Timetable Construction: The Algorithms and Complexity
Per spective (Plenary Talk)

Jeffrey H. Kingston

Abstract This paper advocates approaching timetable construatiomthe algorithms and
complexity perspective, in which analysis of the specifiohpem under study is used to
find efficient algorithms for some of its aspects, or to relate other problems. Examples
are given of problem analyses leading to relaxations, ghaperoaches, very large-scale
neighbourhood searches, bipartite matchings, ejectiamshand connections with standard
NP-complete problems.

Keywords Timetabling- Algorithms- NP-completeness

1 Introduction

When tackling a problem, a researcher utilizes a certaisgeetive, or set of techniques,
which he or she understands and has experience with. Tharéeisdency to stay within
one’s own perspective, which, though natural, may not bertbst scientific thing to do.

One of the strengths of the PATAT conference series is thabintributors bring a vari-
ety of perspectives to the timetabling problems they sttityreby exposing its participants
to healthy doses of unfamiliar techniques. Judging by theritutions to the most recent
conference (Burke and Gendreau 2008), the field is strongiyimated by local search,
especially simulated annealing (Dowsland 1993; Kirkpatet al. 1983) and tabu search
(Glover and Laguna 1998); but there are also papers writtan the operations research
perspective, and indeed their number is growing as integgramming packages improve.
Other perspectives are also represented, although on ¢esmedle: constraint program-
ming, machine learning, and cooperating agents are thaaapes.

Some of the most interesting papers apply techniques fraperspective to problems
that had previously been studied only from another. For gejthe Travelling Tournament
Problem (Easton et al. 2003) was formulated by researcksmimted with the operations
research perspective, but good solutions were later adatanith local search (Ribeiro and

Jeffrey H. Kingston

School of Information Technologies

The University of Sydney, NSW 2006, Australia
http://wuw.it.usyd.edu.au/" jeff

E-mail: jeff@it.usyd.edu.au

26

Urrutia 2004). And, in the reverse direction, two simplifiediversity course timetabling
data sets, compiled by researchers who typically use l@zath, were recently solved to
optimality using an integer programming package (Burkd.&@08).

This paper advocates tlagorithms and complexity perspective on timetable construc-
tion. In general terms, a researcher who utilizes the alyos and complexity perspective
will devote considerable time to analysing the specific gobunder study. The outcome
of this problemanalysis might be the discovery that some aspect of the problem is aboben
to efficient solution, leading to the design of an algorithimiein exploits that fact. In other
cases, the outcome might be the discovery of a close coonestih another NP-complete
problem, which can be helpful in pointing to a body of relevaiior work.

Although problem analysis is practised by all researcheis less emphasized within
the dominant perspectives. Researchers who use locahséarexample, typically devote
most of their time to empirical work and parameter tuninglded, a major advantage of
local search is the ease with which it can be applied to a vadge of problems. The idea
of basing a solution approach on detailed properties of tbblem under study may even
be deprecated, as tying the algorithm too closely to spemmficiitions that could change.

Operations researchers tend to concentrate on mode#iagnig the algorithmic aspects
to software packages. Nevertheless a great deal of integgstoblem analysis has been
carried out by operations researchers over the yearsnigddiredundant but beneficial
additional constraints, or to phased approaches, Lagaanggaxation (see below), and so
on. A major advantage of the operations research approdsheisiphasis on lower as well
as upper bounds: either an optimal solution is found, or @tdwound is produced which
gives some indication of how close to optimality the solutiies.

It is emphatically not the aim of this paper to show that althons and complexity
techniques will always be superior, or even that they willals yield anything useful. They
are too dependent on specific properties of particular problfor that. Instead, this paper
offers some examples where the techniques are useful, Bnbhgpe, to show that they
are worth adding to the mental toolkit of the timetablingegsher. The topics covered are
relaxation, the phased approach, very large-scale neighbod search, bipartite matching,
ejection chains, and NP-completeness analysis. Althcuiglpaiper includes a few original
constructions and experiments, it is offered more as aititbian as a research contribution.

