and in Sections 6,7 and 8 we discuss related

and future work and conclude.

2 Preliminaries

2.1 SAT and SAT Solvers

Let X be a fixed finite set of propositional variables. If x ∈ X , then x and ¬x are

literals of X . The negation of a literal l, written ¬l, denotes ¬x if l is x, and x if l is

¬x. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A (total truth) assignment A is

a set of literals such that exactly one of {x,¬x} is in A for each x in X . A literal l

is true in A if l ∈ A and is false in A if ¬l ∈ A. A clause C is true in A (or satisfied

by A) if at least one of its literals is true in A. An assignment A is a model of a set

of clauses S if it satisfies all clauses in S. The problem of finding out whether a given

clause set S has any model (i.e., is satisfiable) is known as SAT. A (complete) SAT

solver is a system that, given a clause set S, always terminates returning a model of S

or (correctly) reports its unsatisfiability.

Most state-of-the-art SAT solvers (Moskewicz et al, 2001; Goldberg and Novikov,

2002; Een and Sorensson, 2003; Ryan, 2004; Biere, 2008) use Conflict-driven Clause

Learning, and are originally based on the Davis-Putnam-Logemann-Loveland (DPLL)

43



Fig. 1 Sorting network with input 〈a1 . . . a8〉 and output 〈c1 . . . c8〉

procedure (Davis and Putnam, 1960; Davis et al, 1962) (see, e.g., (Nieuwenhuis et al,

2006) for details and more references).

2.2 Encoding cardinality constraints into SAT

Although attempts have been made (see e.g., Cadoli and Schaerf (2005)) to define

a problem-specification language for automatically generating a SAT encoding, this

kind of experiences have shown to be limited in practice. For a given problem many

different encodings into propositional clauses may exist, and SAT solvers can behave

very differently on each one of them (see Hertel et al (2007)). Specialized encodings for

a given problem may perform very well and even become a state-of-the-art technique

for the problem, whereas generic ones may not even find a solution. Still, a lot of effort

has been put in finding cheap and efficient ways of encoding constraints that appear

in many real-world problems.

In particular, this is the case for cardinality constraints, saying that (at least, at

most or exactly) k of a given set of n literals must be true. The natural straightforward

encoding for this kind of constraints is exponential. For example, the following 10

clauses encode that at most 2 of a set {x1, x2, x3, x4, x5} of variables are true:

¬x1 ∨ ¬x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ ¬x4 ¬x1 ∨ ¬x2 ∨ ¬x5 ¬x1 ∨ ¬x3 ∨ ¬x4
¬x1 ∨ ¬x3 ∨ ¬x5 ¬x1 ∨ ¬x4 ∨ ¬x5 ¬x2 ∨ ¬x3 ∨ ¬x4 ¬x2 ∨ ¬x3 ∨ ¬x5
¬x2 ∨ ¬x4 ∨ ¬x5 ¬x3 ∨ ¬x4 ∨ ¬x5

On the other hand, the following ones express at least 2 :

x1 ∨ x2 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x3 ∨ x5 x1 ∨ x2 ∨ x4 ∨ x5
x1 ∨ x3 ∨ x4 ∨ x5 x2 ∨ x3 ∨ x4 ∨ x5

The exponential blowup can be avoided by using auxiliary variables. For example,

encodings inspired by BDDs , adder networks, and sorting networks have been proposed

(Aloul et al, 2002; Bryant, 1986; Bailleux and Boufkhad, 2003).

For the encodings in this paper we have used Cardinality Networks (Aśın et al,

2009), an improvement over sorting networks, that require n log2 k extra-variables and

n log2 k clauses and have very good propagation properties. The basic idea is that the

n input variables are seen as inputs of a circuit (encoded by clauses with auxiliary

44



variables) that sorts them into n output variables, i.e., all 1s of the input come first in

the output, and then all 0s. In this way, to express that at least k input variables are

true, it suffices to force the kth output variable to 1. Similarly, for “at most k”, the

k + 1-th output variable is set to 0 (see figure 1; we refer to Aśın et al (2009) and its

references for all details, that cannot be included here).

