
Constraint-Based Rostering

Gilles Pesant

Abstract This short paper presents how rostering problems can be modeled and

solved using constraint programming. The emphasis is on the choice of constraints

which efficiently exploit the substructures of rostering problems, on the way to occa-

sionally bend the rules in order to handle overconstrained instances, and on generic

search heuristics built from the constraints in the model.

Keywords constraint programming · rostering

1 Introduction

Rostering problems appear both in the public and the private sectors. Despite a few

decades of scientific investigation, providing a solution method that is robust across

problems or even instances of the same problem remains a challenge. Typically in ros-

tering the notion of optimality is not easily defined — in practice, human judgement

is often required to make a choice from a set of candidate solutions meeting predefined

criteria. Many therefore consider rostering as a satisfaction problem. Constraint pro-

gramming (cp) is an method of choice to solve satisfaction problems and this paper

intends to describe its modus operandi. Let us first review the rostering variants we

shall consider.

1.1 Cyclical scheduling

In many industries and public services work is carried out on a continuous basis,

twenty-four hours a day, seven days a week. Typical examples arise in police and fire

departments, in automobile assembly plants, in steel mills, etc. In such contexts work

schedules often comprise sequences of work shifts of several types separated by rest

periods. When the personnel is interchangeable, cyclical schedules, a repeating pattern

Département de génie informatique et génie logiciel
École Polytechnique de Montréal
C.P. 6079, succ. Centre-ville
Montreal, Canada H3C 3A7
E-mail: pesant@crt.umontreal.ca

2

Week Mon Tue Wed Thu Fri Sat Sun
1 – – – D D D D

2 – – E E E – –
3 D D D – – E E

4 E E – – N N N

5 N N N N – – –

Fig. 1 A five-week rotating schedule

n
◦ Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su

1 - - - - - - - - D D - - A B H H - B - B A - D - B - - -

2 - E E - - - - - - - - - - - - C H H H - - - E - D - - -

3 - F - B - - - - C - B - B A - F - E - - - - F - A - - H

4 - C - A E E E - - - F F - - - - - - - - - - - - - - - -

5 - D C C H - H - E E E - - - F D C C - H H - C C C H - -

6 - A - D - H - - F - D - - - B - - D - - - - B - - A - -

7 - B - H C D C - B - - A - - - B - F - A B - A H - B - -

8 - - - - - - - - A - C - H H D - D - E E E - - - F F - -

9 F - D - - A B E - H - B - - A - F - F - - H H E - - H -

10 H H - F B - - H H - A - - - - - - - - - - D - - E - B A

11 E - H - F - - D - C - D C D C - B - - - - C - D - - A B

12 D - F - D C D C - F - H - - - - - - - - - B - - H E E E

13 C - B - - B A F - B - - - - E E E - - - - F - F - D C D

14 B - - E - - - B - - H C D C - A A - B - - E - B - - - -

15 G - G - G - - G - G - G - - G - G - G - - G - G - G - -

16 A - A - A - - A - A - E E E - - - A A - - A - A - C D C

18 - - - - - - - - - - - - - - - - - - D C D - - - - - - -

19 - - - - - - - - - - - - - - - - - - C D C - - - - - - -

Fig. 2 A personalized four-week schedule for doctors

of sequences of work and rest days alternating over a few weeks, are particularly well

adapted. In effect, everyone has an identical schedule but that is out of phase with the

others, thus ensuring fairness among the staff.

A simple example will help understand the rules commonly applied to the construc-

tion of rotating schedules. Figure 1 depicts a five-week cycle containing three types of

work shift (D = day, E = evening, N = night) and rest periods denoted by “–” . This

schedule operates with five teams of workers. When it is first implemented, each team

is assigned a different week. At the end of each week, each team moves down to the

following row of the grid and the last team moves up to the first row. After five weeks,

each team has gone through the same cycle. In this example, the required manpower

is the same on each shift every day of the week, but this need not always be the case.

1.2 Personnel Scheduling

When members of the personnel have individual restrictions or preferences that must

be taken into consideration, such as unavailabilities due to other activities or particular

skills, cyclical schedules become inappropriate. Personalized schedules for each member

of personnel are then preferred. The planning period generally ranges from a few weeks

to a few months at a time. That latter family is typical for doctors and nurses. Figure

2 illustrates a typical schedule, each row corresponding to an individual roster.

1.3 Shift Scheduling

Whereas the previous two problems scheduled shifts over individual days, shift schedul-

ing operates on a different scale. It builds the latter shifts by planning the individual

activities during a work day, typically breaking it up into 15-minute intervals. This

makes the planning period (in terms of the number of basic units to plan) slightly

3

longer than the previous two. Work regulations will require rest periods and lunch

breaks depending on the duration and number of activities planned. This problem

often arises in the service industry, for example in retail and banking.

In the rest of the paper, Section 2 gives a short introduction to constraint pro-

gramming and its modeling primitives, Section 3 reviews the common requirements

of rostering problems and shows how they are modeled in cp, Section 4 presents how

we can allow a controlled violation of constraints, and Section 5 describes a promising

generic search heuristic. Final comments are given in Section 6.