2 Relaxation

One way to find problems of low complexity within an NP-coniplproblem is taelax the
NP-complete problem: loosen some of its constraints, @adisthem altogether. Although
the solution of the resultingelaxed problemis not usually a solution of the original problem,
it may contain useful information. In particular, the bassi@f an optimal solution of the
relaxed problem is a lower bound on the badness of any splofithe original problem.

Finding relaxations requires problem analysis. On the arelhthe relaxed problem
must be sufficiently close to the original for its solutionb® relevant; on the other, it must
be efficiently solvable, since otherwise nothing is gaingdi&ing it.

Relaxation is an important tool for researchers using trexatjpns research perspec-
tive. The archetypal relaxation replaces thieegrality constraints of an integer program
(specifying that each variable must be assigned an integer in some rasgeb;) with lin-
ear constraints (specifying that each variakjenust be assigned some value in the range
a < x < by, with fractional values allowed), replacing an integergyeom, which in general
describes an NP-complete problem, by a linear program wd@ahoe solved in polynomial

27

time. Another technique well known to operations reseascliglLagrangean relaxation
(Beasley 1993), in which different versions of the relaxeabtem are solved repeatedly.

Relaxation is useful for determining whether a problemkislii to have a feasible solu-
tion. For example, the nurse rostering problem has many Engonstraints on the layout
of each nurse’s shifts. Discarding them leaves a much simppidlem, solvable by bipartite
matching (Sect. 5), which checks whether there are enouglesof the right kinds to cover
the required work. There is little point in starting a londusimn process if not.

3 The phased approach

The phased approach divides the problem into parts, callptiases, and solves them one by
one. Each phase has only limited information about the githases, so there is little hope
of the overall solution being optimal. A few scattered ex&sxist where the results of a
later phase are fed back to a subsequent run of an earlieg.phas

Problem analysis is needed to find a decomposition into ghabéch are efficiently
solvable separately, and independent enough to satisecamiabout the loss of optimality.

Large timetabling problems, such as whole-university seuimmetabling and student
sectioning problems, are typically solved in phases (€2Q80; Murray et al. 2007). A key
module in a student sectioning system is a branch-and-balgiodithm for finding the best
possible timetable for one student, holding the rest of ithetible fixed. One run of such
an algorithm constitutes one phase.

In unpublished work by staff of the University of Sydney mtinan a decade ago, after
timetabling each student in this way, a second pass ovetublerst list was made, and each
student was removed and re-timetabled. This introducefetf@dhack mentioned above, as
well as being an example of very large-scale neighbourheatth, to be described next.

4 Very large-scale neighbour hood search

Very large-scale neighbourhood (VLSN) search (Ahuja €@02) is a form of local search.
To move from one solution to its neighbour, a large piece efsblution is deassigned, then
reassigned in a different and hopefully improved way.

Although the reassignment stage can be carried out by ampfestonstructive heuristic,
the method is particularly interesting when problem arialidentifies a piece to deassign
whose reassignment may be carried out optimally.

Several examples of the application of VLSN search to titvlgtg problems are given
in Meyers and Orlin (2007). The point is made there that inesaases where other local
search methods proceed by swaps, a more general and pbtemiige effective VLSN
search based on the ‘cyclic exchange neighbourhood’ istges3 his author has used this
neighbourhood in high school teacher assignment, to pertingt assignments at a given
set of times among the available teachers, and found itteféein removing certain kinds
of bad split assignments (Kingston 2008). For variety, flaiper offers a different example,
again from teacher assignment.

The literature contains a smattering of timetabling papédrieh improve their resource
assignments by deassigning all the work assigned to twairess and then reassigning that
work to those same two resources. This clearly qualifies aSN/kearch, and when the
resources are high school teachers, the reassignment cemédo optimality in practice.