2.3 MaxSAT and core-based MaxSAT solvers

The input to a Weighted Partial MaxSAT problem consists of a set of soft clauses,

each one of them with a real number called its weight, and a set of hard clauses. The

aim is to find a model of the hard clauses that minimizes the sum of the weights of the

falsified soft clauses. Here the word “Weighted” is dropped if all soft clauses have the

same weight, and the word “Partial” is dropped if there are no hard clauses (note that

hard clauses can also be seen as soft clauses with infinite weight).

The state of the art in MaxSAT solvers is still seeing rapid development. The im-

provements in recent solvers are largely due to new algorithms based on unsatisfiable

cores. The idea is (very roughly) the following. A (standard) SAT solver can be adapted

to return, in case of unsatisfiabilty, a small (or even minimal, wrt. set inclusion) unsat-

isfiable subset of the initial set of clauses (Zhang and Malik, 2003). Such subsets, called

(unsatisfiable) cores, are obviously useful (in applications like planning) for generating

a small explanation why no feasible solution exists.

For solving (unweighted) MaxSAT, a SAT solver is run on the clause set. If a model

is found, then a zero-cost solution has been found. Otherwise, a core is generated, an

additional fresh relaxation variable is added to each soft clause in the core, and a

cardinality constraint is added saying that at most one of the relaxation variables can

be true, i.e., at most one of the clauses in the core is allowed to become false. Then

the SAT solver is restarted on this extended clause set. This process is iterated until a

model is found, which is then provably optimal. Many variants and improvements on

this technique exist (that cannot be covered in this paper; see e.g., Fu and Malik (2006);

Marques-Silva and Planes (2008); Ansótegui et al (2009); Manquinho et al (2009)). In

particular, our new Barcelogic solver we use here for Partial MaxSAT uses a novel

concept of core clusters to improve the pruning power of the cardinality constraints

and never add more than one relaxation variable to any clause.

2.4 The Curriculum-based Course Timetabling Problem

The Curriculum-based Course Timetabling Problem was defined for track 3 of the 2nd

International Timetabling Competition (ITC) held in 2007 and its complete description

can be found in (Di Gaspero et al, 2007). Briefly, this problem deals with the following

objects:

Courses: A course is composed of a defined number of lectures on some subject. Each

course is associated to one teacher, a number of students and a minimum number

of days over which its lectures may be spread. For example, there may exist a 50-

student course c1, taught by teacher t1, consisting of 5 lectures to be spread over

at least 3 distinct days of the week.

Curriculums: A curriculum is a set of courses that may share students. For example,

curriculum k1 may consist of four courses: c1, c2, c3 and c4.

45



Rooms: Rooms are the spaces in which courses take place. Each room has an associated

capacity (number of students, typically from 20 to 1000).

Days and hours: The courses are taught weekly on some day and hour. Each day con-

sists of a specified number of lecture hours in which a course can take place.

The problem is to find an assignment of courses to rooms and hours in such a way

that the following hard (necessary) and soft (desirable) constraints are satisfied.

Hard Constraints:

Curriculum clashes: No two courses belonging to the same curriculum may be sched-

uled at the same time.

Teacher clashes (Hard): No two courses taught by the same teacher may occur at the

same time.

Room clashes: No room must be used for more than one course at the same time.

Hour availability: Teachers may declare themselves as not available for certain hours.

Number of lectures: Exactly the specified number of lectures of every course must be

scheduled.

Soft Constraints:

Room capacity: No course may be scheduled to a room with less capacity than the one

needed by the course. Each violation of this constraint has a cost of 1 per student

that does not fit into the room.

Min working days: The lectures of a given course must be spread over a given minimal

number of days. Each day less than the minimum for a course has a cost of 5.

Isolated lectures: Lectures belonging to a curriculum should be adjacent to another

lecture of the same curriculum. Each time a lecture belonging to one curriculum is

isolated, this violation has cost 2.

Room stability: All lectures of a given course should be scheduled to the same room.

Each extra room needed for a course has cost 1.

3 Our Basic SAT encoding

Here we give a first encoding into SAT. All other encodings in this paper are only very

slight variants over this (two-page) basic encoding.

