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Abstract In this paper we consider a real-life break scheduling problem for call center

agents involving a large number of breaks and constraints. Obtaining good solutions

for this problem increases the well-being of call center employees and guarantees a cer-

tain quality of service for calling customers. To solve this problem we present two local

search approaches, a min-conflicts based search algorithm and a tabu search algorithm

and consider a hybridization of both techniques. Our computational experiments re-

veal that the presented techniques generate high-quality solutions to our problems in

reasonable time. These solutions are able to satisfy the needs of customers, call center

agents, and employers at the same time.
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1 Introduction

Break scheduling represents an important task, particularly relevant for working areas

in which employees spent their entire working time in front of computer monitors, e.g.,

in call centers or airports. For people working under these conditions it is imperative

to have a break from time to times, in order to reduce stress and to avoid exhaus-

tion. Usually in each industry there exist labor rules regulating the quantity of break

time for employees and specifying how these breaks must be scheduled in a legal shift
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J. Gärtner
Ximes Inc, Hollandstraße 12/12, 1020 Vienna, Austria
E-mail: gaertner@ximes.com

N. Musliu · W.Schafhauser (B)
Inst. for Information Systems, Vienna University of Technology, 1040 Vienna, Austria
E-mail: musliu@dbai.tuwien.ac.at

W. Schafhauser
E-mail: schafha@dbai.tuwien.ac.at



2

plan. Consequently, the great challenge of break scheduling problems is to create shift

plans which satisfy the legal requirements on break quantities and break patterns and

guarantee that a certain number of employees is present at any time.

In this paper we address a complex real-life break scheduling problem originating

from a call center, which we call the break scheduling problem. As an input we are given

a shift plan, the break types and break quantities to be scheduled for each shift and the

staffing requirements, i.e., the number of working employees required during a certain

time period. The specified break quantities have to be scheduled within the given shifts

in such a way that the number of violations of various constraints on breaks and on the

excess or shortage of working employees is minimized. The break scheduling problem

may be regarded as an instance of a constraint satisfaction problem which is known to

be NP-hard in general.

Local search techniques represent a promising approach to obtain solutions of good

quality for complex optimization problems. In each step of their search they regard

solutions closely related to the current one, the so-called local neighborhood, and select

a particular solution from that neighborhood for further improvement. Usually, this

neighborhood is computed by applying small changes to the current solution. In terms

of local search techniques these small changes are denoted as moves.

Canon as well as Tellier and White considered shift design problems including the

scheduling of breaks (Tellier and White 2006; Canon 2007). They were able to obtain

solutions of acceptable quality for their respective problems by using local search tech-

niques. In contrast to these related problems the break scheduling problem addressed

in this paper consists in exclusively scheduling breaks within a fixed shift plan whereas

in (Tellier and White 2006) and (Canon 2007) also shifts are a subject to the opti-

mization process. Moreover, in the break scheduling problem we have to schedule large

numbers of breaks per shift and consider various constraints not imposed on previous

problems.

Motivated by the encouraging results of local search techniques for related problems

we investigate local search algorithms for the break scheduling problem. At this point

we want to state the main contributions of this paper:

⊲ We propose and implement a min-conflicts based heuristic for the break scheduling

problem and combine it with a random-walk strategy in order to escape from local

optima.

⊲ We develop and implement a tabu search algorithm for the break scheduling prob-

lem. Moreover we propose several variants of tabu lists to ensure that the tabu

search does not get stuck in cycles.

⊲ In addition, we consider a hybridization of both methods, a min-conflicts search

using tabu lists.

⊲ To evaluate our proposed methods we carry out comprehensive experiments on

23 real-life instances from a call center, which are presented in this paper for the

first time. In our experiments we determine which parameters are best for various

search strategies and apply the best performing search strategies to all instances.

Our computational results reveal that in most cases min-conflicts search achieves

the best results.
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2 Problem Description

In this section we give a formal description of the break scheduling problem. In the

break scheduling problem we regard shift plans for call center agents in which each shift

must contain a certain quantity of breaks. Our goal is to schedule the breaks within

the shifts in such a way that we obtain a solution of high quality according to various

criteria. Formally, as input for the break scheduling problem we are given:

⊲ a planning period formed by T consecutive time slots [a1, a2), [a2, a3), ..., [aT , aT+1)

all having the same length slotlength (in minutes). Time points a1 and aT+1 rep-

resent the beginning and end of the planning period. All time points have the same

format day:hour:minute.

⊲ n shifts s1, s2, ..., sn representing employees working within the planning period.