Take the example of teache#stO1 andArt02 in Fig. 1. These make good candidates

28

Aval W1 |W2 |R1 |R2 |M8 [F5 (M3 [M4 (w5 (wé [R8 ([F2 (T3 (T4 [R5 [R6 (w8 [F3
Art01 0 12-3A-P|7CKO2- | 12-3A-Photograph TAS2-1 History[8CKO2-1 |8CKO4-2
Art02 4 TCKO2-|11-3A11 11-30/12-3A-Cerg 10-4-Art 12-1-VisualArts
Art03 0 7CKO1-1 7AS1-1 8CKO1-1 |8CKO3-2
Unassigned | | | | |

M1 |M2 |T5 |T6 |w7 |F4 M5 |M6 |T1 |T2 |R7 |F1 W3 |W4 |R3 |R4 |M7 |T7 F6 |F7 |F8 T8 |
Art01 11-4-Visua|/I\rt I I 12-2-Photo(_]lraphy-2U I I 11—6-Photoglraphy I I Sport StaﬁMeI
Art02 [8AS3-3 [7AS33 [9-4Art-1 | 9-4Art-1 7CK04-2 [10441 104Ar 8AS2-1
Art03 | 7CK03-2 8AS1-1
Unassigned | 1248 VigaDed 1248 | | |

Fig. 1 Part of a high school timetable, showing the assignments oftheol’'s three Art teachers. Each
teacher occupies one row, with a fourth row holding one Aasslwhich failed to be assigned. Each column
holds one of the 40 times of the cycle, except the column adjdoehe teachers’ names, which shows the
remaining available workload of the teachers.

[12-3A] [[7AS2] [scKo2 [sCKo4 [[11-4| [[122] | Sport

[f[CKoZ [10-4] [MAZ:] [8AS3] [7AS3] [94 | [BASZ

[11-3A] [EE6I{7CKo04

Fig. 2 The clash graph for the meetings assigned to teadk#@d andArt02 in Fig. 1, slightly simplified,
and showing one 2-colouring.

for deassignment and reassignment, because they are epliadifteach similar kinds of
classes, and they share a split assignment (occupying WieandW?2), whose removal
is desirable. Deassign all their work and build its clashpbran which each deassigned
meeting is a node and two nodes are joined by an edge whermienteetings share at
least one time (Fig. 2). Now a clash-free reassignment i€@l@iring of this graph. Each
of the graph’K connected components can be coloured independently, artd/balistinct
2-colourings; in various special cases there are fewerjmgak most ¥ distinct colourings
altogether. In practice is small enough to permit an exhaustive search for a colgurin
that does not exceed the teachers’ workload limits. Fortefee author's implementation
imposes a fixed upper limit on the number of colourings tried.

On real instances this method runs quickly, but its resultisdgsappointing, averaging
only about one improvement per instance. Still, it might beful in other resource assign-
ment problems, such as nurse rostering, where similarliifgaeiresources work together.

5 Bipartite matching

A bipartite graph is an undirected graph whose nodes may be divided into tvey seth
that every edge connects a node of one set to a node of theAtimatching in an undirected
graph (bipartite or otherwise) is a subset of the edges $atnb two edges touch the same
node. Amaximummatching is a matching containing as many edges as possible (Figh8). T

bipartite matching problem is the problem of finding a maximum matching in a bipartite
graph. There is a standard polynomial-time algorithm fs groblem, used in timetabling
for more than forty years (Csima and Gotlieb 1964; Gotlieb2t%le Werra 1971).

29

Fig. 3 A bipartite graph (left), and the same graph with a maximum magtstghown in bold (right).
600

400
Clashes
200+

0 T T T T
0 20 40 60 80 100

Thousands of moves

Fig.4 Performance of tabu search on a bipartite matching problem386 demand nodes and 5378 supply
nodes, taken from a real instance of a high school timetalpliaglem, whose optimal solution is known (by
applying the standard polynomial-time algorithm) to have 5 uehed demand nodes, or equivalently (if
every demand node is assigned) 5 clashes. After 100000 me&e8)gfrom an initial greedy solution with
585 clashes, the best solution found had 11 clashes. Thebmighood was all single moves of a demand
node’s assignment from one supply node in its domain to anothmiove was tabu if it involved a demand
node that had been moved recently; the tabu list length waB détand nodes. About ten values for tabu
list length were tried; results improved as the length waseiased to 1500, and then worsened.

