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Abstract The Traveling Tournament Problem with Predefined Venues (TTPPV) is a single
round robin variant of the Traveling Tournament Problem, in which the venue of each game
to be played is known beforehand. We propose an Iterated Local Search (ILS) heuristic for
solving real-size instances of the TTPPV, based on two types of local search moves and
two types of perturbations. Initial solutions are derived from canonical 1-factorizations of
the tournament graph or of its subgraphs. Computational results show that the new ILS
heuristic performs much better than heuristics based on integer programming and improves
the best known solutions for benchmark instances.

Keywords Traveling tournament problem · Sports scheduling · Iterated local search ·
Metaheuristics

1 Introduction and motivation

A round robin tournament is one in which each team plays against every other a fixed num-
ber of times in a given number of rounds. A team faces every other team exactly once (resp.
twice) in a single round robin (SRR) tournament (resp. in a double round robin (DRR) tour-
nament). A tournament is compact if the number of rounds is minimum and every team
plays a game in every round. Every game is played in the venue of one of the opponent
teams. Scheduling an SRR tournament consists in determining in which round and in which
venue each game will be played.

The problem of scheduling a round robin tournament may be divided into two stages.
The construction of the timetable determines the round in which each game is played. The
home-away assignment (HAA) determines in which venue each game is played. Together,
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the timetable and the home-away assignment determine the tournament schedule. A review
of the literature may be found in Rasmussen and Trick (2008).

The Traveling Tournament Problem (TTP) introduced by Easton et al (2001) may be
described as follows. A double round robin tournament is played by an even number n of
teams indexed by 1, . . . ,n. Each team has its own venue at its home city. All teams are
initially at their home cities, to where they return after their last away game. The distance
di j ≥ 0 from the home city of team i to that of team j is known beforehand. Whenever a team
plays two consecutive away games, it travels directly from the venue of the first opponent
to that of the second. The problem calls for a DRR tournament schedule such that no team
plays more than three consecutive home games or more than three consecutive away games,
there are no consecutive games involving the same pair of teams, and the total distance
traveled by the teams during the tournament is minimized.

Melo et al (2007) introduced the Traveling Tournament Problem with Predefined Venues
(TTPPV). This variant of the TTP considers a single round robin tournament, in which the
venues where the games take place are known beforehand. The set of games to be played
is represented by ordered pairs of teams determined by the HAA. The game between teams
i and j is represented either by (i, j) or by ( j, i). In the first case, the game between i and
j takes place at the venue of team i; otherwise, at that of team j. Therefore, for every two
teams i and j, either the pair (i, j) or the pair ( j, i) belongs the set of games to be played.
The TTPPV consists in finding a compact single round robin schedule compatible with the
HAA, such that the total distance traveled by the teams is minimized and no team plays
more than three consecutive home games or three consecutive away games. This problem is
a natural extension of the Traveling Tournament Problem to the case of single round robin
tournaments.

Variants of this problem find interesting applications in real-life leagues whose DRR
tournaments are divided into two SRR phases. Games in the second phase are exactly the
same as those in the first phase, except for the inversion of their venues. Therefore, the
venues of the games in the second phase are known beforehand and constrained by those
of the games in the first phase. This is the case e.g. of the Chilean soccer professional
league (see Durán et al (2007)) and of the German table tennis federation of Lower Saxony
(see Knust (2007)).

Instances of the TTPPV with up to eight teams were solved to optimality by the integer
programming formulations presented in Melo et al (2008). Since feasible solutions have not
been found by a commercial solver within two hours of running time for instances with 18
or more teams, four heuristics based on the integer programming formulations were also
developed. In this paper, we propose a local search based heuristic for the TTPPV to find
good quality solutions for realistic size instances. Section 2 describes the proposed heuristic.
Section 3 reports the computational experiments. Concluding remarks are made in the last
section.