In this first encoding also the soft constraints of the timetabling problem are made

hard. Therefore, for those timetabling instances where the SAT solver finds a model,

this provides a zero-cost solution. Surprisingly it turns out that this is indeed the case

in six of the 32 instances, and in less than 10 seconds. In this section we have used

our Barcelogic SAT solver, that ranked third in the last SAT Race (2008, Guangzhou,

China, see baldur.iti.uka.de/sat-race-2008), and first on unsatisfiable problems

which is what matters most for optimisation applications.

We define the following propositional variables:

– chc,h: “course c occurs in hour h”

– cdc,d: “course c occurs in day d”

– crc,r: “course c occurs in room r”

– khk,h: “curriculum k occurs in hour h”

46



Once these propositional variables are defined, for the encoding to be correct, that

is, admit all correct solutions, and only these ones, we must carefully express every

relation between the facts these variables represent.

Relation between ch and cd:

– If some course occurs in hour h, it also occurs in the day corresponding to h.

So, for each course c and hour h, the following two-literal clause is needed:

¬chc,h ∨ cdc,day(h)

– If some course occurs in a day d, it must also occur in some of the hours of d.

So, for each course c and day d consisting of hours h1, h2, . . . hn, the following

clause is needed:

¬cdc,d ∨ chc,h1
∨ . . . ∨ chc,hn

Relation between ch and kh:

– If some course c occurs in hour h, all the curricula k1, k2, . . . , knk, to which c

belongs occur in h. So, for each course c, hour h and curricula k1, k2, . . . , kn
that include c, the following clauses are needed:

¬chc,h ∨ khk1,h

¬chc,h ∨ khk2,h
...

¬chc,h ∨ khkn,h

– If some curriculum k occurs in hour h, then at least one of the courses belonging

to k must also occur in h. So, for every hour h and curriculum k consisting of

courses c1, c2, . . . , cn, the following clauses are needed:

¬ctk,h ∨ chc1,h ∨ . . . ∨ chcn,h

We now encode the constraints of the timetabling problem. Here we abstract

away the concrete encoding of cardinality constraints by simply denoting them by

at most(k, S), at least(k, S) and exactly(k, S), where k ∈ N and S is a set of literals.

Such an expression represents a set of clauses that are satisfied if, and only if at least

(at most, or exactly) k of the nc variables of S are true.

Curriculum clashes: No two courses c and c′ belonging to the same curriculum may

be scheduled at the same hour. So, for each hour h and for each pair of distinct

courses c, c′ belonging to the same curriculum, we have:

¬chc,h ∨ ¬chc′,h

Teacher clashes: No two courses c and c′ with the same teacher may be scheduled to

the same hour. So, for each hour h and for each pair of distinct courses c, c′ such

that teacher(c) = teacher(c′), we have:

¬chc,h ∨ ¬chc′,h

Room clashes: No two courses c and c′ may be scheduled to the same room at the

same hour. So, for each room r, hour h, and pair of distinct courses c, c′, we need:

¬chc,h ∨ ¬chc′,h ∨ ¬crc,r ∨ ¬crc′,r

47



Hour availability: For each course c with forbidden hours h1, h2, . . . , hn, we have the

following one-literal clauses:

¬chc,h1

¬chc,h2

...

¬chc,hn

Number of lectures: For each course c exactly hours(c) of the set chc,h1
, chc,h2

, . . . , chc,hn

must be true:

exactly(hours(c), {chc,h1
, chc,h2

, . . . , chc,hn
})

Room capacity: Each course must be scheduled to a room in which it fits. So, for each

course c with number of students ns and for every room r with capacity cr such

that cr < ns, we have:

¬crc,r

Min working days: For each course c, at least working days(c) literals of the set

cdc,d1
, cdc,d2

, . . . , cdc,d5
should be true:

at least(working days(c), {cdc,d1
, cdc,d2

, . . . , cdc,d5
})

Isolated lectures: If some curriculum k occurs in hour h, then k must also occur in an

hour before or after in the same day. For each curriculum k:

– For each first hour of a day h:

¬ktc,h ∨ ktk,h+1

.