Each shift si has the adjoined parameters, si.start and si.length representing its

start and its length. Each shift corresponds to exactly one employee.

⊲ break quantities and break types to be scheduled for each shift. We distinguish

between two different types of breaks: lunch breaks and monitor breaks. The pa-

rameter si.lunch stores the length of a shift’s lunch break in minutes, whereas the

parameter si.monitor specifies a shift’s monitor break quantity.

⊲ the staffing requirements for the planning period. Each time slot [at, at+1) has an

adjoined integer value wt indicating the optimal number of employees that should

be working during time slot [at, at+1). An employee is considered to be working

during time slot [at, at+1) if in its corresponding shift no break is scheduled during

time slot [at, at+1).

A break b is characterized by the parameters, b.shift specifying its associated shift, its

start b.start and its length b.length. We assume that all parameters representing time

points coincide with a time point at defining the start or the end of a time slot of the

planning period. Moreover we expect each parameter representing a time length or a

break quantity to be a multiple of slotlength.

Given a planning period, a set of shifts, the associated break quantities, and the

staffing requirements, a feasible solution to the break scheduling problem is a set of

breaks such that:

1. Each break lies entirely within its associated shift.

2. Two distinct breaks associated with the same shift do not overlap in time.

3. For each shift the sum of all its associated break lengths is exactly the specified

break quantity for the shift, which is si.lunch + si.monitor.

4. If si.lunch > 0 then there is one break in si whose length is at least si.lunch.

Example 1 Figure 1 shows the staffing requirements (solid curve) for a real-life instance

of the break scheduling problem. The curve of present employees (dashed curve) results

from the given shift plan, which does not contain any breaks yet.

2.1 Constraints on Feasible Solutions

Among all feasible solutions for the break scheduling problem we aim at finding an

optimal one according to various criteria. These criteria are modeled as constraints on

feasible solutions. Basically we distinguish between four main groups of constraints,

namely constraints on:
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Fig. 1 Curves of required and present employees resulting from an instance of the break
scheduling problem.

1. The position of breaks within shifts.

2. The length of breaks.

3. The distances between breaks.

4. The excesses and shortages of working employees according to staffing requirements.

2.1.1 Constraints on the Position of Breaks within Shifts

C1 MinimumDistanceToShiftBegin: Each break may start not earlier than a given

number of minutes after the beginning of its associated shift.

C2 MinimumDistanceToShiftEnd: Each break must end not later than a given number

of minutes before the end of its associated shift.

C3 MaximumDistanceToShiftBegin: The earliest break of a shift must not start later

than a given number of minutes after the beginning of the shift.

C4 MaximumDistanceToShiftEnd: The latest break of a shift must not end earlier

than a given number of minutes before the end of the shift.

2.1.2 Constraints on the Distances Between Breaks

C5 MinimumDistanceBetweenBreaks: The temporal distance between two consecutive

breaks must be at least a given minimum number of minutes.

C6 MaximumDistanceBetweenBreaks: The temporal distance between two consecu-

tive breaks must not exceed a given maximum number of minutes.

2.1.3 Constraints on the Length of Breaks

C7 MinimumBreakLength: The length of each break must be at least a given minimum

number of minutes.

C8 MaximumBreakLength: The length of each break must not exceed a given maxi-

mum number of minutes.

C9 OptimumBreakLength: The length of each break should be equal to a given opti-

mum number of minutes.

C10 MinimumLengthAfterDistance: If the distance between two consecutive breaks

reaches or exceeds a certain number of minutes the length of the latter break must

be at least of a given minimum length.
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2.1.4 Constraints on the Excess and Shortage of Working Employees

C11 NoExcess: In each time slot [at, at+1) the number of working employees, i.e., the

employees who are not assigned a break in that time slot, should not exceed wt.

C12 NoShortage: In each time slot [at, at+1) the number of working employees should

be at least wt.

CSD NoSquaredDeviation: In many practical instances for the break scheduling prob-

lem the staffing requirements are significantly higher or lower than the number of

scheduled employees during the overall planning period. Consequently, each solu-

tion will always produce the same amount of excess or shortage. For such instances

we introduced an additional constraint aimed at minimizing the squared deviation

from staffing requirements in each time slot. Informally speaking, this constraint

prefers solutions whose curve of working employees has a shape similar to the curve

representing the staffing requirements.

2.2 Extending the Problem with Breaks of Fixed Length

When scheduling breaks within shift plans it is sometimes necessary to constrain a

single break differently from the remaining breaks within its shift. For instance, em-

ployees prefer to have a one hour lunch break at the middle of their duty or between

11:00 and 14:00. Therefore we introduce a constraint defined on a single break within

a shift.