2 Heuristic approach

A factor of a graph G = (V,E) is a subgraph G′ = (V,E ′) of G, with E ′ ⊆ E. G′ is said to be
a 1-factor of G if all its nodes have degree equal to one. A factorization of G is a set of edge-
disjoint factors {G1 = (V,E1), . . . ,Gp = (V,Ep)}, with E1∪ . . .∪Ep = E. A 1-factorization
of G is one in which all factors are 1-factors. In an ordered 1-factorization of G, the 1-factors
are taken in a fixed order.
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Schedules of an SRR tournament with n (even) teams and fixed home away assign-
ments may be represented by ordered 1-factorizations of the complete undirected graph Kn

(see Ribeiro and Urrutia (2007)). Each node of this graph represents a team. An edge from
node i to node j in the k-th 1-factor of an ordered 1-factorization implies that the game
between teams i and j is played in the k-th round in the venue determined by the HAA.

2.1 Initial solutions

Two distinct methods are use to build initial 1-factorizations in this paper. In the canonical 1-
factorization (see de Werra (1981)), the edge set of each factor Gi = (V,Ei), for i = 1, . . . ,n−
1, is defined as follows, with V = {1, . . . ,n}:

Ei = {(n, i)}∪{( f1(i,k), f2(i,k)) : k = 1, ...,n/2−1},

with

f1(i,k) =

{
i+ k, if i+ k < n,

i+ k−n+1, if i+ k ≥ n,

and

f2(i,k) =

{
i− k, if i− k > 0,

i− k+n−1, if i− k ≤ 0.

A variation of the canonical 1-factorization (see de Werra (1980)) is used in this paper
whenever n is divisible by four. Nodes ofV are separated into two sets A = {a1, ...,an/2} and
B = {b1, ...,bn/2} with n/2 nodes each. A canonical 1-factorization is built for the complete
graphs defined by each set A and B. To build the first n/2−1 factors of the 1-factorization
of Kn, make the union of any factor of the 1-factorization associated with A with any factor
of the 1-factorization associated with B. Proceed as before, using pairs of unused factors of
the 1-factorizations associated with A and B until n/2− 1 factors of the 1-factorization of
Kn are obtained.

The remaining n/2 factors of the 1-factorization of G (corresponding to the last n/2
rounds of the tournament schedule) contain exclusively edges with one extremity in A
and the other in B. The edge set of each 1-factor Gr is defined as follows, for each r =
n/2, . . . ,n−1:

Er = {(ai,b f3(i,r)) : i = 1, ...,n/2},

with

f3(i,r) =

{
i+ r−n/2, if i+ r ≤ n;

i+ r−n, otherwise.

Teams are randomly associated with nodes of the complete graph Kn and the 1-factors
representing the rounds are ordered arbitrarily in both factorization schemes. We notice that
both construction procedures may build ordered 1-factorizations that violate the limits of the
maximum number of consecutive home (or away) games.
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2.2 Neighborhoods

Let V = {1, ...,n} be the set of teams and R = {1, ...,n−1} the set of rounds of a schedule
X . We assume that this schedule is represented by a matrix with n rows and n−1 columns,
where X(t,r) denotes the opponent of team t ∈V in round r ∈ R. A negative sign indicates
that team t is playing an away game in round r. Figure 1 shows a schedule for a tournament
with eight teams.

Teams Rounds
1 2 3 4 5 6 7

1 -4 5 6 -2 8 7 -3
2 -6 -8 4 1 3 -5 -7
3 5 -4 -7 -6 -2 8 1
4 1 3 -2 -8 7 -6 -5
5 -3 -1 -8 -7 6 2 4
6 2 -7 -1 3 -5 4 8
7 -8 6 3 5 -4 -1 2
8 7 2 5 4 -1 -3 -6

Fig. 1 Schedule for a tournament with eight teams.

