University Course Timetabling with Probability
Collectives

Brian Autry, Kevin Squire

Naval Postgraduate School
{bmautry, kmsquire}@nps.edu

Abstract. This paper presents a novel approach to the Rosilient Course
Timetabling track of the™ International Timetabling Competition, sponsored
by the Practice or Theory and Automated Timetab{lPR§TAT) and Working
Group on Automated Timetabling (WATT). The approash based on
Probability Collective (PC) theory, an agent basegroach to optimization.
The basics of PC theory are discussed, includirg kasic algorithm and
modifications necessary for course timetabling.thdligh we did not find a
feasible schedule for any of the competition problmstances, our results
suggest that Probability Collectives should be Herrt explored for use in
timetabling.

1 Introduction

Timetabling is the process of scheduling coursesvents in a fixed period of time
while satisfying various constraints such as clawsr size and teacher availability.
While timetabling problems exist in many differefi¢lds, the focus here is on
timetabling problems in academic institutions, @ming course timetabling and
examination timetabling. An overview of timetablipgpblems and some of the basic
approaches used to solve them are discussed Wéda 1985) and (Schaerf 1999).

Curriculum based course timetabling is the probfaged by most universities.
When developing the course schedule, the main @ntt ensure that teachers are
not scheduled to teach two or more courses ataime sime and that no two courses
are scheduled in the same room at the same timee @® schedule is developed,
students select courses based on availabilitysefa in that course.

Some universities, such as the Naval Postgradugtecs use a post enroliment
course timetabling system to create a course sthdrhsed on student demand as
well as teacher and room availability. This probladds the additional constraint of
satisfying student course needs, i.e., the scheduf ensure that no two students are
scheduled for two or more courses at the same time.

The research described in this paper was motivdtgdthe current course
scheduling problem at the Naval Postgraduate Scf@BIS). Currently there are
approximately 2000 students enrolled at NPS andiyn&®0 courses offered each
quarter. Scheduling is done manually by two pea@pld the process takes up to 8
weeks to complete the schedule for one quartezari a better system is needed.

2 Brian Autry, Kevin Squire

Coincidentally, the % International Timetabling Competition was annouhes
we were beginning to study this problem. The cditipa offered a simplified post
enrollment timetabling track useful for testing adeas. This paper describes the
methodology and results of our submission to tbatpetition.

The rest of this paper is organized as follows.tiBec2 describes the rules and
structure of the timetabling competition and SetBodescribes previous methods for
solving similar post enrollment timetabling probkenin Section 4 we review various
agent-based approaches to timetabling, and proaideoverview of Probability
Collective (PC) theory, the basis of our approactSection 5. Section 6 describes
our application of PC theory to post enrollmentetabling of university courses.
Section 7 details our results, and Section 8 caledand describes future work.

2 Timetabling Competition

The 29 International Timetabling Competition sponsoredFgctice and Theory of
Automated Timetabling (PATAT) and the Working Group Automated Timetabling
(WATT) was held in 2007 and consisted of three Ksa@xamination timetabling,
post enrollment based course timetabling, and aultim based course timetabling
(Lewis et al. 2007). The post enrollment and cultim based course timetabling
tracks are both subsets of the course timetablioglem. The post enroliment course
timetabling track closely models the system usedR$ and was used as a simplified
example to test and evaluate the effectivenessCotheory in solving this type of
problem.

The post enrollment based timetabling problem atesif scheduling a set of
events (courses) into 45 timeslots (5 days, 9 hparsday). A set of rooms exists
each with a set of room-features. A ses of students who attend a varying
combination of events is provided. Each of thesvents has a set of available
timeslots. A set of requirements is also provideat determine which events should
occur before other events.

The goal is to schedule each eveninto one of ther rooms and one of the
timeslots while satisfying the following hard caméits:

* No student should be scheduled for two eventseaséime time.

» The room assigned to an event should be large énfmugll of the students
assigned to that event and should satisfy all efrdom-features required
by that event.

* Only one event is scheduled into each room in angdlot.

* Events should only be scheduled in available tiotssl

* Events should be scheduled in the proper order pesifed by any
precedence requirements

In addition to the hard constraints, several softstraints were also specified:

* Students should not be scheduled for an event noguat the end of the
day.

* Students should not have to attend three or maats\n a row.

* Students should not be required to attend onlyemeat on a particular day.

