
 1

Data Mining: an Aid Towards more Efficient Hyper-heuristic Search

Edmund K. Burke, Jingpeng Li* and Rong Qu

{ekb, jpl, rxq}@cs.nott.ac.uk

School of Computer Science

The University of Nottingham

Nottingham, NG8 1BB, United Kingdom

* Corresponding author

1 Introduction

Hyper-heuristics is an emerging search technology motivated by the goal of raising the level of

generality at which optimisation systems can work (Burke et al. 2003). A hyper-heuristic can be thought

of as a process which uses a higher level search methodology to choose lower level heuristics. Hence, the

most distinct feature of a hyper-heuristic lies in its exploration on the search space of heuristics, rather

than on the solution space of the problem in hand. As the neighbourhood structures of these two spaces

are defined under different domains, this feature enables a hyper-heuristic to be capable of jumping

within the solution space of the problem through smooth moves among the neighbourhoods defined by

the search space of heuristics.

Compared with problem specific special purpose meta-heuristics, hyper-heuristics should have several

features. They should be faster to implement and more flexible to use. Also, they should produce good

quality solutions without requiring too much domain knowledge. In hyper-heuristic development there is

an obvious trade-off between “generality” and “solution quality”.

For the purposes of illustration, consider a dummy timetabling problem of assigning m events to n time

slots. A hyper-heuristic uses some method at the higher level to choose from k heuristics at the lower

level. According to the way that a solution is built, the hyper-heuristics can be grouped into two classes:

constructive and improvement. The former one builds solutions by applying a sequence of heuristics

from scratch, while the later one improves solutions by applying one of the heuristics which are often

related to the shifting or swapping of the solution components. Clearly, the solution space of the original

problem is nm. For a constructive hyper-heuristic, its solution space is km. For an improvement

hyper-heuristic, its solution space is ∑∑
= =

=
t

j

r
k

i

i tknOhf
1 1

)()(, where)(ihf is the number of possible

moves that the i-th heuristic can take (e.g. 2)1()(−= nnhf i if the i-th heuristic is to randomly

swap the time slots of two events),]1,1[−∈ nr is the maximum number of concurrent shifts

allowed in all k heuristics (e.g. r = 2 if the i-th heuristic is a swap one), and]1,1[−∈ mnt is the

number of improvements that we wish the hyper-heuristic could make.

Among the above three solution spaces, the one of an improvement hyper-heuristic is the smallest

because it normally consists of a r value being smaller than 3 and a t value being fixed, and thus in

practice it does not increase exponentially with the problem size. Hence, the improvement

hyper-heuristic is the most flexible and it works particularly well if a good initial solution is provided.

A constructive hyper-heuristic also operates on a much reduced search space because k is mostly

smaller than n. The problem induced by an improvement hyper-heuristic is NP hard in the worst case

where 1−= nr and 1−→ nmt , while the problem induced by a constructive-heuristic is NP-hard

under any circumstance. Hence, the optimal solutions for both problems are normally impossible to

find. Even if we find them, they might only correspond to one of the many possible solutions of the

original problem and thus we cannot claim that the original problem has been well solved.

To address this weakness, the only solution is allowing more appropriate low level heuristics, as well as

more iterations of runs, in the hyper-heuristic search so that each optimal solution (or a number of near

optimal solutions at the least) of the original problem has the opportunity to be reached. However, this

would significantly increase the search space and consequently increase the computational time since the

search by each heuristic is costly, in particular for the constructive heuristics. Hence, so far almost all the

research has been concentrated on the development of various clever (or intelligent) systems, such as

 2

refined heuristics, meta-heuristics and AI-based approaches. Those systems act as a supervisor at a

higher level to manage a small number heuristics at a low level, with the aim of achieving a balance

between the solution quality and the execution time. From a certain point on, this kind of research makes

hyper-heuristics not too much different from ordinary optimisation search algorithms, if simply

considering each low level heuristic as one of the solution components with a fixed or variable fitness

value.

More specifically, since the year 2000 when the term of hyper-heuristics was first coined, there have

been at least 70 papers which have appeared in the literature (see

http://www.asap.cs.nott.ac.uk/projects/ngds/hhref.shtml). At each decision point within the search space

of heuristics, all of the hyper-heuristics presented in these papers implement the following 2-stage

computations: first using the chosen heuristic (or sequence of heuristics) to generate a solution, then

calculating the object value of the resulting solution.