– For each last hour of a day h:

¬ktc,h ∨ ktk,h−1

– For each hour h that is not the first nor the last of a day:

¬ktc,h ∨ ktk,h−1 ∨ ktk,h+1

Room stability: Each course must be scheduled to exactly one room. So, if there are

rooms r1, . . . , rn, for each course c we have1:

exactly(1, {crc,r1 , . . . , crc,rn})

1 Note that, by including here only the rooms with sufficient capacity, the Room Capac-
ity constraint would get subsumed. Here we have not done this becuase later on the latter
constraint will become soft.

48



Table 1 Solving Times for basic encoding

dataset vars clauses result time

comp01 12886 62877 - TO
comp02 110288 575890 UNSAT 2.0
comp03 72749 456172 UNSAT 0.8
comp04 92209 560109 UNSAT 0.6
comp05 34053 179043 UNSAT 0.2
comp06 105728 936770 UNSAT 0.6
comp07 214603 1803516 UNSAT 5.8
comp08 115353 708140 UNSAT 2.3
comp09 105952 603965 UNSAT 0.7
comp10 147673 1211016 UNSAT 3.9
comp11 12537 71919 SAT(=) 1.2
comp12 81659 470203 UNSAT 0.2
comp13 111401 626315 UNSAT 0.7
comp14 113180 675440 UNSAT 0.8
comp15 72749 456172 UNSAT 0.7
comp16 148258 1248224 UNSAT 0.8
comp17 144334 924138 UNSAT 0.6
comp18 40444 174369 UNSAT 0.2
comp19 109236 525817 UNSAT 0.3
comp20 116149 1184210 UNSAT 4.4
comp21 129565 926364 UNSAT 1.0
DDS1 900167 2588788 UNSAT 1.5
DDS2 137688 667470 SAT(=) 1.7
DDS3 60968 305601 SAT(=) 1.1
DDS4 1356276 12842169 UNSAT 25.7
DDS5 556569 3372803 SAT(=) 8.9
DDS6 125029 1001737 SAT 10.3
DDS7 124330 612475 SAT(=) 2.4
test1 19406 182328 UNSAT 0.4
test2 34748 213222 UNSAT 0.6
test3 63534 271811 UNSAT 0.2
test4 67539 293208 UNSAT 0.4

3.1 Experiments with the basic SAT encoding

We have tested this encoding over the full set of benchmarks presented in the ITC2007

track3 organizers’ web site (http://tabu.diegm.uniud.it/ctt). All instances labeled

with comp# are competition benchmarks, while the DDS# are bigger ones added after

the competition. The test# examples were given for testing. They are small but hard.

The web site allows researchers to compare on these benchmarks with the best known

results and report new ones that are automatically checked for correctness and cost.

All experiments in this paper are on a 2100Mhz AMD-Opteron with 10000s timeout

(TO) and 2GB memory-out (MO). We never include encoding time since it is negligible.

Table 1 lists our results on these benchmarks for the basic SAT encoding: number

of variables and clauses, the output SAT/UNSAT, and the time used by our Barcelogic

SAT solver. In six instances a model, and thus a zero-cost solution, is found (in 1.1, 1.2,

1.7, 2.4, 8.9, and 10.3 seconds respectively). For five of them, a solution of the same

cost (in this case, zero) was already known. In all tables in this paper this is indicated

with an = sign. In addition, in very little time (10.3 seconds), we also obtain a new

zero-cost solution (DDS6) beating all the reported results over this benchmark.

