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1   Introduction 

 

Hyper-heuristics is an emerging search technology motivated by the goal of raising the level of 

generality at which optimisation systems can work (Burke et al. 2003). A hyper-heuristic can be thought 

of as a process which uses a higher level search methodology to choose lower level heuristics. Hence, the 

most distinct feature of a hyper-heuristic lies in its exploration on the search space of heuristics, rather 

than on the solution space of the problem in hand. As the neighbourhood structures of these two spaces 

are defined under different domains, this feature enables a hyper-heuristic to be capable of jumping 

within the solution space of the problem through smooth moves among the neighbourhoods defined by 

the search space of heuristics. 

 

Compared with problem specific special purpose meta-heuristics, hyper-heuristics should have several 

features. They should be faster to implement and more flexible to use. Also, they should produce good 

quality solutions without requiring too much domain knowledge. In hyper-heuristic development there is 

an obvious trade-off between “generality” and “solution quality”. 

 

For the purposes of illustration, consider a dummy timetabling problem of assigning m events to n time 

slots. A hyper-heuristic uses some method at the higher level to choose from k heuristics at the lower 

level. According to the way that a solution is built, the hyper-heuristics can be grouped into two classes: 

constructive and improvement. The former one builds solutions by applying a sequence of heuristics 

from scratch, while the later one improves solutions by applying one of the heuristics which are often 

related to the shifting or swapping of the solution components. Clearly, the solution space of the original 

problem is nm. For a constructive hyper-heuristic, its solution space is km. For an improvement 

hyper-heuristic, its solution space is ∑∑
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moves that the i-th heuristic can take (e.g. 2)1()( −= nnhf i  if the i-th heuristic is to randomly 

swap the time slots of two events),  ]1,1[ −∈ nr  is the maximum number of concurrent shifts 

allowed in all k heuristics  (e.g. r = 2 if the i-th heuristic is a swap one), and ]1,1[ −∈ mnt  is the 

number of improvements that we wish the hyper-heuristic could make. 

 

Among the above three solution spaces, the one of an improvement hyper-heuristic is the smallest 

because it normally consists of a r value being smaller than 3 and a t value being fixed, and thus in 

practice it does not increase exponentially with the problem size. Hence, the improvement 

hyper-heuristic is the most flexible and it works particularly well if a good initial solution is provided. 

A constructive hyper-heuristic also operates on a much reduced search space because k is mostly 

smaller than n. The problem induced by an improvement hyper-heuristic is NP hard in the worst case 

where 1−= nr  and 1−→ nmt , while the problem induced by a constructive-heuristic is NP-hard 

under any circumstance. Hence, the optimal solutions for both problems are normally impossible to 

find. Even if we find them, they might only correspond to one of the many possible solutions of the 

original problem and thus we cannot claim that the original problem has been well solved. 

 

To address this weakness, the only solution is allowing more appropriate low level heuristics, as well as 

more iterations of runs, in the hyper-heuristic search so that each optimal solution (or a number of near 

optimal solutions at the least) of the original problem has the opportunity to be reached. However, this 

would significantly increase the search space and consequently increase the computational time since the 

search by each heuristic is costly, in particular for the constructive heuristics. Hence, so far almost all the 

research has been concentrated on the development of various clever (or intelligent) systems, such as 
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refined heuristics, meta-heuristics and AI-based approaches. Those systems act as a supervisor at a 

higher level to manage a small number heuristics at a low level, with the aim of achieving a balance 

between the solution quality and the execution time. From a certain point on, this kind of research makes 

hyper-heuristics not too much different from ordinary optimisation search algorithms, if simply 

considering each low level heuristic as one of the solution components with a fixed or variable fitness 

value. 

 

More specifically, since the year 2000 when the term of hyper-heuristics was first coined, there have 

been at least 70 papers which have appeared in the literature (see 

http://www.asap.cs.nott.ac.uk/projects/ngds/hhref.shtml). At each decision point within the search space 

of heuristics, all of the hyper-heuristics presented in these papers implement the following 2-stage 

computations: first using the chosen heuristic (or sequence of heuristics) to generate a solution, then 

calculating the object value of the resulting solution. 