C13 FixedBreak: Each shift can contain a break of a certain specified length, which

may differ from the lengths required by other constraints. Optionally, this break

must lie within some given allowed time range, preferably within a given optimum

time range. The break must not be scheduled within a given forbidden time range.

Note: The criteria required by the constraint FixedBreak may contradict the require-

ments of several previously introduced constraints. For that reason, the following

constraints are not applied to that single break of desired length: MinimumDistance-

ToShiftBegin (C1), MinimumDistanceToShiftEnd (C2), MinimumBreakLength (C7),

MaximumBreakLength (C8), and OptimumBreakLength (C9).

2.3 Extending the Problem with Meetings

Call center employees can take part in meetings during their working time. While

attending meetings call center agents do not process incoming phone calls. Thus, during

the time a meeting takes place the participating employees are not considered to be

working with respect to staffing requirements.

Example 2 In the shift plan given in Figure 2 call center employees represented by shifts

s2, s3, and s4 take part in meeting m1 taking place from 12:30 until 13:30. Employees

working in shifts s1 and s4 attend meeting m2 from 17:30 to 18:30.

In order to handle meetings we have to extend the break scheduling problem further.

Moreover we introduce an additional constraint concerning the break time scheduled

in meetings. In addition to the input for our basic problem we are given:
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Fig. 2 A shift plan containing meetings.

⊲ k meetings m1, m2, ..., mk. Each meeting mj has two adjoined parameters mj .start

and mj .length, specifying its start time and its length. Moreover, each meeting

has an adjoined set mj .S. Set mj .S contains shifts and indicates that employees

assigned to these shifts participate in meeting mj . Additionally we are given an

integer value qj specifying the break time required to be scheduled during meeting

mj .

C14 BreakQuantityInMeeting: For each employee participating in a meeting mj we

require that exactly qj minutes of break time are scheduled within meeting mj .

Meetings have the following side effects on several constraints of the basic break

scheduling problem:

C5, C6, C10: These constraints are only relevant for breaks not scheduled during the

same meeting. In other words, these constraints are ignored for consecutive breaks

ending and starting during the same meeting.

C7, C8, C9: We consider only those parts of breaks which are scheduled outside the time

range of a meeting, disregard breaks of a certain fixed length, and refer to these

breaks as breaks outside a meeting. The constraints on the minimum, maximum,

and optimum break length are only applied to these breaks outside a meeting.

C11, C12, CSD: While participating in meetings employees are not considered to be

working. Breaks scheduled during meetings do not further decrease the number of

working employees.

3 Local Search Techniques for the Break Scheduling Problem

Encouraged by the results produced by local search techniques on related problems

(Canon 2007; Tellier and White 2006; Gaspero et al. 2007; Musliu et al. 2004), we de-

cided to develop several local search algorithms for the break scheduling problem,

namely a tabu search as well as a min-conflicts search based approach.

3.1 Principles of Local Search Techniques

Local search techniques try to obtain a good solution for an optimization problem by

iteratively improving an initial solution.

To design a local search algorithm for a specific optimization problem, in particular

for the break scheduling problem, we have to develop the following key ingredients of

a local search algorithm:
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– A representation of solutions of the specific optimization problem.

– An objective function mapping solutions to real values. The value of a solution acts

as a measure for its quality.

– Moves applicable to a solution in order to compute its neighborhood.

3.2 Representation of Solutions for the Break Scheduling Problem

We represent the solution for the break scheduling problem as a set of breaks. Each

break has a variable start and constant length. Moreover, each break is associated

with a certain shift and must lie entirely within that shift’s range. Given a shift and

its quantities of lunch and monitor breaks we distribute the break time among the

following three types of breaks:

fixed breaks: For each break required by constraint FixedBreak (C13) we generate a

so-called fixed break having the desired length. If possible the entire lunch break

quantity is part of a single fixed break.

lunch break: If it is not possible to schedule the lunch break within a fixed break we

generate a lunch break. Each shift may contain at most one lunch break comprising

its total lunch time quantity.

monitor breaks: The remaining time not planned as fixed breaks and lunch breaks

is scheduled within monitor breaks. We try to assign a monitor break the optimal

break length as required by constraint OptimalBreakLength (C9) to each monitor

break but the last monitor break may be shorter than the desired optimum length.

The obtained breaks are scheduled randomly in their respective shifts

such that the the obtained solution is feasible and satisfies the constraints

MinimumDistanceToShiftBegin(C1) and MinimumDistanceToShiftEnd(C2).