Different neighborhood structures have been used in local search procedures for schedul-
ing round robin tournaments, see e.g. Anagnostopoulos et al (2006); Gaspero and Schaerf
(2007); Ribeiro and Urrutia (2007). The basic home-away swap neighborhood used by
Ribeiro and Urrutia (2007) is not considered in this study, since the home-away assignments
are fixed beforehand. We consider four neighborhoods in the context of the TTPPV.

The first neighborhood is team swap (N1). For any two teams t1 ∈ V and t2 ∈ V , with
t1 �= t2, the schedule obtained by swapping the opponents of teams t1 and t2 in all rounds of
the schedule X is a neighbor of the latter in N1.

Similarly, the second neighborhood is round swap (N2). For any two rounds r1 ∈ R and
r2 ∈ R, with r1 �= r2, the schedule obtained by swapping the games of schedule X in rounds
r1 and r2 is a neighbor of X in N2.

The third neighborhood is partial team swap (N3). For any round r ∈ R and for any two
teams t1 ∈ V and t2 ∈ V , with t1 �= t2 and |X(t1,r)| �= t2, let S be a minimum cardinality
subset of rounds including round r in which the opponents of teams t1 and t2 are the same,
i.e. S = {r1, ...,rk}⊆R is minimal and such that r∈ S and {t ∈V :∃ j∈ S such that |X(t, j)|=
t1} = {t ∈V : ∃ j ∈ S such that |X(t, j)|= t2}. Given a schedule X , a round r, and teams t1
and t2 defined as above, the schedule obtained by swapping the opponents of teams t1 and t2
in all rounds in S is a neighbor of X in N3.

Figure 2 illustrates a move in neighborhood N3 for a tournament with eight teams and
r = 2, t1 = 1, and t2 = 2. In this case, S = {2,5,6,7}. Teams 3, 5, 7, and 8 are the opponents
of teams 1 and 2 in the rounds in S. We notice that the partial team swap neighborhood N3

is a generalization of the team swap neighborhood N1.
The last neighborhood is partial round swap (N4). For any team t ∈V and for any two

rounds r1 ∈ R and r2 ∈ R, with r1 �= r2, let U be a minimum cardinality subset of teams in-
cluding team t in which the opponents of the teams inU in rounds r1 and r2 are the same, i.e.
U = {t1, ..., tk} ⊆V is minimal and such that t ∈U and {i ∈V : ∃u∈U such that |X(i,r1)|=
u} = {i ∈V : ∃u ∈U such that |X(i,r2)|= u}. Given a schedule X , a team t, and rounds r1

and r2 defined as above, the schedule obtained by swapping the opponents of each team in
U in rounds r1 and r2 is a neighbor of X in N4.
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Teams Rounds
1 r = 2 3 4 5 6 7

t1 = 1 -4 8 6 -2 -3 5 7

t2 = 2 -6 -5 4 1 -8 -7 3

3 5 -4 -7 -6 1 8 -2
4 1 3 -2 -8 7 -6 -5

5 -3 2 -8 -7 6 -1 4
6 2 -7 -1 3 -5 4 8

7 -8 6 3 5 -4 2 -1

8 7 -1 5 4 2 -3 -6
(a) Original schedule X

Teams Rounds
1 r = 2 3 4 5 6 7

t1 = 1 -4 5 6 -2 8 7 -3

t2 = 2 -6 -8 4 1 3 -5 -7

3 5 -4 -7 -6 -2 8 1
4 1 3 -2 -8 7 -6 -5

5 -3 -1 -8 -7 6 2 4
6 2 -7 -1 3 -5 4 8

7 -8 6 3 5 -4 -1 2

8 7 2 5 4 -1 -3 -6
(b) New schedule after move in neighborhood N3

Fig. 2 Move in neighborhood N3 for a tournament with eight teams and r = 2, t1 = 1, and t2 = 2 (highlighted
entries in (a) appear modified in (b) after the move).