University Cour se Timetabling with Probability Collectives 3

No hard constraints can be violated or the solutomejected. Since for some
problem instances it may not be possible to scleedath event and maintain all of
the hard constraints, certain events may need tdetbeout to ensure all hard
constraints are satisfied. A timetable which does have any hard constraint
violations but leaves out some events is consideatid. A feasible timetable is one
in which there are no occurrences of any hard caimstviolations and all events are
scheduled.

Solutions are evaluated by first ensuring that they valid. Next, Distance to
Feasibility is calculated by summing up the numtifestudents in each unscheduled
event. Finally a Soft Cost is calculated by sumntimg total number of occurrences
of soft constraint violations listed above. Theusioh with the lowest Distance to
Feasibility is winner. If two valid solutions hatlee same Distance to Feasibility, the
solution with the lowest Soft Cost is judged thamér.

3 Post Enrollment Timetabling Solutions

Several widely ranging methods have been used én p#ist to solve the post
enrolliment course timetabling problem, most promihyein the ' International
Timetabling Competition held in 2002 (Metaheuristidetwork 2002). Among the
most successful entries in that competition wem@uti-phase approach based on
graph coloring and simulated annealing (Kostuch5200nethods based on tabu
search (Cordeau et al. 2003; Di Gaspero et al. 200# a variant of the “Great
Deluge” algorithm (Burke et al. 2003). In (Chiadémi et al. 2006), the authors
developed a hybrid metaheuristic algorithm (a mixtef construction heuristics,
variable neighborhood descent, and simulated amggaWhich outperformed the
winner of the original competition.

More recently, for the™ International Timetabling Competition, (Miiller Zif)
applied a constraint-based framework from the QGairgt Solver Library (Miller
2008a) to multiple timetabling problems, includitige post enrollment track. The
solver works through a series of algorithms basedocal search techniques, and
placed fifth in the post-enrollment competition cka(and first in the other two
tracks). Details of the work of other participantas not available at the time of this
writing, but may appear in the proceedings of ttielidternational Conference on the
Practice and Theory of Automated Timetabling orikimocations.

4 Agent-based Timetabling

Our approach to timetabling uses Probability Coiles (PC) theory, an agent-based
approach to optimization. We describe PC theorthennext section. A number of
other agent-based approaches to timetabling hame peposed in the past. In (De
Causmaecker et al. 2002), the authors describe inteoductory article how agent-
based systems might help deal with the distribatgubcts of timetabling. (Kaplansky
and Meisels 2004) and (Di Gaspero et al. 2004)v¥olthat up with (different)
techniques for using MultiAgent Systems (MAS) tdvsouniversity timetabling

4 Brian Autry, Kevin Squire

problems. In (Kaplansky and Meisels 2004), a tahkt is constructed through
negotiations among multiple Scheduling Agents andrR Agents, where individual
Scheduling Agents solve local problems using Cairgtr Satisfaction Problems
(CSP) techniques. (Di Gaspero et al. 2004) desailsystem based on monetary
trading among agents, a common agent-based paraftigreolving optimization
problems. In their system, each department haetagents: a Solver to generate a
timetable for the department, a Negotiator to nieg@twith other departments, and a
Manager which manages information necessary forother agents. In later work,
(Yang et al. 2006) describe a setup similar to (kagky and Meisels 2004), where
Course Agents negotiate with one another througint®iard Agents (along with
Publisher Agents and Interface Agents), which ademwith each other througid
hoc negotiation rules to find a feasible schedule.

Other than the fact that these systems do notvd#alpost-enroliment scheduling,
our PC Theory-based system differs from them incthraplexity of the agents and in
the way that the agents interact (or in the casmipkystem, do not interact). As with
the systems proposed by Kaplansky and MeiselsYamg) et al, we have one agent
per course. In our system, each agent maintaindity for each feasible timeslot-
room, and a probability distribution over the saseé of feasible timeslot-rooms. For
each iteration, each agent independently choodeseslot-room by sampling from
its probability distribution, then updates its esied utility for that room in the
context of the choices of all other agents (coyrsédter a set number of iterations
(an epoch), it updates its probability distributiglightly to favor classes which have
higher utility.

More details will be given below, but from this deption, it is obvious that 1)
there is no direct negotiation among agents—alificunication” occurs through the
utility calculation; and 2) each agent is relatiwsimple, in that it does not have to do
much more than sample from a probability distribatand update its utilities and
probability distributions.