Intuitively, we feel that there is no need to carry out the costly 2-stage computations for every resulting

solution (e.g. for a solution that is obviously infeasible), since many problems in the real world are highly

constrained which means that the regions containing feasible solutions are rather scattered and small. In

particular, in our previous experiences on two types of nurse rostering problems (Aickelin et al. 2007;

Burke et al. 2008), we observed that the close neighbours of an infeasible solution are mostly infeasible,

while the close neighbours of a feasible solution are often feasible as well. In that sense, in order to run

more iterations on a larger heuristic search space (i.e. containing more heuristics), such a question that

has attracted little attention before arises: would it be possible for a hyper-heuristic to suspend the 2-stage

computations if it foresees the incoming heuristic (or sequence of heuristics) should not perform well

(e.g. cannot generate an infeasible solution)?

2 Data mining by neural network and logistic regression

Data mining (Bozdogan 2004) provides a “yes” answer to the above question. Generally speaking, data

mining is the search for relationships and global patterns that exist in large databases but are hidden

among the vast amount of data. By learning from examples, data mining is able to archive the goal of

how to partition or classify the data, i.e. it formulates classification rules. Hence, without the 2-stage

computations, the performance (i.e. the worth of acceptance or rejection) of an incoming heuristic (or

sequence of heuristics) can be predicted by applying the classification rules. Compared with the

time-consuming computations which are needed for every move in the hyper-heuristic search, the

learning of classification rules would be much faster.

In this abstract, we report our preliminary work of applying two fundamentally different data mining

techniques, namely the Multi-Layer Perception (MLP) neural network (Rumelhart et al. 1986) and the

binary logistic regression, to classify the solutions of a graph-based hyper-heuristic proposed for exam

timetabling problems (Burke et al. 2007). In the graph-based hyper-heuristic, a potential solution is

represented by a sequence of k heuristics, with each heuristic representing a specific method to decide

which exam should be allotted next. Hence, in our prediction models, we can regard the choice of the i-th

heuristic as an independent variable xi , i = 1,..., k . The “acceptance or rejection” of a resulting sequence

can be regarded as a dependent variable y. We anticipate that our models can learn to predict the value of

variable y based on the variable values of (x1,..., xk).

We first use the MLP neural network to build our classification model. Basically, an MLP network

provides a model of data relationships through highly interconnected and simulated components called

neurons. These neurons can accept inputs, apply weighting coefficients and feed their output to other

neurons that continue the process through the network to the eventual output. Some neurons may send

feedback to earlier neurons in the network. Neural networks are trained to deliver the desired result by an

iterative process where the weights applied to each input at each neuron are adjusted to optimize the

desired output.

Questioning how the MLP network compares as a classification method, we then analyze the data using

a traditional statistical model, called the binary logistic regression. This method is a variant of linear

regression which is the most useful when modelling the event probability for a dependent variable with

two outcomes (i.e. acceptance or rejection in this context). Since the probability of an event must lies

between 0 and 1, it is impractical to model probabilities with a linear regression method which allows the

 3

dependent variable to take values larger than 1 or smaller than 0. However, the binary logistic regression

method achieves this by linking the range of real numbers to the range between 0 and 1.

3 Experimental results

Table 1 shows the case information and summarizes the classification results produced by the MLP

network and the binary logistic regression. For both models, we implement 10 runs on each data instance

from the Toronto dataset. We employ the notation of (Qu et al. 2008). At each run, we use a random

sample of 70% cases to create the prediction model, setting the remaining case to validate the analysis.

Columns 4-7 and columns 8-11 list the statistical results on the percentage of cases that are correctly

classified, for the MLP network and the logical regression method respectively.

Table 1 Classification results on 11 timetabling problems

Case info MLP neural network Binary logistic regression
Data

|var|
+
|spl|

*
Max % Min % Mean % Dev. Max % Min % Mean % Dev.

car91 228 2654 60.1 55.9 57.7 1.5 60.8 54.6 57.8 1.7

car92 182 2794 61.5 58.9 60.4 0.7 62.5 59.3 60.7 1.0

ear83 191 3210 68.2 63.3 65.4 1.6 66.7 62.9 64.7 1.4

hec92 82 199 76.0 52.2 65.6 6.9 54.7 45.6 48.9 2.9

kfu93 231 2696 75.9 70.4 73.6 1.7 78.4 72.9 75.0 1.7

lse91 191 4859 59.0 54.5 56.0 1.2 59.4 47.1 52.7 4.6

sta83 140 6695 98.3 95.6 97.1 0.9 98.6 97.9 98.1 0.2

tre92 131 4084 75.3 67.9 71.3 2.4 72.9 69.0 71.0 1.2

uta93 208 3939 68.2 63.3 65.6 1.5 65.8 60.0 63.4 1.9

ute92 185 3355 64.2 60.0 62.8 1.3 70.4 49.4 55.8 8.4

yor83 182 264 72.0 57.5 64.8 4.9 73.2 51.3 60.8 6.2

Ave. 177 3159 70.8% 63.6% 67.3% 2.2 69.4% 60.9% 64.4% 2.8

+
 “|var|” denotes the number of independent variables, i.e. the number of exams.
+
 “|spl|” denotes the number of samples or cases.