49



Table 2 Results for relaxing “isolated lectures” as Partial-MaxSAT

dataset vars clauses cost barcelogic time PM2 time

comp01 12886 62877 - TO TO
comp02 110288 575890 24 3719.0 TO
comp03 72749 456172 - TO TO
comp04 92209 560109 36 13.2 60.2
comp05 34053 179043 ∞ 131.3 89.5
comp06 105728 936770 28 540.5 270.7
comp07 214603 1803516 6 9625.0 MO
comp08 115353 708140 38 18.1 91.2
comp09 105952 603965 - TO TO
comp10 147673 1211016 4 145.8 226.6
comp11 12537 71919 0(=) 0.5 2.8
comp12 81659 470203 - TO TO
comp13 111401 626315 62 68.8 153.2
comp14 113180 675440 54 111.7 95.3
comp15 72749 456172 - TO TO
comp16 148258 1248224 22 24.7 84.6
comp17 144334 924138 60 700.8 7817.9
comp18 40444 174369 - TO TO
comp19 109236 525817 58 173.1 372.4
comp20 116149 1184210 4 2305.6 674.4
comp21 129565 926364 86 8874.2 TO
DDS1 900167 2588788 ∞ 1.4 5.3
DDS2 137688 667470 0(=) 0.8 3.0
DDS3 60968 305601 0(=) 0.4 1.9
DDS4 1356276 12842169 - TO MO
DDS5 556569 3372803 0(=) 10.4 17.9
DDS6 125029 1001737 0(=) 15.0 14.4
DDS7 124330 612475 0(=) 1.3 4.9
test1 19406 182328 - TO MO
test2 34748 213222 16(=) 123.4 59.3
test3 63534 271811 ∞ 0.3 0.6
test4 67539 293208 - TO MO

4 MaxSAT encodings

4.1 Relaxing “isolated lectures” as Partial-MaxSAT

Here we turn the “isolated lectures” constraint into a soft constraint. In the basic

SAT encoding, each clause for this constraint encoded exactly one violation of the

constraint. So here each one of these clauses that is not satisfied has cost 2: we use a

Partial MaxSAT solver that considers these clauses as soft ones, and then each model

found represents a solution with as cost twice the number of unsatisfied soft clauses.

Table 2 lists results using our own first partial-maxsat-solver prototype (Barcel-

ogic) and also with PM2 (Ansótegui et al (2009)), the winner of the Industrial Partial

MaxSAT track in the latest MaxSAT competition (www.maxsat.udl.cat/09). A cost

of ∞ indicates that there is no solution if only the isolated lectures constraint is made

soft. With respect to the SAT encoding where everything was hard, the number of

instances for which we can give a solution grows from 6 to 20. Of the 14 new ones, 8

(indicated in bold) improve the previous best cost reported by the community.

Note that also the 6 zero-cost results of the previous section are obtained with

this method and that we also match the best resported result (cost 16) for the test2

instance. In all tables, if the name of the instance is given in bold, this means that our

solution is known to be optimal (the website also reports lower bounds).

50



Table 3 Results for relaxing “min working days” as Weighted-Partial-MaxSAT

dataset vars clauses cost WPM1 time MSUNCORE time

comp01 13864 64189 - TO TO
comp02 111869 578209 - MO TO
comp03 74178 458243 - MO TO
comp04 93497 562036 35(=) 7518 TO
comp05 34902 180478 - MO MO
comp06 107670 939713 - MO TO
comp07 216804 1806892 6(=) MO 6442
comp08 116948 710560 37(=) 4455 TO
comp09 107448 606143 - MO TO
comp10 149513 1213821 4(=) 62 57
comp11 13511 73276 0(=) 1 0.8
comp12 83492 473168 - MO TO
comp13 113012 628743 - MO TO
comp14 114680 677720 - TO TO
comp15 74178 458243 - MO TO
comp16 150222 1251187 18 615.3 391.6
comp17 146057 926721 - MO TO
comp18 41185 175639 - TO TO
comp19 110890 528176 - MO TO
comp20 118188 1187337 4(=) 325.8 193.3
comp21 131373 929034 - MO TO
DDS1 903884 2594511 48 645.0 1629.4
DDS2 137850 667646 0(=) 2.6 3.6
DDS3 62282 307644 0(=) 1.7 2.4
DDS4 1360646 12848872 - MO MO
DDS5 558714 3376303 0(=) 14.5 22.3
DDS6 126753 1004376 0(=) 22.4 14.5
DDS7 125311 614021 0(=) 4.2 5.0
test1 21022 184475 - MO MO
test2 36375 215426 16(=) 27.5 32.3
test3 65415 274319 - TO TO
test4 69420 295717 - TO TO

4.2 Relaxing “min working days” as Weighted-Partial-MaxSAT

Here we describe a very efficient way of relaxing, in addition to the “isolated lectures”

constraint, also the “min working days” constraint. In the basic SAT encoding, we

used cardinality networks to encode for each course c the min working days constraint

at least(working days(c), {cdc,d1
, cdc,d2

, . . . , cdc,d5
}). For instance, if working days(c)

is 4, then we set the fourth output out4 of the network to 1. In order to make this soft,

and such that each day less than four has cost 5, we create one soft one-literal clause

out4 with weight 5, and two more weight-5 one-literal clauses for out3 and out2.