In timetabling, it is usual for one of the two sets of nodessfaresent variables (or slots,
meetings, etc.) demanding something to be assigned to thbibe, the other set represents
entities (times, resources, etc.) which are available pplyuthese demands. Accordingly,
these two sets will be referred to as tti@nand nodes and thesupply nodes. A maximum
matching assigns supply nodes to as many demand nodes @dgyassder the restrictions
that each demand node requires one supply node from thesgjpliy nodes it is connected
to, and that each supply node may be assigned to at most orendemade.

One application of bipartite matching to timetabling is re tassignment of rooms to
meetings after the meetings’ times are fixed. At each timid laubipartite graph with one
demand node for each demand for a room at that time, and optysupe for each room
which is available at that time, and connect each demand tadtth@se supply nodes repre-
senting rooms which are qualified to satisfy the demand (soehich are large enough and
contain the appropriate facilities). Then a maximum matglgives an optimal assignment
of rooms at that time.

Fig. 4 documents a case where a standard local search mégwdsgarch) could not
find an optimal solution to a large, real instance of the lifamatching problem, even
when several settings of its parameters were tried and ainpdewas allowed. Thus, when
instances of bipartite matching problems lie within tintditag problems, it may be advanta-
geous to solve them directly using the polynomial-time gthm, as was done, for example,
by the winning entry in the First International Timetabli@gmpetition (Kostuch 2005).

The performance of tabu search on this problem raises aigne#tthe problem is
difficult, then how can the standard algorithm solve it toimjality so quickly? Can that

30

5 ~
S NN

Fig. 5 Augmenting paths (at left) and the effect of applying thenmifsit). The first augmenting path carries
out a simple assignment; the second carries out two assigniemehtsne deassignment; and so on. In each
case the size of the matching increases by one. No matchingreagaitially touch the first or last node.

algorithm be applied to other problems, perhaps to NP-cetedroblems? To answer these
guestions it is necessary to examine the standard algotitlaetail.

The algorithm is called thaugmenting path method. Starting at each unmatched de-
mand node in turn, it searches the graph for a path from thdg tma supply node, from
there back to the demand node currently assigned that sapgly, from there to a differ-
ent supply node, and so on, ending at a currently unmatchgplysnode. Then making
each non-matching edge on the path into a matching edge aahdneatching edge on the
path into a non-matching edge, increases the size of theningtby one (Fig. 5). A theo-
rem guarantees that each node has to be searched througimeelyso the cost of finding
an augmenting path is bounded above by the total size of #yghgand another theorem
guarantees that after each unmatched demand node has keeadahe starting point, the
matching is maximum.

To dispel any idea that this algorithm is difficult to implemyehere is the key procedure,
for searching for an augmenting path out of a given demane rexttl applying it if found:

bool Augment (DEMAND_NODE demand_node, int visit_num)

{
int i; SUPPLY_NODE supply_node;
for(i = 0; i < demand_node->domain_size; i++)
{
supply_node = demand_node->domain[i];
if (supply_node->visit_num < visit_num)
{
supply_node->visit_num = visit_num;
if (supply_node->supply_asst == NULL ||
Augment (supply_node->supply_asst, visit_num))
{
supply_node->supply_asst = demand_node;
demand_node->demand_asst = supply_node;
return true;
}
}
}
return false;
}

Other code is needed for initialization and trying each desm@ode in turn.

31

4 —
Path length

\ T \
0 1000 2000 3000 4000
Augmenting path

Fig. 6 This graph shows how the length of augmenting paths incress#e bipartite matching algorithm
proceeds. The bipartite graph from Fig. 4 was used. For ealde wfk from k = 1 to 3686- 5, the length of
the longest of the firdt augmenting paths found is shown, defining length to be the nuoflaikemand nodes
on the path. At first, the paths are short (at most 2 demand nduigd)y the end of the algorithm they have
length 4 or 5. Breadth-first search was used to find these ,pstithis shows that some steps near the end
requireat least 4 or 5 reassignments of demand nodes in order to improve solytiality.