This solution acts as the initial solution for our proposed local search techniques.

3.3 Objective Function

The break scheduling problem can be modeled as a multi-criteria optimization problem

where an objective function is to be minimized. The importance of a single criterion

and the corresponding constraint varies from task to task. Thus, the break scheduling

problem’s objective function can be modeled as a weighted sum of the violation degree

of each constraint, or more formally:

F (Solution) =
∑14

i=1 Wi · violations(Ci) + violations(CSD)
2·ub(CSD)

In the objective function presented above, ub(CSD) denotes an upper bound on the

violation degree of the constraint NoSquaredDeviation. If two solutions have the same

objective value according to constraints C1, ..., C14 the objective function prefers the

solution with a smaller squared deviation from staffing requirements.

3.4 Moves and Local Neighborhood

On the basis of the representation of a solution for the break scheduling problem we

developed two kinds of moves.
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assignment: a break is moved to a new position within its associated shift, by assign-

ing it a new start.

swap: the starts of two breaks associated with the same shift are exchanged, meaning

that the breaks are actually swapped.

Given a feasible solution S to the break scheduling problem we define its neighborhood

N(S) to be the set of all solutions obtained by applying an assignment on a single

break in S or by swapping two breaks within the same shift in S. As a legal move we

consider any assignment or swap guaranteeing that after the move:

1. The breaks in the affected shifts are not overlapping.

2. The lunch break is not scheduled in a meeting.

3. The affected breaks lie within their allowed time regions specified by the con-

straints MinimumDistanceToShiftBegin (C1), MinimumDistanceToShiftEnd (C2)

and FixedBreak (C13).

4. Fixed breaks are not preceded or succeeded by any other break after the move.

3.5 Tabu Search

A local search method may loop over the same set of solutions again and again. In that

case the search is not able to discover better solutions than those already considered. In

order to overcome this problem Glover proposed a local search technique named tabu

search (Glover and Laguna 1997). The main idea behind tabu search is to maintain

a ”memory” denoted tabu list which stores recently visited solutions and forces the

search to explore new regions of the search space. At this point we would like to give

a brief overview on the different kinds of tabu lists:

tabu solutions: This is the most basic form of tabu search: We are given a fixed

number – the tabu length (tbl) – and remember the last tbl solutions encountered.

These are tabu, meaning that even if they are part of the current neighborhood,

moving there will not be considered.

tabu attribute: In some applications it is sufficient to consider certain attributes of

a solution tabu: Any solution having one of these attributes will not be considered

for evaluation for tbl iterations.

tabu move: Instead of setting solutions or their attributes tabu, we prohibit just a

certain move for the immediate future.

variable tabu length: The number of iterations during which a solution, an attribute

or a move is considered to be tabu does not need to be a fixed value. It can increase

and decrease during the search. Small sizes of the tabu list lead to an intensification

of the search on the region around the current solution whereas great sizes induce

a diversification of the search, meaning that the search is forced to explore new

regions of the search space.

There is one important note that needs to be made concerning the tabu status: If a

solution is both tabu and better than the best solution found so far it will be wise to

disregard its tabu status. This behavior is called ”aspiration”.

With the more general groundwork taken care of, we now want to look at the

tabu options that were implemented in our tabu search. Note that all options include

aspiration criteria. For the break scheduling problem we have experimented with two

kinds of tabu lists, namely tabu lists containing:
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breaks: After performing an assignment or swap, the affected breaks are added to the

tabu list. For the next tbl iterations, they are considered tabu.

inverse moves: After performing a move we add its inverse move to the tabu list.

After assigning a break a new position we prohibit the reassignment of its old

position for tbl iterations, after swapping two breaks we do not allow to swap

these breaks again for tbl iterations.

All variants of tabu lists described above are available either with fixed or with variable

tabu length. In the latter case tbl varies between a (parameterizable) minimum and

maximum length. If a move improves the current solution, the tabu length is decreased

by one, otherwise it is increased by one.

3.6 Min-Conflicts Search

Minton et al. present another local search strategy named min-conflicts search

which has been used successfully for solving several constraint satisfaction problems

(Minton et al. 1992). Unlike tabu search the min-conflicts search strategy

– explores a smaller neighborhood in each step. In fact only the neighborhood of a

single variable of an constraint satisfaction problem is considered during a single

iteration.

– concentrates on variables causing constraint violations.

Motivated by the work in (Minton et al. 1992) we adapted the min-conflicts search

for the break scheduling problem. The search starts with an initial feasible solution for

the break scheduling problem and tries to improve it incrementally. In each iteration

the min-conflicts heuristic

– selects a break violating a constraint.