Table 3 shows results with two state-of-the-art Weighted-Partial MaxSat solvers

that did very well in the last MaxSAT competition. . . msuncore (Manquinho et al,

2009) and WPM1 (Ansótegui et al, 2009) (our Barcelogic solver cannot handle weighted

MaxSAT yet). The winner of the industrial division SAT4J behaved much worse on

these problems. With any of the two solvers, this encoding allows us to again improve

the best known cost on two more instances (comp16 and DDS1). We also match the

best solutions on two more (comp04 and 08). These solutions are moreover optimal for

DDS1, comp04 and comp08.

51



Table 4 Results for Weighted-Partial-MaxSAT as Partial-MaxSAT

dataset vars clauses cost PM2 time

comp01 13864 65025 - TO
comp02 111869 580927 - TO
comp03 74178 460787 - TO
comp04 93497 564285 35(=) 111.3
comp05 34902 186066 - TO
comp06 107670 942715 27 4194.4
comp07 216804 1810289 - MO
comp08 116948 713049 37(=) 158.7
comp09 107448 608874 - TO
comp10 149513 1216744 4(=) 135.8
comp11 13511 74249 0(=) 1.3
comp12 83492 6479436 - TO
comp13 113012 631309 59(=) 1867.9
comp14 114680 680244 51(=) 545.5
comp15 74178 460787 - TO
comp16 150222 1254202 18(=) 143.7
comp17 146057 929587 - TO
comp18 41185 178063 - TO
comp19 110890 530718 - TO
comp20 118188 1190643 4(=) 542.4
comp21 131373 932016 - TO
DDS1 903884 2603332 48(=) 748.2
DDS2 137850 668420 0(=) 3.1
DDS3 62282 308551 0(=) 2.5
DDS4 1360646 12855538 - MO
DDS5 558714 3380575 0(=) 16.9
DDS6 126753 1007166 0(=) 25.8
DDS7 125311 616673 0(=) 5.2
test1 21022 185639 - MO
test2 36375 216742 16(=) 59.3
test3 65415 276191 - MO
test4 69420 297864 - TO

4.3 Weighted-Partial-MaxSAT as Partial-MaxSAT

Instead of using Weighted MaxSAT, one can also replicate each soft clause as many

times as the cost related with it, and use a solver for unweighted MaxSAT. It turns

out that this works very well on these problems because all weights are small. This

can be observed in table 4: besides keeping the previous results, we beat one previ-

ously improved example’s cost (comp06) and achieve another two best reported costs

(comp13 and comp14). We did not use our Barcelogic solver because it has no support

for replicated clauses.

52



Table 5 Results summary over the curriculum-based timetabling problem

dataset Author previously best Method previous cost our cost

comp01 Andrea Schaerf (+ others) Various 5 -
comp02 Lu And Hao Tabu Search 29 24
comp03 Tomas Muller Local Search 66 -
comp04 Tomas Muller Local Search 35 35(=)
comp05 Lu And Hao Tabu Search 292 -
comp06 Tomas Muller Local Search 37 27
comp07 Tomas Muller Local Search 7 6
comp08 S. Abdullah, H. Turabieh Other 37 37(=)
comp09 Lu And Hao Tabu Search 96 -
comp10 Tomas Muller Local Search 7 4
comp11 Andrea Schaerf (+ others) Various 0 0(=)
comp12 Lu And Hao Tabu Search 310 -
comp13 Lu And Hao Tabu Search 59 62
comp14 Gerald Lach Mathematical Progr. 51 51(=)
comp15 Andrea Schaerf (+ others) Various 66 -
comp16 Lu And Hao Tabu Search 23 18
comp17 Lu And Hao Tabu Search 69 60
comp18 Lu And Hao Tabu Search 65 -
comp19 Tomas Muller Local Search 57 58
comp20 Gerald Lach Mathematical Progr. 17 4
comp21 Tomas Muller Local Search 89 86
DDS1 Gerald Lach Mathematical Progr. 83 48
DDS2 Andrea Schaerf (+ others) Various 0 0(=)
DDS3 Andrea Schaerf (+ others) Various 0 0(=)
DDS4 S. Abdullah, H. Turabieh Evolutionary Comp. 30 -
DDS5 Andrea Schaerf Tabu Search 0 0(=)
DDS6 Gerald Lach Mathematical Progr. 4 0
DDS7 Andrea Schaerf (+ others) Various 0 0(=)
test1 Lu And Hao Tabu Search 224 -
test2 Andrea Schaerf (+ others) Various 16 16(=)
test3 S. Abdullah, H. Turabieh Other 67 -
test4 Lu And Hao Tabu Search 73 -

