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Abstract

Examination scheduling is one of the earliest applications of computer tech-
nology to an academic problem. The problem is difficult to formulate and it is
usually impossible to obtain optimum solutions, or even to estimate how far from
optimum a given solution is. This gave a strong impetus to academic researchers
to study the problem, given the promise of a useful application and the availability
of real data from real sources.

Researchers have employed a large number of techniques in order to find better
solutions. Discussions of methods and summaries of progress to various dates can
be found in (Carter, 1986; Carter and Laporte, 1996) and more recently in (Qu
et al., 2006).

A feasible exam timetable is one for which no student is required to sit for
more than one exam at a time. Some of these timetables are worse than others.
Several measures of the “badness” of a timetable have been proposed, such as

• the total number of consecutive exams a student must write

• the total number of consecutive exams plus the total number of exams sepa-
rated by exactly one free timeslot

In 1996, a seminal paper (Carter et al., 1996, 1997) used a penalty, based on some
earlier work, that is the weighted sum of course pair penalties. Two exams taken
by one student separated by n timeslots incurs a penalty pn. The number of such
penalties incurred by all the students is wn. The penalty of the entire timetable
is then defined to be

5∑

i=1

piwi

where p1 = 16, p2 = 8, p3 = 4, p4 = 2, p5 = 1, and the summation is calculated
over all students involved. The penalty so obtained is then divided by the number
of students involved to get a kind of standard penalty. The authors also referenced
a depository of 13 data sets taken from real institutions that they used to test
their algorithms. The benchmarks that resulted have been used ever since as a
basis of comparison.

Progress since that time has been made by many researchers who have em-
ployed many different approaches with a view of lowering the standard penalty
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when using new algorithms with the same data. The results are not unlike those
obtained in track and field events where athletes attempt to lower the time re-
quired to cover a specified distance, say 100 metres, using the same equipment,
where nothing is changed except the training techniques, diet, discipline, etc.

This raises the question as to whether past performance can be used to forecast
future results. If this is true then perhaps an analytical study of past attempts
to obtain lower standard penalties can be used to predict future lower standard
penalties. There may even be a possibility of estimating ultimate lower bounds
and even a possibility of predicting when these bounds would be obtained.

The shape of the curve that describes the experimental “current best” value
points leads to the conclusion that at some time in the future, the best penalty
values will reach a limit. i.e.

lim
t→∞

dP (t)

dt
= 0

where P (t) is the penalty obtained at time t. Since the exam scheduling problem
is known to be NP-hard, the form of the derivative dP/dt is unknown, but it is
reasonable to assume that it is some function of the current bext penalty.

dP

dt
= f(P )

Expanding this as a Maclaurin series yields

dP

dt
= f(P ) = a0 + a1P + a2P

2 + a3P
3 + ...

To simplify the form of the equation we might first approximate it as dP/dt = a0.
Then when P attains its limiting value, we have dP/dt = 0 and therefore a0 = 0
The next form to consider is dP/dt = a1P which equals 0 only if P = 0; this is
probably not the case. The next simplest form is

dP

dt
= a1P + a2P

2 = P (a1 + a2P )

This has the desired properties. When P takes its limiting value, dP/dt = 0. It
follows that a1 + a2Plimit = 0 or Plimit = −a1/a2 In the literature, this equation
is often written in the form

dP

dt
= βP − δP 2 = P (β − δP ) (1)

This is a differential solution whose solution is

P (t) =
β

δ + [ β

P0

− δ]e−βt
(2)

where P (t) is the penalty obtained at time t and β, δ and P0 are adjustable pa-
rameters. When t = 0, P (t) = P (0) = P0. As t → ∞, P (t) → β

δ
. This equation is

used to describe birth-death processes and race results among other applications.
Here we use it to analyse some of the published examination timetable results.



For the data set car-s-91, the progressive “world record” was tabulated along
with the year in which the work was published. The results are shown in the table
below. The records correspond to the best result (if any) published during the
corresponding calendar year. If the record was broken more than once during the
year, the best result was taken, The earliest result is taken from the original paper
(Carter et al., 1996) and the latest result (and current champion) was published
in (Burke and Bykov, 2006).

year 1996 2001 2002 2003 2005 2006
penalty 7.1 6.2 5.23 4.54 4.5 4.42

The first column of data was not used in the analysis because it was the first
time that the data and the penalty used was presented to the research world. The
long time before the next result was published is not representative of the interval
separating the next improvements. The logistic curve was fitted to the remaining
five data points using the solver tool in Microsoft Excel. The goal of the solver
was to minimize the squared deviations between the published results and the
fitted equation while adjusting the constants β, δ and P0. When this is done, the
limiting value of the standard penalty is calculated to be 3.57.

A similar calculation for the set car-f-92 yields the result, 3.53 . Some sets,
such as hec-s-92, do not provide enough data to permit the calculation.

These results should be considered preliminary. There are very few data points
available and the errors on the limiting values are thought to be large. For car-s-

91 there are only five valid data points and there are three adjustable parameters
in the equation to be fitted. Work is continuing on finding new published results
for the penalties and calculating error bounds on the limiting values obtained.
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