 

Intuitively, we feel that there is no need to carry out the costly 2-stage computations for every resulting 

solution (e.g. for a solution that is obviously infeasible), since many problems in the real world are highly 

constrained which means that the regions containing feasible solutions are rather scattered and small. In 

particular, in our previous experiences on two types of nurse rostering problems (Aickelin et al. 2007; 

Burke et al. 2008), we observed that the close neighbours of an infeasible solution are mostly infeasible, 

while the close neighbours of a feasible solution are often feasible as well. In that sense, in order to run 

more iterations on a larger heuristic search space (i.e. containing more heuristics), such a question that 

has attracted little attention before arises: would it be possible for a hyper-heuristic to suspend the 2-stage 

computations if it foresees the incoming heuristic (or sequence of heuristics) should not perform well 

(e.g. cannot generate an infeasible solution)? 

 

2   Data mining by neural network and logistic regression 
 

Data mining (Bozdogan 2004) provides a “yes” answer to the above question. Generally speaking, data 

mining is the search for relationships and global patterns that exist in large databases but are hidden 

among the vast amount of data. By learning from examples, data mining is able to archive the goal of 

how to partition or classify the data, i.e. it formulates classification rules. Hence, without the 2-stage 

computations, the performance (i.e. the worth of acceptance or rejection) of an incoming heuristic (or 

sequence of heuristics) can be predicted by applying the classification rules. Compared with the 

time-consuming computations which are needed for every move in the hyper-heuristic search, the 

learning of classification rules would be much faster. 

 

In this abstract, we report our preliminary work of applying two fundamentally different data mining 

techniques, namely the Multi-Layer Perception (MLP) neural network (Rumelhart et al. 1986) and the 

binary logistic regression, to classify the solutions of a graph-based hyper-heuristic proposed for exam 

timetabling problems (Burke et al. 2007). In the graph-based hyper-heuristic, a potential solution is 

represented by a sequence of k heuristics, with each heuristic representing a specific method to decide 

which exam should be allotted next. Hence, in our prediction models, we can regard the choice of the i-th 

heuristic as an independent variable xi , i = 1,..., k . The “acceptance or rejection” of a resulting sequence 

can be regarded as a dependent variable y. We anticipate that our models can learn to predict the value of 

variable y based on the variable values of (x1,..., xk ). 

 

We first use the MLP neural network to build our classification model. Basically, an MLP network 

provides a model of data relationships through highly interconnected and simulated components called 

neurons. These neurons can accept inputs, apply weighting coefficients and feed their output to other 

neurons that continue the process through the network to the eventual output. Some neurons may send 

feedback to earlier neurons in the network. Neural networks are trained to deliver the desired result by an 

iterative process where the weights applied to each input at each neuron are adjusted to optimize the 

desired output. 

 

Questioning how the MLP network compares as a classification method, we then analyze the data using 

a traditional statistical model, called the binary logistic regression. This method is a variant of linear 

regression which is the most useful when modelling the event probability for a dependent variable with 

two outcomes (i.e. acceptance or rejection in this context). Since the probability of an event must lies 

between 0 and 1, it is impractical to model probabilities with a linear regression method which allows the 
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dependent variable to take values larger than 1 or smaller than 0. However, the binary logistic regression 

method achieves this by linking the range of real numbers to the range between 0 and 1. 

 

3   Experimental results 

 

Table 1 shows the case information and summarizes the classification results produced by the MLP 

network and the binary logistic regression. For both models, we implement 10 runs on each data instance 

from the Toronto dataset. We employ the notation of (Qu et al. 2008). At each run, we use a random 

sample of 70% cases to create the prediction model, setting the remaining case to validate the analysis. 

Columns 4-7 and columns 8-11 list the statistical results on the percentage of cases that are correctly 

classified, for the MLP network and the logical regression method respectively. 