Figure 3 shows a move in neighborhood N4 for a tournament with ten teams and t = 1,
r1 = 1, and r2 = 4. In this case, U = {1,6,7}. Teams 3, 4, and 8 are the opponents of
teams in U in rounds 1 and 4. We notice that the partial round swap neighborhood N4 is a
generalization of the round swap neighborhood N2.

Moves in neighbors N1 and N2 do not alter the current 1-factorization. In some situa-
tions, a move in neighborhood N3 is equivalent to a move in neighborhood N1. This is true,
in particular, for the canonical 1-factorization for n = 20. In this case, for any round r ∈ R
and for any two teams t1 ∈V and t2 ∈V , the minimum cardinality subset S differs from the
complete set R of rounds exclusively by the round in which t1 plays against t2. Similarly,
moves in neighborhood N4 may be equivalent to moves in neighborhood N2, again as it is the
case for the canonical 1-factorization for n = 20. Therefore, if the canonical 1-factorization
is used as the initial solution in these situations, any search method using only the neigh-
borhoods N1, N2, N3, and N4 will not be able to escape from the canonical 1-factorization.
However, the same does not hold for the 1-factorizations built by the second strategy, in
which neighborhoods N3 and N4 are different from N1 and N2, respectively.

2.3 Local search

We propose a local search procedure exploring neighborhoods N1 and N2. Moves in these
neighborhoods do not change the original 1-factorization. Moves in neighborhoods N3 and
N4 will be used exclusively as perturbations, to modify the structure of the original 1-
factorization built by the constructive procedure.
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Teams Rounds
r1 = 1 2 3 r2 = 4 5 6 7 8 9

t = 1 -3 10 7 -8 -5 2 4 9 -6
2 9 8 6 -5 -3 -1 10 -4 -7

3 1 -4 9 -6 2 -10 -7 -8 5

4 -6 3 -10 -7 8 5 -1 2 9
5 10 7 8 2 1 -4 -9 -6 -3

6 4 -9 -2 3 -10 -7 -8 5 1

7 -8 -5 -1 4 -9 6 3 -10 2

8 7 -2 -5 1 -4 -9 6 3 -10
9 -2 6 -3 10 7 8 5 -1 -4

10 -5 -1 4 -9 6 3 -2 7 8
(a) Original schedule X

Rounds
Teams r1 = 1 2 3 r2 = 4 5 6 7 8 9

t = 1 -8 10 7 -3 -5 2 4 9 -6
2 9 8 6 -5 -3 -1 10 -4 -7

3 -6 -4 9 1 2 -10 -7 -8 5

4 -7 3 -10 -6 8 5 -1 2 9
5 10 7 8 2 1 -4 -9 -6 -3

6 3 -9 -2 4 -10 -7 -8 5 1

7 4 -5 -1 -8 -9 6 3 -10 2

8 1 -2 -5 7 -4 -9 6 3 -10
9 -2 6 -3 10 7 8 5 -1 -4

10 -5 -1 4 -9 6 3 -2 7 8
(b) New schedule after move in neighborhood N4

Fig. 3 Move in neighborhood N4 for a tournament with ten teams and t = 1, r1 = 1, and r2 = 4 (highlighted
entries in (a) appear modified in (b) after the move).

Let v(X) and d(X) be, respectively, the number of constraint violations and the total
traveled distance in the current solution X . All moves in neighborhoods N1 and N2 are eval-
uated at each local search iteration, each of them in time O(n). We compute the number
v(X ′) of constraint violations and the total traveled distance d(X ′) for each neighbor X ′ of
the current solution X .

If there is at least one neighbor solution X ′ such that v(X ′) ≤ v(X) and d(X ′) < d(X),
then the current solution X is replaced by its neighbor with minimum traveled distance
among all those satisfying the above condition (i.e., the current solution is replaced by a least
cost neighbor which does not deteriorate the number of constraint violations). Otherwise, if
no move is able to improve the traveled distance of the current solution X without increasing
the number of constraint violations in the latter, then the current solution is replaced by its
neighbor decreasing the most the number of constraint violations. If no such a move exists,
then the local search procedure stops and the current locally optimal solution is returned.