5 Probability Collectives

Probability Collective (PC) theory (also known a®dRict Distribution (PD) theory)
is a relatively new agent-based approach to soleitimization problems, drawing
ideas from evolutionary game theory and statisfitaisics. It has been successfully
used in areas including flight control (Bieniawsl§tefan 2005), airline flight
scheduling (Antoine et al. 2004), and cooperatiessg (Waldock and Nicholson
2007). Good introductory references describingtfry include (Bieniawski, S. R.
and Wolpert 2004) and (Bieniawski, S. et al. 200@)Molpert 2004) gives an in-depth
description of the theory. (Macready and Wolperpiess) contains examples of PC
theory applied to larglke SAT (100 variablek=3) constraint satisfaction problems and
unconstrained minimization dlK functions =300, K=2), which are (perhaps)
slightly smaller than but comparable to many tirbéitey problems.

PC theory is a global optimization technique, aad eost easily be compared
with genetic algorithms and simulated annealingcdntrast with genetic algorithms,
which update populations of solutions, PC theoryintains and updates a

University Cour se Timetabling with Probability Collectives 5

parameterized distributiop over the space of solutions (Huang et al. 200Bhis
distribution p is a product distribution, and is iteratively upzth so that it peaks
around “good” solutions. As with simulated anneglithe updates fpare controlled
partially by a temperature setting, which providesade-off between exploration of
the solution space (high temperature) and exploitadf learned knowledge (low
temperature).

PC theory distributes an optimization problem amagegnts representing variables
in the system. Each agent maintains a predefinedf ggssible actions, along with a
utility function defined over these actions. Thealof the agent is to optimize the
utility function. An agent independently choosesaation, evaluates the utility of its
choice in the context of every other agent’s cureation, and updates the estimated
utility of its action. A global utility may also bealculated and used to update the
action utility. Each agent also maintains a prdighdistribution defined over its
possible actions. (Each agent’'s distribution iscanponent of the global product
distributionp over the set of solutions, mentioned above). Tipesbabilities are also
updated based on the utility calculation and theesu “temperature” of the system.
Subsequent action choices are made by samplingdibtsbution. The system
evolves until it reaches an equilibrium state whawemprovements can be made by
altering agent actions. PC theory assumes that ageht is bounded rational and
independent and will make choices based only orovta probability distribution,
with no direct communication among agents.

One benefit of using PC theory is that since eagent chooses actions
independently, the problem can easily be paradidliDespite this obvious extension,
we have not yet taken advantage of this optiminatio

In the next two sections, the optimization approamhd algorithm from
(Bieniawski, S. et al. 2004) are summarized.

5.1 Optimization Approach

Assuming that each agent is bounded rational @edates in an environment with
global utility G, the system equilibrium will be the optimizer Gf subject to any
constraints imposed. This equilibrium can be fobgdninimizing the Lagrangian for
each agent as a function of the probability distiidn associated with the agents’

possible actions. The Lagrangidi (qi) is given by

£(a)=E[6(x.x,)]-TS(a)
where G is the system objective which depends on the agerdctionx and the

actions of all other agents;). The probability distribution of agents represented by
g. Sis the entropy of this distribution and is given b

S(Qi):_xzq (Xj)ln G (Xj)

6 Brian Autry, Kevin Squire

T is the temperature of the system and determireeartiount of exploration the agent
engages in. Each agent attempts to minimize thealoggan function’, (qi) , Subject
to

> q(x)=1q(x)=0.0x

This ensures that the sum of the probabilitieshan grobability distribution sum to 1
and that there are no negative probabilities.

When temperatur€ is high, much weight is given to the entropy comgrtt of the
equation, which minimizes the Lagrangian by encgimga uniform distribution and
therefore encourages more exploration of the spsidee agent. As the temperature
decreases, exploration becomes less importanthenddent begins to exploit action
choices which are “better” (lower cost/higher tgijlithan others.

After a fixed set of iterations (epoch), the probtés are update using Newton
updating, with the update equation

E[G|x]-E[G]

qi(x)aqi(m—aqi(x)x{

wherea is a step size determining how much the existirapability is modified by
this iteration’s results. The probability distribarn is then renormalized ensuring that
there are no negative probabilities and that time alli of the probabilities is 1.