– determines a move minimizing or at least not worsening the violation degree of the

current solution.

If such a move exists it will be applied to the current solution and the search

continues until some halting condition is satisfied. The proposed min-conflicts search

applies only moves which do not decrease the quality of the current solution. Thus,

once the search has reached a local optimum, that is, a solution better than any solution

within its neighborhood, it will not be able to escape it. At that point the algorithm

does not explore further regions of the search space which might contain solutions of

better quality than those we have considered so far.

To avoid this undesired behavior we adapted a random walk strategy for satisfiabil-

ity problems (Selman et al. 1993). With a certain probability p we perform an arbitrary

move to a break violating a constraint. On the one hand the violation degree of the re-

sulting solution may be worse than the previous one but on the other hand performing

such moves may help us to overcome local optima. The ordinary min-conflicts search

is carried out with the remaining probability 1 − p. The resulting algorithm is called

Min-Conflicts-Random-Walk and is presented in Algorithm 1 in pseudo-code notation.

As halting criterion we use a specified number of seconds.



10

Algorithm 1: Min-Conflicts-Random-Walk for the break scheduling problem

Input : An instance of the break scheduling problem.
The random walk probability p.

Result: A feasible solution for the break scheduling problem.

Generate an initial solution S.
repeat

/* Min-Conflicts Search */

With probability 1 − p do
Randomly select a break b ∈ S causing a constraint violation.
Apply the best legal move for b not increasing V iolations(S); results in new
S.
Ties are broken randomly.

end

/* Random Walk */

With probability p do
Randomly select a break b ∈ S causing a constraint violation.
Apply an arbitrary legal move for b; results in new S.

end

until F (S) = 0 or halting criterion = true

return the best solution found during the search.

3.6.1 Extending Min-Conflicts Search with a Tabu List

To avoid cycles in the search we additionally applied tabu mechanisms in the algorithm

min-conflicts-random-walk. During the min-conflicts part of the algorithm we apply

only moves which are not tabu according to a tabu list. As tabu lists we used the two

approaches presented in section 3.5.

4 Computational Results

In this section we evaluate our proposed algorithms for the break scheduling problem on

23 real-life benchmark instances from a call center. We conducted several experiments

to investigate the performance of the different local search techniques and to answer

the following questions:

1. Does the random-walk strategy improve the results returned by the min-conflicts

search algorithm?

2. Which tabu list performs best on the considered benchmark instances?

3. Which of the proposed methods returns the best results?

4. What is the quality of the solutions returned by the considered algorithms?

All our experiments were conducted on the following two machines: a Genuine Intel(R)

T2400 1.83 GHz processor having 2 GB RAM and an Intel(R) Core(2) Duo T7300 1.99

GHz processor having 3 GB RAM. All experiments concerning min-conflicts search and

its combinations with a tabu list were carried out on the first computer whereas the

experiments on tabu search techniques were run on the second machine. Since our local

search algorithms include randomization we carried out ten runs for each instance in

each experiment. A single run was executed with a ten minute time limit.
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To implement our local search techniques and to model constraints we used the

programming language COMET (Hentenryck and Michel 2005). The programming lan-

guage COMET provides an expressive constraint language to model combinatorial opti-

mization problems. Moreover, COMET also offers a rich search language that abstracts

different components of local search algorithms.

4.1 Benchmark Instances for the Break Scheduling Problem

To evaluate our proposed methods we used 23 real-life examples for the break

scheduling problem originating from a call center. Table 1 lists these instances and

presents their basic properties like the number of shifts (column Shifts), the length of

the planning period (column Period) and the length of each time slot in the respective

problem (column Slot). Column Breaks contains the total number of breaks for each

instance obtained as described in Section 3.2. For all instances, the lunch and monitor

break quantities are dependent on the length of a shift. For a single shift si the lunch

break and monitor break time are computed as follows:

si.lunch =

{

30 minutes, if si.length > 360 minutes

0 minutes, else

si.monitor = ⌊(si.length − si.lunch)/60⌋ · 10 minutes

We distinguish between three types of instances, Basic, Fixed and Meeting. Ba-

sic 01-Basic 12, represent instances for the basic break scheduling problem omitting

breaks of fixed length and meetings. Fixed 01-Fixed 07, require additionally a fixed

one-hour break in each shift, which is imposed using constraint FixedBreak (C13) from

Section 2.2. The remaining four instances, Meeting 01-Meeting 04, additionally contain

meetings.