2.4 ILS heuristic

The Iterated Local Search (ILS) metaheuristic (see Lourenço et al (2003)) proposes the use
of perturbations to escape from locally optimal solutions. The method starts by construct-
ing an initial solution and applying a local search procedure to it. The current solution is
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perturbed at each iteration and local search is applied to the perturbed solution. Next, the
solution resulting from perturbation and local is compared with the current solution. The
former is accepted as the new current solution if some predefined acceptance criterion is
met. Otherwise, a new iteration formed by perturbation followed by local search is per-
formed. The procedure stops when some stopping criterion is reached. Algorithm 1 depicts
the pseudo-code with the main steps of the ILS metaheuristic.

Algorithm 1: Pseudo-code of the ILS metaheuristic.
d∗ ← ∞ ;1
X ← BuildInitialSolution ;2
X ← LocalSearch(X) ;3
repeat4

if v(X) = 0 and d(X) < d∗ then5
X∗ ← X ;6
d∗ ← d(X) ;7

end8
X ′ ← Perturbation(X) ;9
X ′ ← LocalSearch(X ′) ;10
X ← AcceptanceCriterion(X ,X ′ ) ;11

until stopping condition ;12

The traveled distance associated with the best feasible solution found is initialized in line
1. The constructive procedures presented in Section 2.1 are used to build initial solutions in
line 2. The local search procedure applied in lines 3 and 10 follows the strategy described
in Section 2.3. Three different procedures are cyclically used for perturbing solutions in
line 9: (1) a randomly generated move in neighborhood N3, (2) a randomly generated move
in neighborhood N4, (3) a randomly generated move in neighborhood N3 followed by a
randomly generated move in neighborhood N4. The solution X ′ obtained after the application
of local search to the perturbed solution is accepted as the new current solution X in line 11
if and only if it satisfies one of the conditions below:

1. v(X ′) < v(X) (the new solution X ′ has fewer constraint violations than the current solu-
tion X); or

2. v(X ′) = v(X) and d(X ′) < d(X) (the new solution X ′ has the same number of constraint
violations as the current solution X , but the traveled distance according to schedule X ′
is smaller than that associated with X); or

3. if at least 100 iterations have been performed since the last update of the current solution
X , v(X ′)≤ v(X) (the number of constraint violations in the new solution X ′ is not greater
than that in the current solution X), and d(X ′) ≤ 1.01× d(X) (the traveled distance
associated with the new schedule X ′ deteriorates by at most 1% the traveled distance
according with the current schedule X).

The acceptance criterion is primarily driven to finding solutions reducing the number of
constraint violations and, secondly, to finding improving solutions which do not deteriorate
the number of constraint violations. The best feasible solution found during the search is
updated in lines 5 to 8 and returned when the stopping condition in line 12 is met.
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3 Experimental results

In this section we report on the computational experiments performed to evaluate the pro-
posed heuristic. The ILS heuristic was coded in C++ and compiled with version 4.1.2 of
g++ with the optimization flag -O3. The experiments have been performed on an Intel Xeon
CPU with a 3.00 GHz processor and 2 Gbytes of RAM, running under the operating system
Debian GNU/Linux 4.0.

3.1 Test problems

We used in the computational experiments the same instances proposed and used by Melo
et al (2008). There are a total of 40 instances, 20 of them with 18 teams and the other 20
with 20 teams. Distances are the same as in instances circ18 and circ20 of the TTP, both of
them available from Trick (2007). For each instance size (i.e., the number n of teams), 20
distinct home-away assignments were created: ten out of the 20 assignments are balanced
(i.e., each team plays at least n/2−1 games at home and at least n/2−1 away games), while
the remaining ten assignments are unbalanced. Two instances of each size were shown to be
infeasible by Melo et al (2008).