To calculate the expected utility for each ager,use

N(k) Zg|()ﬂ = J!X(|))1()ﬂ = j)+yNiEk_1)

E(g 1% =i)=—w= , =
() Digk) Zl()ﬁzl)"'yDiEkl)

+S(q)+Ing (&)} (1)

)

Wherel()g = j)equals 1 whenx, = j and 0 otherwise. The agent’s private utility is

represented bg;. D tracks the number of times an ageohooses a particular choice
j andN tracks the private utility when then choice is malbata aging is controlled by

Y-
Constraints are added to the system by the addifik@grange muItipIiers%,j , to

the global utility along with constraint functionsi (;() , as

G(x) - G(i)+§j:xjcj ().

The update rule for the Lagrange multipliers is

University Cour se Timetabling with Probability Collectives 7

I +/7E[cj (3()] 3)

wherey; is separate step size.

Expected utilities for each agent are computed lopteé-Carlo simulation. This is
accomplished by all agents repeatedly identicatigt andependently sampling their
distributions to generate moves, and then calagatitilities based on these moves.
The private utility calculation should be choseretsure low bias and low variance.
Low bias ensures that the private utility closebsembles the global utility. Low
variance ensures that each agent’s contributighatoal utility is distinguishable.

5.2 Solution Algorithm

The basic algorithm to solve problems with PC thésras follows:
1. |Initialize the system
a. Initialize the parameters {T, y}. Set the convergence critetda
b. Select the number of Monte Carlo Samples.
c. Initialize the probability collectives
2. While Jzukk -2 1H+Z 9 -q
I
a. For each Monte-Carlo sample,
i. Jointly IID the sample
ii. Evaluate the objective function
iii. Compute each agent's private utility
b. Compute the expected utility for each agent usigg(B).
c. Update the probability distributions using Eq. (1).
d. Update the Lagrangian multipliers using Eq. (3).
3. Final Evaluation
a. Determine the highest probability value for eachalzde
b. Evaluate the objective function with this set ofues.

6 Application of PC Theory to University Cour se Timetabling

In this section, the details of how the post emnelt course timetabling problem was
approached using PC theory are described. In tpiglication, each event is
represented by an agent, and each agent’'s actiendrawn from time-slots/rooms
available to that agent, and are determined indalig based on the specific
requirements of the event.

In our system, an agent’s private utility is ca&tald by counting the number of
collisions that exist given a certain time-slotfroehoicé. Collisions can occur in

1 Technically, the utility is the negative of themier of collisions, and we wish to maximize
this value (minimize the number of collisions). igtill be implied in the rest of the paper.

8 Brian Autry, Kevin Squire

two ways. First, if an event is scheduled in thmeaimeslot and room as another
event, the number collisions are equal to the sizéhe union of the two sets of
students. The second form of a collision is wheo éwents are scheduled in the same
timeslot but in different rooms and the intersettid the two sets of students is non-
zero. The size of the intersection is the numberodifsions in this case.

An agent’s local utility is calculated as the exgeeicnumber of collisions given its
current utility function and probability distribot, and is calculated by summing the
products of the probability of choosing each timesbom combination and the
expected utility associated with that choice. Amrrage of the local utilities is used to
estimate actual global utility. According to (Biawski, S. et al. 2004), the local
utility function should be chosen to have low béxl variance with respect to the
global utility. While we believe our choice foll@athese guidelines, other local
utility functions may be more appropriate.

6.1 Initialization

During the system initialization data structureg @enerated representing the
events, rooms, and students using data provideth®yinternational Timetabling
Competition. We map students to events, rooms tailable features, required
features to events, events to available time slkatsl evaluate event precedence.
Initial parameters, including the rate of coolimy tate of change of temperature)
(AT), the number of Monte-Carlo samplems) (per iteration, and initial temperature,
are set according to user input. Initial tempematigr carefully selected to ensure a
good amount of exploration occurs early on. The ddtcooling controls how rapidly
the system moves from exploration to trade off eitation.

Next, each event is initialized. The probabilitytdbution is set to only include
rooms of the appropriate size, rooms that havdéghtires required by that event, and
timeslots that are available to that event. Théibigtion is initialized by assigning an
equal probability to each available choice. Dataicstires to track utilities for
individual choices and the number of times eachicghds made N and D
respectively) are created and initialized to zero.