The three types of instances differ also in the specified limits on the position of

breaks, distances between breaks and break lengths. Table 2 describes the different

temporal limits imposed by constraints for each type of instance. For instance, from

the first row of Table 2 we see that for instances of type Basic the distance of a break

to the beginning of its shift must be at least an hour.

In instances Fixed 01-Fixed 07 a further constraint FixedBreak (C13) is imposed

regulating the allowed, optimal, and forbidden time range for the required one-hour

break. These ranges are given in Table 3. The allowed time range for the single break

is specified by a required minimum distance to the beginning and end of a shift. The

optimum and forbidden time ranges specify the time period in which the break should

and must not be located respectively.

Finally, Table 4 presents the weight of each constraint for the given real-life tasks.

4.2 Impact of the Random-Walk Strategy

In the first experiment we investigated whether the random-walk strategy has an impact

on the quality of solutions returned by the min-conflicts-search algorithm. In order to

answer that question we ran our min-conflicts search on ten instances, with different

random-walk probabilities of 0%, 1%, 2.5%, 5% and 10%. Based on the average quality
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Table 1 Real-life benchmark instances for the break scheduling problem.

Instance Shifts Period Slot Breaks

Basic 01 24 15:00 00:05 76
Basic 02 24 15:00 00:05 76
Basic 03 24 15:00 00:05 76
Basic 04 24 15:00 00:05 82
Basic 05 26 15:00 00:05 85
Basic 06 32 15:00 00:05 93
Basic 07 28 15:00 00:05 94
Basic 08 28 15:00 00:05 108
Basic 09 28 15:00 00:05 110
Basic 10 15 16:00 00:10 55
Basic 11 15 15:30 00:10 56
Basic 12 20 16:00 00:10 67
Fixed 01 15 09:00 00:05 45
Fixed 02 15 16:00 00:10 41
Fixed 03 15 16:00 00:10 41
Fixed 04 15 16:00 00:10 41
Fixed 05 15 16:00 00:10 41
Fixed 06 15 15:30 00:10 45
Fixed 07 20 16:00 00:10 53
Meeting 01 14 12:00 00:05 36
Meeting 02 24 15:00 00:05 76
Meeting 03 25 15:00 00:05 87
Meeting 04 27 15:00 00:05 96

Table 2 Temporal limits imposed by constraints on the different types of instances.

Constraint Basic Fixed Meeting

C1 MinimumDistanceToShiftBegin 01:00 01:00 01:00
C2 MinimumDistanceToShiftEnd 01:00 01:00 01:00
C3 MaximumDistanceToShiftBegin 02:30 03:00 02:30
C4 MaximumDistanceToShiftEnd 02:30 03:00 02:30
C5 MinimumDistanceBetweenBreaks 01:00 01:00 01:00
C6 MaximumDistanceBetweenBreaks 02:30 03:00 02:30
C7 MinimumBreakLength 00:10 00:10 00:10
C8 MaximumBreakLength 01:00 01:00 01:00
C9 OptimumBreakLength 00:30 00:20 00:30
C10 MinimumLengthAfterDistance 00:30 00:30 00:30

Table 3 The allowed, optimal and forbidden time range for one-hour breaks in instances
Fixed 01-Fixed 07.

Min. Dist. to Optimal Forbidden

Instance Name Begin End Range Range

Fixed 01 02:00 00:00 11:30 - 14:30 15:00 - 18:00
Fixed 02 02:00 01:00 11:30 - 14:30 15:00 - 18:00
Fixed 03 02:00 01:00 11:30 - 14:30 15:00 - 18:00
Fixed 04 02:00 01:00 11:30 - 14:30 -
Fixed 05 02:00 01:00 - -
Fixed 06 02:00 01:00 11:30 - 14:30 15:00 - 18:00
Fixed 07 02:00 01:00 11:30 - 14:30 15:00 - 18:00
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Table 4 Weights of constraints for the considered real-life instances.

Constraint Weight Wi

C1 MinimumDistanceToShiftBegin 10
C2 MinimumDistanceToShiftEnd 10
C3 MaximumDistanceToShiftBegin 100
C4 MaximumDistanceToShiftEnd 100
C5 MinimumDistanceBetweenBreaks 10
C6 MaximumDistanceBetweenBreaks 100
C7 MinimumBreakLength 3
C8 MaximumBreakLength 3
C9 OptimumBreakLength 3
C10 MinimumLengthAfterDistance 100
C11 NoExcess 20
C12 NoShortage 20
C13 F ixedBreak 10
C14 BreakQuantityInMeeting 60

over ten runs for each instance we concluded that the random-walk strategy does indeed

improve the results obtained. The solutions for 1% and 2.5% are consistently better

than the ones computed with other probabilities.