3.2 Numerical results

In the first experiment, we evaluate the impact of the use of the perturbations in neighbor-
hoods N3 and N4, considering the instances with 18 teams. We compare the solution ob-
tained by the ILS heuristic using initial solutions determined by canonical 1-factorizations
with those obtained with a multi-start algorithm using the same initial solutions and the same
local search procedure.

Table 1 shows the numerical results obtained after five executions of each algorithm with
a time limit of 720 seconds. The first column depicts the instance name. The second, third,
and forth column give the best, average, and worst traveled distances obtained by the multi-
start heuristic. The next three columns show the same information for the ILS heuristic. The
last column shows the improvement (i.e., the reduction) in percent in the value of the best
solution obtained by the multi-start algorithm when the ILS heuristic is applied.

The use of the perturbations in neighborhoods N3 and N4 was essential for the per-
formance of the ILS heuristic. The latter improved the traveled distances obtained by the
multi-start algorithm by 11.50% on average and obtained better solutions for all instances.
The perturbations in these neighborhoods allowed the heuristic to escape from the initial
canonical 1-factorizations, performing a more thorough search on the solution space.

The same experiment was performed on the instances with 20 teams, whose numerical
results are displayed in Table 2. In this case, the ILS heuristic performed worst than the
multi-start algorithm. This is due to the fact that neighborhoods N3 and N4 are equivalent
to neighborhoods N1 and N2, respectively. Consequently, the perturbations do not allow
the ILS heuristic to escape from the initial canonical 1-factorization. Furthermore, since
neighborhoods N1 and N2 are used in the local search procedure, the perturbation moves are
of the same type of those used in the local search, implying a great risk of returning to the
same solution after the local search.

To overcome the above difficulty, derived from the use of canonical 1-factorizations as
initial solutions, the second construction strategy described in Section 2.1 was used for the
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Instance multi-start ILS Improvement (%)
Best Average Worst Best Average Worst

circ18abal 948 1077 1192 850 859.2 870 10.34
circ18bbal 948 1078 1206 844 860 876 10.97
circ18cbal 942 1075 1200 856 859.6 864 9.13
circ18dbal 944 1070 1184 842 853.6 870 10.81
circ18ebal 938 1070 1198 838 862.8 878 10.66
circ18fbal 940 1074 1202 834 852 876 11.28
circ18gbal 934 1071 1206 842 851.2 864 9.85
circ18hbal 918 1059 1184 838 872 948 8.71
circ18ibal 944 1074 1208 848 862.4 878 10.17
circ18jbal 950 1070 1208 830 846.4 854 12.63

circ18anonbal 992 1107 1264 862 880.8 908 13.10
circ18bnonbal infeasible
circ18cnonbal infeasible
circ18dnonbal 962 1096 1220 854 872 882 11.23
circ18enonbal 1000 1113 1256 854 874.4 888 14.60
circ18fnonbal 1012 1115 1212 864 874 900 14.62
circ18gnonbal 998 1106 1242 856 868.8 876 14.23
circ18hnonbal 978 1109 1222 860 881.2 904 12.07
circ18inonbal 988 1111 1224 860 876.8 906 12.96
circ18jnonbal 950 1085 1204 858 874.8 888 9.68

Average 960.33 1086.67 1212.89 849.44 865.67 885.00 11.50

Table 1 Numerical results for the multi-start and ILS heuristics using canonical 1-factorizations (18 teams).

Instance multi-start ILS Improvement (%)
Best Average Worst Best Average Worst

circ20abal 1312 1494 1640 1344 1363 1378 -2.44
circ20bbal 1304 1482 1634 1356 1368 1380 -3.99
circ20cbal 1336 1487 1632 1352 1362 1374 -1.20
circ20dbal 1300 1485 1660 1354 1367 1378 -4.15
circ20ebal 1316 1486 1640 1352 1379 1390 -2.74
circ20fbal 1310 1481 1640 1348 1365 1378 -2.90
circ20gbal 1296 1477 1650 1346 1369 1390 -3.86
circ20hbal 1314 1491 1644 1354 1376 1396 -3.04
circ20ibal 1342 1490 1658 1348 1367 1388 -0.45
circ20jbal 1322 1484 1658 1330 1354 1380 -0.61