Instead of setting the step sigeand data aging factor to a preset value, each
event sets its own values based on the numberudests assigned to that event.
Smaller classes are assigned a lower value: fandy to allow for more movement
for a given iteration while larger classes are givegher values to prevent large
jumps between iterations. The theory behind thisaised on how particles react in the
real world. For a given energy imparted on a systemaller particles will move
faster and farther than larger ones. The end resthiat events with larger class sizes
tend to be placed earlier while the smaller evantsallowed more freedom to move
and find an optimum slot.

The final phase of event initialization consistspoé-calculating the number of
collisions that can occur between two distinct éseby calculating the student set
intersection between every pair of events.

University Cour se Timetabling with Probability Collectives 9

6.2 TheOptimization

For every iteration of the optimization, tihe Monte-Carlo samples for each event
(representing room and time slot choices for the neiterations) are first generated.
We used stochastic universal sampling (Baker 1387@enerate alin samples up
front in O(m) time. These samples are initially ordered andstrhe randomly
permuted.

Next, we iteraten times. For each iteration, each agent compusgwrivate utility
(number of student/course collisions) for its chiosgom and time slot, and tracks the
number of times each particular choice is madeerA#ll iterations, each event
updates its\ andD data structures and calculates expected utilitygugq. (2). They
also calculate their localized global utility amtrepy.

If the change in average localized global utility) , temperature is decreased by
AT and next set of Monte-Carlo samples is calculatedhe change in average
localized global utility is minimal, then the algbm moves to the final evaluation
phase.

6.3 Final Evaluation

At this point each event should have a probabdittribution that reflects the best
choice or choices of timeslot-room combinations @léow it to minimize the total
number of system collisions. The next step is wiggsevents to the timeslot-room
combination that best suits the event while engutirat none of the hard constraints
are violated. Since it is likely that in a very denschedule there may still be
constraint violations, events are scheduled inelediog order of number of students
associated with that event.

For each event, the algorithm attempts to schetthéesvent in the timeslot-room
combination with the highest probability. This at®mimust be compared with already
scheduled events to ensure that there are no s$tgdéisions, no two events are
scheduled in the same room at the same time, adilhevents are scheduled in the
order established by any precedence requiremeotgel_probability choices are tried
if the first choice is not successful. If no adedye timeslot-room combination is
found, the event is unscheduled.

7 Results

Sixteen problem instance data sets were providethéyinternational Timetabling
Competition for testing purposes. Table 1 liststhenber of events, rooms, possible
room features, and number of students associatibdeach instance.

For the competition, a time limit was imposed basadhe number of computer
cycles. A benchmark tool was provided on the coitipatwebsite. The test machine
was a virtual machine running Windows XP and afledal024 MB of RAM. The
base machine was a Macintosh iMac running at 2.8@4®ed on the benchmark
tool, the maximum allowable run time was approxiehat00 seconds.

10 Brian Autry, Kevin Squire

The following parameters were used for the comipetinT = 0.90, 500 Monte-Carlo
samples per iteration, and an initial temperatadr of 2.0. The determination eof
andy was made based on the actual minimum event stsisnbdf 1 and a maximum
of 98. The formula to calculate both variables eediuthat the values for the largest
event were fixed at 0.9 and the variables for thalkest event were fixed at 0.1. The
resulting formula is:

a =y=0.0082%+ 0.096

wherex is the number of students requesting the event.

Table 1. Description of problem instances.

Instance Events Roomg Featurges Students
1 400 10 10 500
2 400 10 10 500
3 200 20 10 1000
4 200 20 10 1000
5 400 20 20 300
6 400 20 20 300
7 200 20 20 500
8 200 20 20 500
9 400 10 20 500
10 400 10 20 500
11 200 10 10 1000
12 200 10 10 1000
13 400 20 10 300
14 400 20 10 300
15 200 10 20 500
16 200 10 20 500

Univer sity Cour se Timetabling with Probability Collectives 11

Table 2. Competition results.