 

Table 1 Classification results on 11 timetabling problems 

 

Case info MLP neural network Binary logistic regression 
Data 

|var|
+ 
|spl|

* 
Max % Min % Mean % Dev. Max % Min % Mean % Dev. 

car91 228 2654 60.1 55.9 57.7 1.5 60.8 54.6 57.8 1.7 

car92 182 2794 61.5 58.9 60.4 0.7 62.5 59.3 60.7 1.0 

ear83 191 3210 68.2 63.3 65.4 1.6 66.7 62.9 64.7 1.4 

hec92 82 199 76.0 52.2 65.6 6.9 54.7 45.6 48.9 2.9 

kfu93 231 2696 75.9 70.4 73.6 1.7 78.4 72.9 75.0 1.7 

lse91 191 4859 59.0 54.5 56.0 1.2 59.4 47.1 52.7 4.6 

sta83 140 6695 98.3 95.6 97.1 0.9 98.6 97.9 98.1 0.2 

tre92 131 4084 75.3 67.9 71.3 2.4 72.9 69.0 71.0 1.2 

uta93 208 3939 68.2 63.3 65.6 1.5 65.8 60.0 63.4 1.9 

ute92 185 3355 64.2 60.0 62.8 1.3 70.4 49.4 55.8 8.4 

yor83 182 264 72.0 57.5 64.8 4.9 73.2 51.3 60.8 6.2 

Ave. 177 3159 70.8% 63.6% 67.3% 2.2 69.4% 60.9% 64.4% 2.8 

 
+
 “|var|” denotes the number of independent variables, i.e. the number of exams. 
+
 “|spl|” denotes the number of samples or cases. 

“%” denotes the percentage of the cases that are correctly classified. 

 

The results in Table 1 demonstrate the existence of some global patterns that are hidden in the solutions 

defined by the hyper-heuristic search space. On average, the MLP neural network performs slightly 

better than the binary logical regression method, with a mean correct classification rate of 67.3% (versus 

64.4% for the regression model). Considering the number of dependent variables (177 on average) and 

the size of the sample set (3159 on average), the classification rate should be fluctuated around 50% for 

all instances and all runs if there is no pattern hidden in the data. Of course, one might argue on our above 

supposition because for some instances (such as car91 and lse91), the average classification rates are 

dissatisfactory (less than 60%). However, this only means that the global patterns are hard to detect in the 

given samples of those instances. 

 

5   Conclusions and future research 

 

The major contribution of our work is that, as far as we are aware, this is the first attempt to apply data 

mining techniques to design a “stand alone” component that can be incorporated into any constructive 

hyper-heuristics as a post-processor. The processor is able to recognize the patterns hidden in the 

resulting solutions, so that the hyper-heuristics may implement more iterations of search while keeping 

the CPU time not significantly increased or even slightly reduced. We notice that there is another paper 

in the literature (Thabtah and Cowling, 2008) which also falls into the domain of data mining. However, 

the methodology proposed in that paper is essentially no different (in this context) from the others 

because it only uses associative classification as a higher level method to choose between lower level 

heuristics, and thus it could not reduce any computational complexity that a hyper-heuristic causes. 

 

Our work opens a wide area for further research. Apart from the study of more advanced classification 

techniques such as evolutionary neural networks, this work sheds a light on the development of more 

intelligent knowledge-based decision support system. Also, our approach in its current form is only 
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proposed for the constructive hyper-heuristics, we are looking at its applications on the improvement 

hyper-heuristics. 

 

In addition, with the aid of a “pattern recognition” processor, we envisage such a knowledge-based 

system in the near future: once a hyper-heuristic has accumulated a certain amount of data worthy 

mining, this processor would be invoked automatically to work as a filter. The lifecycle of the filter and 

percentage of data entering the filter could be controlled by a number of parameters representing our own 

understanding and confidence. These parameters, of course, can also be adjusted adaptively depending 

on the changing environment. With the hyper-heuristic search in progress, the “pattern recognition” 

processor could be prohibited, revitalized and updated. Hence, the hyper-heuristics can be truly 

knowledge-based and significantly speeded up, allowing more heuristics recruited at the lower level and 

more iterations of search operated at the higher level. 
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