4.3 Impact of Different Tabu Lists

In the next experiment we tried to find out which kind of tabu list returns the best

solutions for our test instances. Again, we ran our tabu-search algorithm on ten in-

stances, using the tabu lists storing inverse moves and breaks. For each kind of tabu

list we considered different lengths, namely 2n, 4n, 6n and 8n for the tabu list type

based on inverse moves and 1
2n, n and 3

2n for the list type based on breaks, where ‘n’

always stands for the number of shifts. For both tabu list approaches we also considered

variable lengths. The length of the variable tabu list with inverse moves ranges between
1
2n and 8n, whereas the length of the variable list based on breaks ranges between 1

2n

and 2n. The lengths are adapted during the search as described in Section 3.5.

Regarding the average quality of ten runs, the most important point to notice is

that there are only small differences between the average results obtained with different

tabu lists. We may observe that longer tabu lengths, 8n for inverse moves and 3
2n for

breaks, lead to slightly superior results. Furthermore we notice that in general using

the tabu list prohibiting inverse moves returns solutions of slightly better quality.

4.4 Comparison of Different Local Search Strategies

In our final experiments we wanted to draw a comparison between different local search

techniques to find out which method is best suited for the break scheduling problem.

Due to the best results of the previous experiments we chose algorithm min-

conflicts-random-walk with a random walk probability of 2.5% (MCRW) and the tabu

search with inverse moves and tabu list length 8n. In addition we evaluated yet an-

other combination of both variants, min-conflicts-random-walk with a random walk

probability of 2.5% using a tabu list of length 8n (MCRW + TL). Table 5 reports

for each instance and algorithm the average quality of the returned solutions and the
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corresponding standard deviation. The reported averages are rounded to two decimal

places.

Based on these results we come to the conclusion that min-conflicts-random-walk

(column MCRW) and its combination with a tabu list (column MCRW + TL) outper-

form tabu search. Comparing MCRW with MCRW+TL we conclude that there is no

significant difference in their performance.

Table 5 Average objective values and standard deviations returned by different local search
methods for real-life instances.

MCRW Tabu Search MCRW + TL

Average SD Average SD Average SD

Basic 01 11594.04 0.00 11594.05 0.00 11594.04 0.00
Basic 02 11954.04 0.00 11954.04 0.00 11954.04 0.00
Basic 03 11954.04 0.00 11954.04 0.00 11954.04 0.00
Basic 04 5674.01 0.00 5746.61 33.00 5675.21 1.92
Basic 05 18834.21 0.00 18834.22 0.00 18834.21 0.00
Basic 06 10362.02 0.00 10363.22 2.16 10362.02 0.00
Basic 07 23182.23 0.00 23183.44 2.16 23182.23 0.00
Basic 08 3349.40 30.08 3612.01 64.00 3310.60 23.68
Basic 09 3971.41 43.80 4181.61 72.72 3988.41 39.68
Basic 10 2256.65 1.08 2261.75 2.28 2257.25 1.92
Basic 11 2434.03 0.00 2492.33 21.52 2434.03 0.00
Basic 12 1916.01 0.00 1917.22 1.92 1916.01 0.00
Fixed 01 2729.22 10.56 2739.02 32.80 2729.42 14.32
Fixed 02 2793.06 0.00 2817.07 24.00 2793.06 0.00
Fixed 03 2793.05 0.00 2793.06 0.00 2793.05 0.00
Fixed 04 2793.05 0.00 2793.06 0.00 2793.05 0.00
Fixed 05 2223.04 0.00 2223.05 0.00 2223.04 0.00
Fixed 06 3038.04 0.00 3062.04 58.40 3028.04 10.00
Fixed 07 2348.02 0.00 2383.02 37.00 2348.02 0.00

Meeting 01 3671.62 30.72 3770.22 53.84 3689.02 39.40
Meeting 02 9494.02 0.00 9494.03 0.00 9494.02 0.00
Meeting 03 19060.20 0.00 19204.22 114.40 19060.20 0.00
Meeting 04 23327.63 63.04 23639.54 139.44 23308.63 42.72

4.5 A Note on the Quality of the Obtained Solutions

Finally we want to illustrate that the solutions returned by our local search techniques

are of acceptable quality, satisfying most of the constraints imposed on breaks and

staffing. For that purpose we consider the best solution for instance Basic 12 obtained

during our experiments.