Instance Distance to| Soft Cost| Run Timg Worst Percent
Feasibility (sec) Case Scheduled

1 3076 1798 597 10515 70.7
2 3170 1725 586 10515 70.0
3 1997 3010 145 13383 85.1
4 2040 2711 145 13396 84.8
5 1239 1157 539 6275 80.3
6 971 1322 529 6218 84.4
7 687 1449 133 6733 89.8
8 756 1496 138 6916 89.1
9 2814 2076 593 10714 73.7
10 3035 1685 581 10492 71.1
11 2804 2937 159 13608 79.4
12 2930 3123 155 13607 78.5
13 1424 1175 535 6358 77.6
14 1362 1154 538 6257 78.2
15 808 1362 142 6527 87.1
16 576 1366 145 6819 91.6

Table 2 displays the results of the competitionsruihe worst case column
indicates the Distance to Feasibility if no eveneye placed. The program generated
valid timetables but was unable to find a feastbtution for any of the problem
instances. Each instance is known to have at teesfeasible solution though the
competition organizers feel that these solutionis most likely not be found in the
give time. At the time of writing this paper, thesults from the competition were not
available and therefore a comparison with the ott@npetition entries is not yet
possible.

Figure 1 shows the progression of average localigeblal utility over time. Three
different problem instances of varying size arevaho(“Utility” here is actually a
cost and lower average costs are desired.) Thialimitgh temperature allows for
greater exploration in the beginning of the optiaiian which explains the initial rise
in average localized global utility followed by apid drop to nearly zero as the
events find their optimal timeslot-room combination

Figure 2 and 3 show the progression of the proipplgbllectives through the
optimization process for events 5 and 21 of probiestance 3. Student sizes for the
events were 65 and 15 respectively. By iterationedent 5 narrowed the number of
possible timeslot room combinations to one. Atehd of the optimization, event 21
had 3 timeslot-room combination choices of abousa¢cguality. This solution
indicates that the optimization problem is undest@ined as implemented, leading
to a suboptimal solution.

12 Brian Autry, Kevin Squire

—+—Instance 1

Ingtance 3

SO0

2000

@

0.8

p(x)
:

0.4

0.2 A

e —

1 3 5 7 9 11 1315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 33 55

e —

Iteration

Figure 2. Evolution of the probability collective for evebtof problem instance 3.

Univer sity Cour se Timetabling with Probability Collectives 13

0.45 <

0.4

0.35

0.3

P

1 3 5 7 9 111315171921232527 2031333537 304143454749 515355

Iteration

Figure 3. Evolution of the probability collective for evePt of problem instance 3.

8 Conclusion and Future Work

We have implemented a solution to the post enraitnoeurse timetabling problem
based on Probability Collectives theory. The aldponi produced valid timetables for
every instance, though 100% student placement wasichieved for any instance.
The algorithm was able to successfully schedulevéet 70.0% and 91.6% of the
student event requests.

The biggest issue in our solution is that the tab&hg problems as given (and as
implemented) are underconstrained, leading to nagyts finding high utility values
for multiple timeslot/room pairs. This problem mayggest a two- or multi-stage
solution where classes are first deconflicted ameed and rooms are chosen later,
although it is currently unclear how to easily ieylent this using probability
collectives. Additional soft constraints may bettpush the optimization in a
particular direction (and indeed, we did not coesithe specified soft constraints in
our algorithm). (Macready and Wolpert in presgvide a mechanism to deal with
this problem, by simultaneously calculating mukigolutions to the problem. We
plan to explore these solutions.

One of the major benefits of PC theory is the irheparallelism, which we have
not yet taken advantage of. Finally, as indicatethe introduction, we plan to apply
this algorithm to the NPS scheduling problem, whicktigated this research. In
doing so, we will have to take into account addisibpractical constraints, including:

« Multiple sections of the same course. This actualiigs flexibility to the
timetabling process by allowing the student’s ceursquirement to be
fulfilled in different timeslots.

» Multiple professors for the same course. This pobbescription considers
professors linked to individual courses. At NPSnseacourses are taught

14 Brian Autry, Kevin Squire

by multiple professors, particularly when considgriabs associated with
a course.

* Courses that are taught via online methods. Theseses still have students
assigned, but do not require a room.

* Room availability. Often rooms are prescheduled daents that are not
related to a course.

» Professor preferences. Some professors are oallable on certain days of
the week and at specific hours. Also, there areesatassrooms that
professors prefer to not teach in.

» Departmental ownership of rooms. The problem foatioh does not
address assigning courses to rooms owned by tbeiatsd departments.

Most of these issues have an impact on timetalgation, although they should not
affect the basic algorithm.

Acknowledgements

We would like to thank the anonymous reviewers tfwir helpful comments and
constructive criticisms. This work was partialiynled by the Naval Postgraduate
School.

References

Antoine N, Bieniawski S, Kroo [, et al. (2004). eteAssignment Using Collective Intelligence.
42nd Aerospace Sciences Meeting (AIAA 2004).