The secret of the success of this algorithm is revealed in@-idt first, it finds very
short augmenting paths, such as any local search algoritlubd easily find. But towards
the end, the paths become longer, until, on large examptdsasithe one used in the figure,
at least 4 or 5 coordinated reassignments of demand nodeppdysiodes are required to
improve the solution. This is difficult for local search algioms based on simple moves and
swaps: they become trapped in what seem to them to be lasjarééess plateaus.

6 Ejection chains

It is not hard to see how to apply the augmenting path methdtieoprevious section to
assignment-type problems other than bipartite matchitegt & any point where an assign-
ment is required but is currently missing. Mark all elemagitthe instance unvisited. Try to
assign a valid value at the starting point. If that can be diwreetly, do it; otherwise, find all
ways in which a valid value can be assigned, at the cost of eassignment at some other
point. For each of these ways, make the indicated deassigrane assignment, mark the
elements involved as visited to ensure that they will notduehed again during the current
search, and continue trying to reassign the deassigneaeteosing the same method re-
cursively. If the search ever reaches an element that casdignad directly, it does so and
terminates, having completed a chain of assignments arssigeaents which amount to
an augmenting path. Repeat until no further progress occurs

This idea was given the nanggection chains by Glover (the inventor of tabu search),
who applied it successfully to the travelling salesman fmoh(Glover 1996). Similar ideas
had probably been used earlier. For example, the widely Wseape chain method from
graph colouring, dating from the work of A. B. Kempe in 1878uld be described as an
ejection chain method, although it differs in detail fronetimethod presented here. An
accessible account appears in Dowsland (1993).

In general, theorems which guarantee effectiveness (dibipartite matching case)
will not be available; nevertheless, ejection chains presthe other virtue of the augment-
ing path method, namely its ability to explore large plateau

A key restriction of the ejection chain method as formuldieck is that only one deas-
signment is permitted for each assignment, ensuring tleadttiactures searched are limited
to paths. Although more complex augmenting structured) asdrees, could be permitted,

32

80

60+

Badness40

20+

0 \ T T
0 10 20 30 40

Hundreds of moves

Fig. 7 Performance of tabu search on a typical teacher assignmeriteprdbghs93 from Kingston 2008)
with 305 teacher slots totalling 1275 times. The badness meass the total number of clashes and hard
workload limit overloads. After 4000 moves, starting from aitial greedy solution with badness 79, the
best solution found had badness 23. The neighbourhood Wa®eés of one assignment from one qualified
teacher to another. A move was tabu if its slot had been movexhtlgcthe tabu list length was 50, which
gave the best result of about ten values tried.

they complicate the implementation and seem less likelyatoqdf than paths. See Mler
et al. (2005) for a simple method which can explore such siras.

This author has used ejection chains to improve the assiginofi¢eachers to meetings
in high school timetabling problems, after the meetingsigs are assigned. Each meeting
may contain several time blocks spread through the weekpaydrequest a teacher of a
particular kind. Vertex colouring may be embedded in thabfem, making it NP-complete.

First, an initial assignment is made by taking each teachtiern and applying a branch-
and-bound tree search (with a fixed upper limit on the numbeodes searched, for safety)
to pack as much workload as possible into the teacher, asgignly meetings for which
the teacher is qualified, and avoiding clashes and hard wadKimit overloads. Next, from
each unassigned meeting the algorithm searches for gjectiains as described above.
Finally, split assignments are introduced, in which the classes of unassigned meediregys
split between two or more qualified teachers. Split assigrisnare undesirable, so it is
important to minimize the number of unassigned meetinglseapbint they are resorted to.
A full description has been given elsewhere (Kingston 2008)

Itis interesting to compare the performance of this alpamitvith a standard local search
(tabu search). It is not clear how to do so fairly, howevergsithe author’s algorithm never
introduces a clash or a hard workload limit overload, pririgrto leave a slot unassigned,
whereas tabu search assigns every slot, at the cost of sasfeesland hard workload limit
overloads. There is no simple and fair means of intercoiwees there was for the bipartite
matching problem studied earlier.