5 Results summary

Table 5 gives a summary of our achievements in encoding the curriculum-based course

timetabling problem into different versions of SAT/MaxSAT. In the column “our cost”

all figures in bold indicate costs where we have inproved the best known solution (10 of

the 32 instances). In the column “previous cost” one can see the previously known best

costs, which in some case we improve importantly: for example in DDS1 we improve

from cost 83 to 48, which is moreover known to be optimal. For another 9 instances

we match the best known solution (8 of them to optimality: again the names of the

benchmarks are in bold if the best solution found is known to be optimal).

In the table We also indicate the author of the previously best known costs, the first

one in obtaining the result (as it appears on the web site) and add the label (+others)

to clarify that others also reached the same results. The column method indicates the

technique used to obtain these previously best known results.

Altogher, out of 32 instances, we obtained 19 of the current best known results, 10

of which were improvements over the past known ones.

53



6 Related work

As it can be seen in Table 5 (see Lü and Hao (2010)) and in the algorithms specifications

of the solvers that participated in the two timetabling competitions held until now

(see, for example, Kostuch (2004) and Muller (2005)), the timetabling research field

has been mostly dominated by local search techniques. In recent years, nevertheless,

other techniques like Constraint Programming or Mathematical Programming have

been presented with some success. On the other hand, in the specific case of SAT

technologies applied to timetabling problems, not much work has been done. In fact,

we are not aware of any work on timetabling using MaxSAT.

Using pure SAT some non-competitive (in expressivity and solving time) techniques

are described in the two master thesis (Chin-A-Fat, September 2004; Hartog, 2007).

The unpublished manuscript (Marić, 2008) deals with non-standard and hence hard-to-

compare benchmarks, and uses more naive encodings (e.g., quadratic-size cardinality

constraints).

7 Future Work

A lot of room for improvement exists in MaxSAT solvers for this kind of problems. We

plan to work on our own solvers, improving our beta Partial MaxSAT and developing

a new Weighted version of it. Also, to encourage the MaxSAT community to work on

larger and more practically “industrially”-oriented benchmarks, we plan to contribute

our encoded instances to the MaxSAT competition.

We also plan to work on new ways for efficiently encoding (and relaxing) some

typical constraints in timetabling problems, like “Room allocation” and “Room stabil-

ity”. Furthermore, in instance “comp01” we found that inside timetabling problems,

pigeon-hole-like problems can appear. As it is well known in the SAT community, these

problems are very difficult to handle for SAT Solvers (which is the case of this partic-

ular instance). We also plan to search for ways of dealing with this type of constraints,

possibly as a theory in the SAT Modulo Theories framework (Nieuwenhuis et al, 2006).

8 Conclusions

In this paper we have tackled the curriculum-based course timetabling problem. We

have presented several encodings for the problem from pure SAT to Partial and Weighted-

Partial MaxSAT. Each encoding has been tried on 32 instances corresponding to those

shown in http://tabu.diegm.uniud.it/ctt/ that belong to the 3rd track of the last

International Timetabling Competition. We have tested several current-state-of-the-art

SAT an MaxSAT solvers with good results, achieving 19 out of 32 of the current best

known results, 10 of which were improvements over the past known ones.

This shows that using SAT and MaxSAT for timetabling is feasible and productive

and encourages us to keep working in two main directions: i) to search for better suited

MaxSAT solving techniques and ii) to find better encodings for this kind of problems.

Acknowledgements We want to thank Carlos Anstegui for his advise and help providing us
access to his PM2 and WPM1 solvers.