Baker JE (1987). Reducing bias and inefficiencthim selection algorithm. Proceedings of the
Second International Conference on Genetic Algorthon Genetic algorithms and their
application. Cambridge, Massachusetts, United Statwvrence Erlbaum Associates, Inc.

Bieniawski S (2005). Distributed Optimization andight Control Using Collectives.
Department of Aeronautics and Astronautics, Stahtmiversity. PhD 169.

Bieniawski S, Wolpert DH and Kroo | (2004). Dis@getContinuous, and Constrained
Optimization Using Collectives. The 10th AIAA/ISSMMultidisciplinary Analysis and
Optimization Conference. Albany, NY.

Bieniawski SR and Wolpert DH (2004). Product Distitions for Distributed Optimization.
International Conference on Complex Systems. Ban Ya Perseus Books.

Burke E, Bykov Y, Newell J, et al. (2003). A Timaedefined Approach to University
Timetabling. Yugoslav Journal of Operations Reded®(2): 139-151.

Chiarandini M, Birattari M, Socha K, et al. (2006)n Effective Hybrid Algorithm for
University Course Timetabling. J. of Scheduling)9@®3-432.

Cordeau J-F, Jaumard B and Morales R (2003). EfficiTimetabling Solution with Tabu
Searchhttp://www.idsia.ch/Files/ttcomp2002/jaumard.pédtcessed 29 June 2008.

University Cour se Timetabling with Probability Collectives 15

De Causmaecker P, Demeester P, Lu Y, et al. (208¢¢nt Technology for Timetabling.
Fourth International Conference on the Practice @hdory of Automated Timetabling IV.
Burke E and De Causmaecker (Eds.) P. Gent, Belgium.

de Werra D (1985). An Introduction to Timetablifguropean Journal of Operational Research
19(2): 151-162.

Di Gaspero L, Mizzaro S and Schaerf A (2004). A fildent Architecture for Distributed
Course Timetabling. Fifth International Conferemmrethe Practice and Theory of Automated
Timetabling. Burke EK and (editors) MT. Pittsbur@?), USA.

Huang C-F, Bieniawski S, Wolpert DH, et al. (200B).comparative study of probability
collectives based multi-agent systems and gendgorithms. Proceedings of the 2005
conference on Genetic and evolutionary computaWéashington DC, USA, ACM.

Kaplansky E and Meisels A (2004). Negotiation Amddcheduling Agents for Distributed
Timetabling. Fifth International Conference on tReactice and Theory of Automated
Timetabling. Burke EK and (editors) MT. Pittsburgth USA.

Kostuch P (2005). The University Course TimetablRrgblem with a Three-Phase Approach.
Sixth International Conference on the Practice Binglory of Automated Timetabling. Burke E
and Trick M. Pittsburgh, PA USA, Springer. 3616/20009-125.

Lewis R, Paechter B, McCollum B, et al. (2007). tAesrolment based Course Timetabling: A
Description of the Problem Model used for Track Tefdhe Second International Timetabling
Competition, Cardiff University, Cardiff Businesst®ol, Accounting and Finance Section.

Macready W and Wolpert D (in press). Distributednsteained optimization with
semicoordinate transformations. Operations Research

Metaheuristics Network (2002). International Tintetiag Competition.
http://www.idsia.ch/Files/ttcomp2002/

Muller T (2008a). Constraint Solver Librarittp://cpsolver.sf.net/Accessed 29 June 2008.

Muller T (2008b). ITC2007: Solver Description. wves.qub.ac.uk/itc2007/winner/
bestexamsolutions/itc2007_Muller.pdf. Accessed®&2008.

Schaerf A (1999). A Survey of Automated TimetabliAgtif. Intell. Rev. 13(2): 87-127.

Waldock A and Nicholson D (2007). Cooperative décdised data fusion using probability
collectives. 1st International Workshop on Agentfielogy for Sensor Networks.

Wolpert D (2004). Information Theory - The Bridgeor@ecting Bounded Rational Game
Theory and Statistical Physics. In: Complex Engiimgy Systems. Braha D and (Editors) YB-
Y, Perseus Books.

Yang Y, Paranjapea R, Benedicentia L, et al. (20065ystem model for university course
timetabling using mobile agents. Multiagent andd@ystems — An International Journal 2(3):
267-275.