circ20anonbal 1450 1534 1606 1432 1449 1476 1.24
circ20bnonbal 1356 1522 1662 1376 1409 1426 -1.47
circ20cnonbal 1392 1536 1652 1402 1430 1452 -0.72
circ20dnonbal 1426 1547 1658 1432 1444 1464 -0.42
circ20enonbal 1426 1552 1664 1446 1458 1474 -1.40
circ20fnonbal infeasible
circ20gnonbal 1412 1544 1670 1420 1446 1478 -0.57
circ20hnonbal infeasible
circ20inonbal 1338 1511 1648 1390 1406 1416 -3.89
circ20jnonbal 1332 1508 1648 1358 1387 1406 -1.95

Average 1349.11 1506.17 1648.00 1374.44 1394.39 1412.44 -1.92

Table 2 Numerical results for the multi-start and ILS heuristics using canonical 1-factorizations (20 teams).

instances with n = 20. Table 3 shows the results obtained with this alternative construction
strategy for the instances with 20 teams. They show that the use of the modified initial
1-factorizations allowed the ILS heuristic to escape from the initial solutions through the
perturbations in neighborhoods N3 and N4. Without the use of perturbations, the multi-start
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Instance multi-start (new construction) ILS (new construction) Improvement (%)
Best Average Worst Best Average Worst

circ20abal 1288 1485 1668 1170 1200 1232 9.16
circ20bbal 1320 1486 1664 1200 1204 1218 9.09
circ20cbal 1324 1477 1666 1192 1211 1238 9.97
circ20dbal 1330 1479 1656 1172 1207 1230 11.88
circ20ebal 1302 1485 1660 1202 1212 1228 7.68
circ20fbal 1304 1471 1640 1202 1208 1224 7.82
circ20gbal 1304 1470 1640 1188 1197 1204 8.90
circ20hbal 1314 1472 1644 1190 1224 1242 9.44
circ20ibal 1296 1467 1646 1172 1202 1222 9.57
circ20jbal 1328 1487 1648 1182 1194 1204 10.99

circ20anonbal 1430 1511 1618 1208 1225 1238 15.52
circ20bnonbal 1316 1510 1670 1222 1234 1246 7.14
circ20cnonbal 1400 1535 1666 1190 1229 1268 15.00
circ20dnonbal 1416 1544 1656 1234 1256 1278 12.85
circ20enonbal 1382 1538 1674 1232 1244 1266 10.85
circ20fnonbal infeasible
circ20gnonbal 1414 1536 1656 1244 1256 1280 12.02
circ20hnonbal infeasible
circ20inonbal 1322 1480 1660 1208 1217 1226 8.62
circ20jnonbal 1320 1493 1668 1194 1215 1240 9.55

Average 1339.44 1495.89 1655.56 1200.11 1218.61 1238.00 10.34

Table 3 Numerical results for the multi-start and ILS heuristics using the modified canonical 1-factorizations
(20 teams).

algorithm gets stuck at the initial 1-factorization and explores a very small fraction of the
solution space.

Comparing the results in Tables 2 and 3, we notice that the proposed ILS heuristic per-
formed much better using the modified canonical 1-factorization as a initial solutions. The
distances traveled in the best solutions found using the modified canonical 1-factorizations
are 12.68% smaller in average than those found using the canonical 1-factorizations.

Finally, we compare the results found by the ILS heuristic with those presented by Melo
et al (2008), obtained in a computational environment similar to that used in this work. The
initial solutions for the ILS algorithm were built with the canonical 1-factorization for the
instances with 18 teams, while the modified canonical 1-factorizations were used for the
instances with 20 teams.