When run on a typical instance, the author’s algorithm peedua resource assignment
in which there were 22 unassigned meetings after the ira8algnment, and 15 after the
ejection chain phase. This was a significant improvememtesi meant that 7 fewer meet-
ings required split assignments. For comparison only, ghigtion was extended greedily
to one in which every slot had an assignment, and that salditéa 34 clashes and hard
workload limit overloads.

The best run of tabu search (Fig. 7) on the same instance gedd8 clashes and hard
workload limit overloads. Again for comparison only, thidion was reduced greedily to
one in which there were no clashes or hard workload limit loaets, and that solution had
22 unassigned meetings. Even if we call these results a thhawjection chain method still
has considerable advantages: it runs much faster, andarer® parameters to tune.

33

Fig. 8 A clash graph, showing a minimum matching (left), and a travgl§alesman path (right).

7 NP-completeness analysis

Sometimes the outcome of problem analysis is not an idearf@&fficient algorithm, but
instead the discovery of a connection with another NP-cetegbroblem. Even this appar-
ently negative result may be useful, however, in suggegtiag prior work on the other
problem may be relevant, either directly or with some adapia.

Two examples of this occur in examination timetabling, oredlaknown, the other less
so. The well-known example is the connection with vertexouadhg. Algorithms from the
vertex colouring literature, such as the saturation degesgistic and Kempe chains, have
been adapted to examination timetabling in many papers.

To uncover the less well-known connection, it is necessasy b dispose of the ‘no-
clashes’ constraint that points to vertex colouring. Thisynhe done, for example, by a
phased approach whose first phase clusters examinatiohatdbére are as many clusters
as time slots. For simplicity, this discussion will assumzerf now on that there are as many
examinations as time slots, and that the aim is to assignxamigation to each time slot.

With clashes out of the way, the remaining problem is to minécases of students hav-
ing examinations too close together in time. This requingnean be formalized in several
ways, two of which will be examined here.

Construct the familiaclash graph, in which each examination (or cluster of examina-
tions) is represented by a node, and each pair of nodes edjtiy an edge weighted by the
number of students who attend the examinations of both n&@ies formulation is to have
two examination time slots on each day, and aim to minimizerthmber of cases of stu-
dents attending two examinations on the same day. Thisspmongls to finding a maximum
matching of minimum total weight in the clash graph, which ba done in polynomial time.
Another formulation does not consider the division of tin@sinto days, but merely their
sequencing in time, and aims to minimize the number of caksmidents having consecu-
tive examinations. This corresponds to finding a travelBatesman path (like a travelling
salesman tour, but with no requirement to end at the staptimd) in the clash graph. These
constructions are illustrated in Fig. 8.

It is not suggested that these ideas provide an immediatti@olto the examination
timetabling problem. Rather, they make connections witteotvork that might bear fruit
when suitably adapted. For example, to the author’s knaydedo attempt has been made
to adapt the work of Glover (1996) on ejection chain neiglhoads for the travelling
salesman problem to examination timetabling.

34

8 Conclusion

This paper has highlighted the algorithms and complexitgpective on timetable construc-
tion, and shown by example that its use can be beneficial.

It is difficult to offer guidance in the application of the tetiques advocated here, since
they must be adapted to specific details of the problems wstddy. Familiarity with the
list of standard algorithms and NP-complete problems iseagguisite. In searching for
algorithmic ideas, a focus on sets of related variablestenafewarding: the schedules of
all sports teams in a given local area, the room requirenfentall meetings at a given
time, and so on. Indeed, where algorithms and complexityrtiecies have advantages, these
seem to be due to their ability to handle sets of related bbasatogether, rather than one by
one as local search and integer programming solvers do pbinig is illustrated repeatedly
throughout this paper.

There is no practical barrier to combining algorithms anthplexity techniques with
other perspectives in timetabling research; the pos#silare limited only by our ingenuity.
There is however one point of philosophical disagreemeitiwghould not be glossed over.

Metaheuristics argeneral approaches to optimization problems, easily applied to any
problem. Integer programming, too, is a general approacmRihe algorithms and com-
plexity perspective, generalization is bad, not good, beeét brings with it a corresponding
weakening of the tools available to solve the problems. kample, the consequences of
treating the bipartite matching problem as a general opétion problem were demon-
strated in Sect. 5. Thus, the algorithms and complexitygeatsve will tend to lead towards
specific details, while the other perspectives lead in thEosejpe direction.