54



References

Aloul FA, Ramani A, Markov IL, Sakallah KA (2002) Generic ilp versus specialized

0-1 ilp: an update. In: Pileggi LT, Kuehlmann A (eds) ICCAD, ACM, pp 450–457

Ansótegui C, Bonet ML, Levy J (2009) Solving (weighted) partial maxsat through

satisfiability testing. In: Kullmann (2009), pp 427–440

Aśın R, Nieuwenhuis R, Oliveras A, Rodŕıguez-Carbonell E (2009) Cardinality net-

works and their applications. In: Kullmann (2009), pp 167–180

Bailleux O, Boufkhad Y (2003) Efficient cnf encoding of boolean cardinality constraints.

In: Rossi F (ed) CP, Springer, Lecture Notes in Computer Science, vol 2833, pp 108–

122

Biere A (2008) PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and

Computation Submitted

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE

Trans Comput 35(8):677–691

Cadoli M, Schaerf A (2005) Compiling problem specifications into SAT. Artificial In-

telligence 162(1-2):89–120

Chin-A-Fat K (September 2004) School timetabling using satisfiability solvers. Master’s

thesis, Technical University Delft, The Netherlands

Davis M, Putnam H (1960) A computing procedure for quantification theory. Journal

of the ACM 7:201–215

Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving.

Comm of the ACM 5(7):394–397

Di Gaspero L, McCollum B, Schaerf A (2007) The second international timetabling

competition (itc-2007): Curriculum-based course timetabling (track 3). Tech. rep.,

University of Udine

Een N, Sorensson N (2003) An extensible sat-solver. In: Proceedings of the Sixth In-

ternational Conference on Theroy and Applications of Satisfiability Testing (SAT),

pp 501–518

Fu Z, Malik S (2006) On solving the partial max-sat problem. In: Theory and Appli-

cations of Satisfiability Testing, SAT, vol LNCS 4121, pp 252–265

Goldberg E, Novikov Y (2002) BerkMin: A fast and robust SAT-solver. In: Design,

Automation, and Test in Europe (DATE ’02), pp 142–149

Hartog J (2007) Timetabling on dutch high schools: Satisfiability versus gp-untis. Mas-

ter’s thesis, Technical University Delft, The Netherlands

Hertel A, Hertel P, Urquhart A (2007) Formalizing dangerous sat encodings. In:

Marques-Silva J, Sakallah KA (eds) SAT, Springer, Lecture Notes in Computer Sci-

ence, vol 4501, pp 159–172

Kostuch P (2004) The university course timetabling problem with a three-phase ap-

proach. In: Burke EK, Trick MA (eds) PATAT, Springer, Lecture Notes in Computer

Science, vol 3616, pp 109–125

Kullmann O (ed) (2009) Theory and Applications of Satisfiability Testing - SAT 2009,

12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.

Proceedings, Lecture Notes in Computer Science, vol 5584, Springer

Lü Z, Hao JK (2010) Adaptive tabu search for course timetabling. European Journal

of Operational Research 200(1):235–244

Manquinho VM, Silva JPM, Planes J (2009) Algorithms for weighted boolean opti-

mization. In: Kullmann (2009), pp 495–508

55



Marić F (2008) Timetabling based on sat encoding: a case study, faculty of Mathemat-

ics, University of Belgrade, Serbia

Marques-Silva J, Planes J (2008) Algorithms for maximum satisfiability using unsatis-

fiable cores. In: Proceedings of Design, Automation and Test in Europe (DATE 08),

pp –

Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering

an Efficient SAT Solver. In: Proc. 38th Design Automation Conference (DAC’01)

Muller T (2005) Constraint-based Timetabling. PhD thesis, PhD thesis, Charles Uni-

versity in Prague, Faculty of Mathematics and Physics, 2005

Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT Modulo Theo-

ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).

Journal of the ACM 53(6):937–977

Ryan L (2004) Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,

School of Computing Science, Simon Fraser University

Zhang L, Malik S (2003) Validating SAT Solvers Using an Independent Resolution-

Based Checker: Practical Implementations and Other Applications. In: 2003 Design,

Automation and Test in Europe Conference (DATE 2003), IEEE Computer Society,

pp 10,880–10,885

56