Table 4 displays the numerical results. The first column gives the instance name. The
second column shows the best solution value among those found by the four algorithms
described by Melo et al (2008) after two hours of running time. The next two columns give
the traveled distance in the best solution obtained with a single run of the ILS heuristic for
30 seconds, together with the corresponding improvement over the best result in Melo et al
(2008). The next two columns show the same information for the best solution found after
five runs with a time limit of 720 seconds each.

The ILS heuristic proposed in this work clearly outperformed the algorithms described
by Melo et al (2008). Table 4 shows that running the ILS heuristic for 30 seconds improved
the best solution by at least 8.48% for every instance.
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Instance Previous best ILS (30 seconds) ILS (five runs of 12 minutes)
Distance Improvement (%) Distance Improvement (%)

circ18abal 1106 914 17.36 850 23.15
circ18bbal 1100 914 16.91 844 23.27
circ18cbal 1038 950 8.48 856 17.53
circ18dbal 1096 932 14.96 842 23.18
circ18ebal 1074 936 12.85 838 21.97
circ18fbal 1060 900 15.09 834 21.32
circ18gbal 1100 880 20.00 842 23.45
circ18hbal 1094 948 13.35 838 23.40
circ18ibal 1102 952 13.61 848 23.05
circ18jbal 1078 938 12.99 830 23.01

circ18anonbal 1124 942 16.19 862 23.31
circ18bnonbal infeasible
circ18cnonbal infeasible
circ18dnonbal 1060 942 11.13 854 19.43
circ18enonbal 1092 950 13.00 854 21.79
circ18fnonbal 1098 944 14.03 864 21.31
circ18gnonbal 1098 968 11.84 856 22.04
circ18hnonbal 1110 962 13.33 860 22.52
circ18inonbal 1104 950 13.95 860 22.10
circ18jnonbal 1102 928 15.79 858 22.14

circ20abal 1520 1316 13.42 1170 23.03
circ20bbal 1530 1326 13.33 1200 21.57
circ20cbal 1470 1286 12.52 1192 18.91
circ20dbal 1464 1298 11.34 1172 19.95
circ20ebal 1526 1280 16.12 1202 21.23
circ20fbal 1546 1266 18.11 1202 22.25
circ20gbal 1536 1288 16.15 1188 22.66
circ20hbal 1516 1290 14.91 1190 21.50
circ20ibal 1544 1314 14.90 1172 24.09
circ20jbal 1484 1290 13.07 1182 20.35

circ20anonbal 1502 1342 10.65 1208 19.57
circ20bnonbal 1522 1340 11.96 1222 19.71
circ20cnonbal 1488 1352 9.14 1190 20.03
circ20dnonbal 1510 1358 10.07 1234 18.28
circ20enonbal 1574 1358 13.72 1232 21.73
circ20fnonbal infeasible
circ20gnonbal 1540 1376 10.65 1244 19.22
circ20hnonbal infeasible
circ20inonbal 1516 1298 14.38 1208 20.32
circ20jnonbal 1516 1348 11.08 1194 21.24

Average 1303.89 1127.11 13.62 1024.78 21.49

Table 4 Comparative results: best solutions.

4 Concluding remarks

In this paper, we proposed an ILS heuristic for the traveling tournament problem with pre-
defined venues. Two construction methods for building initial solutions were devised and
evaluated. Four neighborhoods were investigated and explored by the ILS heuristic. Two of
the neighborhoods allow the heuristic to escape from canonical 1-factorizations. We have
showed that canonical 1-factorizations should not be used to produce initial solutions in
some situations, for which the modified 1-factorizations are very appropriate and should be
used.

The new ILS heuristic clearly outperformed the previous heuristics in the literature,
improving the best known solution values by at least 8.48% for every benchmark problem
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after 30 seconds of running time. The average reduction over all feasible instances amounted
to 13.62%. The running times needed to find solutions improving those in the literature are
often as small as three seconds. Even better results can be obtained if longer running times
are accepted.
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