In Figure 3 we see the curve of required employees (solid curve) in Basic 12 and

the curve of working employees (dashed curve) resulting from the best solution found

for that problem. The required minimum number of employees is not violated at any

time. Table 6 presents the violation degree of each constraint for the best solution for

instance Basic 12. We observe that nearly all constraints are completely satisfied. Only

the optimum break length has been violated for some breaks and there exists some

excess of working employees, which cannot be avoided due to the characteristics of
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instance Basic 12. Moreover, for that particular instance the break lengths may not

be further improved. Consequently, the quality of the computed solution is almost

optimal.

Fig. 3 Curve of required and working employees resulting from the best solution for instance
Basic 12.

Table 6 Detailed results for instance Basic 12.

Constraint Viol. Deg. Weight Product

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

MinimumDistanceToShiftBegin
MinimumDistanceToShiftEnd
MaximumDistanceToShiftBegin
MaximumDistanceToShiftEnd
MinimumDistanceBetweenBreaks
MaximumDistanceBetweenBreaks
MinimumBreakLength
MaximumBreakLength
OptimumBreakLength
MinimumLengthAfterDistance
NoExcess
NoShortage

0
0
0
0
0
0
0
0

12
0

094
0

10
10

100
100
10

100
3
3
3

100
20
20

0
0
0
0
0
0
0
0

36
0

1880
0

CSD NoSquaredDeviation 128 1/9576 0.01

Total Violations 1916.01

5 Previous Work

To the best of our knowledge the break scheduling problem addressed in this paper has

not been presented in the literature yet. However several other similar problems con-

cerning the design of shift plans with breaks have been addressed by different authors.

Break scheduling has been mainly considered in the literature as part of the shift

scheduling problem. Dantzig developed the original set-covering formulation (Dantzig

1954). In this formulation there exists a variable for each feasible shift. Feasible shifts



16

are enumerated based on possible shift starts, shift lengths, breaks, and time win-

dows for breaks. When the number of shifts increases rapidly this formulation is

not practical. Bechtold and Jacobs proposed a new integer programming formulation

(Bechtold and Jacobs 1990). In their formulation, the modeling of break placements is

done implicitly. Authors reported superior results with their model compared to the set

covering model. Their approach however is limited to scheduling problems of less than

24 hours per day. Thompson introduced a fully implicit formulation of shift scheduling

problem (Thompson 1995). A comparison of different modeling approaches is given by

Aykin (Aykin 2000).

A greedy algorithm for scheduling breaks after generating shifts has been presented

in (Gärtner et al. 2004). The authors propose a simple algorithm which includes the

phase of assigning the breaks greedily based on the information for the largest excess,

and then applying simple repair steps on the assigned breaks.

Tellier and White present a tabu search based approach in order to solve a schedul-

ing problem originating from call centers (Tellier and White 2006). They aim at min-

imizing the squared deviation of working employees from staffing requirements while

various constraints are required to be satisfied. In (Tellier and White 2006) there is a

correspondence between shifts and real employees of the contact center, and the con-

straints on a feasible solution restrict the position of breaks within shifts, the position

and lengths of single shifts within the entire schedule, and the minimum and maximum

number of paid working hours per employee. Canon investigates also the use of tabu

search for the shift design problem including breaks (Canon 2007).

Unfortunately a direct comparison between our approach and the approaches we

just mentioned cannot be done due to the differences in problem formulations and

constraints.

6 Conclusions

In this paper we investigated the break scheduling problem, a complex, real-life prob-

lem of high practical relevance. We proposed several different heuristics to solve this

problem: a tabu search with two different kinds of tabu lists as well as a min-conflicts

based heuristic. Moreover we considered the hybridization of the min-conflicts heuristic

with a random-walk strategy and tabu lists.

After designing and implementing these methods we used them to find solutions for

23 real-life problem instances. The obtained results lead us to the following conclusions:

⊲ Our min-conflicts approach is improved by the random-walk strategy.

⊲ Min-conflicts search in combination with random walk is both, better suited to this

problem than our tabu search implementation.

⊲ In general, the proposed methods returned high quality solutions for the regarded

real-life examples.

For future work we will extend our methods to solve similar problems appearing in

other working areas than call centers. Furthermore we will investigate the application

of other meta-heuristic methods to solve break scheduling problems.
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Gärtner, J., Musliu, N., and Slany, W. (2004). A heuristic based system for gen-

eration of shifts with breaks. In Proceedings of the Twenty-fourth SGAI Interna-

tional Conference on Innovative Techniques and Applications of Artificial Intelli-

gence (Springer) Cambridge.
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