Problem analysis is a very hit-and-miss process, but it laes the advantage of being
open-ended. One can always hope to find a new algorithm, av aorenection with another
problem. And when something does turn up, the payoff canrige l&or these reasons, the
algorithms and complexity perspective will continue todawplace in timetabling research.

References

Ahuja R, ErgunO, Orlin J, Punnen A (2002) A survey of very large-scale nea@lithood
search techniques. Discrete Applied Mathematics, 123:05—

Beasley JE (1993) Lagrangean relaxation. In Reeves CR ddern Heuristic Techniques
for Combinatorial Problems, Blackwell

Burke EK, Gendreau M (2008) Proceedings, PATAT2008 (Sévienérnational conference
on the Practice and Theory of Automated Timetabling, Maijre

Burke EK, Marecek J, Parkes AJ, Ru@oM (2008) A branch-and-cut procedure for Udine
course timetabling. In: Proceedings, PATAT2008 (Sevem#rhational conference on the
Practice and Theory of Automated Timetabling, Montreal)

Carter MW (2000) A comprehensive course timetabling andesttischeduling system at
the University of Waterloo. In Practice and Theory of AutdethTimetabling Il (Third
International Conference, PATAT2000, Konstanz, Germ&wjected Papers), Springer
Lecture Notes in Computer Science 2079:64-81

Csima J, Gotlieb CC (1964) Tests on a computer method forteansg school timetables.
Communications of the ACM 7:160-163

Dowsland KA (1993) Simulated annealing. In Reeves CR (&dgdern Heuristic Tech-
nigues for Combinatorial Problems, Blackwell

35

Easton K, Nemhauser G, Trick M (2003) Solving the travellimgrnament problem: a com-
bined integer programming and constraint programming@gagr. In: Practice and The-
ory of Automated Timetabling IV (Fourth International Cenrénce, PATAT2002, Gent,
Belgium, August 2002, Selected Papers), Springer LectatedNin Computer Science
2740:100-109

Glover F (1996) Ejection chains, reference structures #rachating path methods for trav-
eling salesman problems. Discrete Applied MathematicZ5:253

Glover F, Laguna M (1998) Tabu Search, Kluwer

Gotlieb CC (1962) The construction of class-teacher tilvlea Proc. IFIP Congress, 73-77

Kingston JH (2008) Resource assignment in high school &ibletg. In: PATAT2008 (Sev-
enth international conference on the Practice and Theorfxutdmated Timetabling,
Montreal)

Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization biyrailated annealing. Science
220:671-680

Kostuch P (2005) The university course timetabling probieith a three-phase approach.
In: Practice and Theory of Automated Timetabling V (5th intgional Conference,
PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Caiep Science 3616:109—
125

Meyers C, Orlin JB (2007) Very large-scale neighbourho@idetechniques in timetabling
problems. In: Practice and Theory of Automated TimetabWih¢Sixth International Con-
ference, PATAT2006, Brno, Czech Republic), Springer Lexfotes in Computer Sci-
ence 3867:24-39

Mdller T, Rudoa H, Bark R (2005) Minimal perturbation problem in course timeitadpl
In: Practice and Theory of Automated Timetabling V (5th intgional Conference,
PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Caiep Science 3616:126—
146

Murray K, Miller T, Rudoa H (2007) Modeling and solution of a complex university caur
timetabling problem. In: Practice and Theory of Automateehdtabling VI (Sixth In-
ternational Conference, PATAT2006, Brno, Czech Repub8pyinger Lecture Notes in
Computer Science 3867:189—209

Ribeiro CC, and Urrutia S (2004) Heuristics for the mirrotedrelling tournament problem.
In: Proceedings, PATAT 2004 (5th International Confereondhe Practice and Theory
of Automated Timetabling, Pittsburgh, PA), 323-341

De Werra D (1971) Construction of school timetables by flowirads. INFOR — Canadian
Journal of Operations Research and Information Proce8sirity-22

36