“%” denotes the percentage of the cases that are correctly classified.

The results in Table 1 demonstrate the existence of some global patterns that are hidden in the solutions

defined by the hyper-heuristic search space. On average, the MLP neural network performs slightly

better than the binary logical regression method, with a mean correct classification rate of 67.3% (versus

64.4% for the regression model). Considering the number of dependent variables (177 on average) and

the size of the sample set (3159 on average), the classification rate should be fluctuated around 50% for

all instances and all runs if there is no pattern hidden in the data. Of course, one might argue on our above

supposition because for some instances (such as car91 and lse91), the average classification rates are

dissatisfactory (less than 60%). However, this only means that the global patterns are hard to detect in the

given samples of those instances.

5 Conclusions and future research

The major contribution of our work is that, as far as we are aware, this is the first attempt to apply data

mining techniques to design a “stand alone” component that can be incorporated into any constructive

hyper-heuristics as a post-processor. The processor is able to recognize the patterns hidden in the

resulting solutions, so that the hyper-heuristics may implement more iterations of search while keeping

the CPU time not significantly increased or even slightly reduced. We notice that there is another paper

in the literature (Thabtah and Cowling, 2008) which also falls into the domain of data mining. However,

the methodology proposed in that paper is essentially no different (in this context) from the others

because it only uses associative classification as a higher level method to choose between lower level

heuristics, and thus it could not reduce any computational complexity that a hyper-heuristic causes.

Our work opens a wide area for further research. Apart from the study of more advanced classification

techniques such as evolutionary neural networks, this work sheds a light on the development of more

intelligent knowledge-based decision support system. Also, our approach in its current form is only

 4

proposed for the constructive hyper-heuristics, we are looking at its applications on the improvement

hyper-heuristics.

In addition, with the aid of a “pattern recognition” processor, we envisage such a knowledge-based

system in the near future: once a hyper-heuristic has accumulated a certain amount of data worthy

mining, this processor would be invoked automatically to work as a filter. The lifecycle of the filter and

percentage of data entering the filter could be controlled by a number of parameters representing our own

understanding and confidence. These parameters, of course, can also be adjusted adaptively depending

on the changing environment. With the hyper-heuristic search in progress, the “pattern recognition”

processor could be prohibited, revitalized and updated. Hence, the hyper-heuristics can be truly

knowledge-based and significantly speeded up, allowing more heuristics recruited at the lower level and

more iterations of search operated at the higher level.

Acknowledgements

The work was funded by the UK’s Engineering and Physical Sciences Research Council (EPSRC),

under grant EP/D061571/1.

References

Aickelin U, Burke EK, Li J (2007) An estimation of distribution algorithm with intelligent local search

for rule-based nurse rostering. Journal of the Operational Research Society 58: 1574-1585.

Bozdogan H (2004) Statistical data mining and knowledge discovery. CRC Press.

Burke EK, Kendall G, Newall J et al (2003) Hyper-heuristics: an emerging direction in modern search

technology. in: Glover F, Kochenberger G (eds) Handbook of meta-heuristics, 457-474. Kluwer.

Burke EK, Li J, Qu R (2008) A hybrid model of integer programming and variable neighbourhood

search for highly-constrained nurse rostering problems. European Journal of Operational Research

(accepted).

Burke EK, McCollum B, Meisel A, Petrovic S, Qu R (2007) A graph-Based hyper-heuristic for

educational timetabling problems. European Journal of Operational Research 176: 177-192.

Qu R, Burke EK, McCollum B, Merlot LTG, Lee SY (2008) A survey of search methodologies and

automated system development for examination timetabling. Journal of Scheduling. DOI:

10.1007/s10951-008-0060-1.

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation

(1986). in: Rumelhart D.E., McClelland JL (eds) Parallel distributed processing: explorations in the

microstructure of cognition, 318-362. Cambridge, MA: The MIT Press.

Thabtah F, Cowling P (2008) Mining the data from a hyper-heuristic approach using associative

classification. Expert systems with applications 34: 1093–1101.