2 Constraint Programming

This section gives a very brief introduction to constraint programming. Constraint

programming solves combinatorial problems by actively using the constraints of the

problem to implicitly eliminate infeasible regions of the solution space. The algorithm

at the heart of this approach implements complex logical reasoning over the set of

constraints.

To every variable of a cp model is associated a finite domain: each value in that

domain represents a possible value for the variable. Constraints on the variables forbid

certain combinations of values. Picturing the model as a network whose vertices are

the variables and whose (hyper)edges are the constraints provides insight into the

basic algorithm used in cp. A vertex is labeled with the set of values in the domain

of the corresponding variable and an edge is incident to those vertices representing

the variables appearing in the associated constraint. Looking locally at a particular

edge (constraint), the algorithm attempts to modify the label (reduce the domain)

of the incident vertices (variables) by removing values which cannot be part of any

solution because they would violate that individual constraint; this local consistency

step can be performed efficiently. If every violating variable-value pair is identified and

removed, we achieve domain consistency which is the best we can do locally; sometimes

achieving that level of consistency is computationally too costly and we will only remove

(numerical) values at both ends of a domain, achieving bound consistency.

The modification of a vertex’s label triggers the inspection of all incident edges,

which in turn may modify other labels. This recursive process stops when either all

label modifications have been dealt with or the empty label is obtained, in which case

no solution exists. The overall behavior is called constraint propagation.

Since constraint propagation may stop with indeterminate variables (i.e. whose

domain still contains several values), the solution process requires search and its po-

tentially exponential cost. It usually takes the form of a tree search in which branching

corresponds to fixing a variable to a value in its domain, thus triggering more constraint

propagation. We call variable-selection heuristic and value-selection heuristic the way

one decides which variable to branch on and which value to try first, respectively. For

combinatorial optimization problems, the tree search evolves into a branch-and-bound

search in which one branches in the same way and lower bounds at tree nodes are

obtained by various means.

4

2.1 Core of the Rostering Model

Starting this time with personnel scheduling, let J denote the index set for successive

days of the planning period, I for staff members, and let Q denote the set of possible

shifts, including off and vacation.

For each staff member i ∈ I and each day j ∈ J , we define an assignment variable

Xij ∈ Q that indicates which shift is assigned to i on day j. For short, we use Xi⋆

(respectively X⋆j) to represent successive assignment variables 〈Xi1, Xi2, . . . , Xi |J|〉 as-

sociated to staff member i (respectively 〈X1j , X2j , . . . , X|I|j〉 associated to day j).

In cyclical scheduling, the same basic assignment model applies except there will

be no index I of staff members since they share the same roster. In shift scheduling,

index J ranges over short time intervals and set Q is made up of activities and breaks.

2.2 CP Modeling Primitives

In constraint programming just as in linear programming, one must define a formal

mathematical model of the problem to solve. Unlike linear programming, constraint

programming has a rich heterogeneous set of constraints in its modeling language

with which one must familiarize himself. We present some of the most useful ones for

rostering.

Linear constraints. Consider a vector X = 〈X1, X2, . . . , Xn〉 of integer finite-domain

variables, a vector c = (c1, c2, . . . , cn) of coefficients and integers ℓ and u. For linear

constraint

ℓ ≤ cX ≤ u,

we can achieve bound consistency in time linear in n or the stronger domain consistency

in time linear in n, in the domain sizes, and in the magnitude of ℓ, u, the ci’s, and the

domain values, by computing a recursion through dynamic programming [1].

Functional constraints. These are useful to state a functional relationship between a

pair of variables. Consider a vector V = 〈v1, v2, . . . , vm〉 of values and finite domain

variables X and Y. Constraint

ELEMENT(X,V, Y)

makes Y take the value from V which is indexed by X. An equivalent but more direct

syntax is

Y = V[X].

Any modification to the domain of X is reflected on the domain of Y and conversely

any change on Y can affect X. Domain consistency is cheaply enforced [2].

Extensional constraints. Given a vector X = 〈X1, X2, . . . , Xn〉 of finite domain variables,

constraint

EXTENSION(X, T)

defines in extension the set T of admissible n-tuples for X. The filtering algorithm that

maintains domain consistency is exponential in n though for some special cases it can

be low polynomial [3].

5

Value occurrence constraints. Consider vector V = 〈v1, v2, . . . , vm〉 of values, vector

X = 〈X1, X2, . . . , Xn〉 of finite domain variables taking their values in V, and vector

C = 〈C1, C2, . . . , Cm〉 of nonnegative integer variables. Constraint

GCC(C, V, X)

guarantees that each Cj equals the number of variables in X whose value is vj . Its

filtering algorithm, based on network flow theory, achieves domain consistency and

runs in polynomial time [4].

Additionally, consider a positive integer w and two vectors of m nonnegative inte-

gers λ and λ. Constraint

SLIDING GCC(X,V, λ, λ, w)

guarantees that in each subsequence of X of length w, value vk (1 ≤ k ≤ m) appears

between λk and λk times. This constraint is conceptually equivalent to GCC constraints

expressed on each position of a sliding window but treating them all at once improves

the filtering capability [5][6].

Value distribution constraints. Given a set of finite-domain variables X = {X1, X2, . . . , Xn}

and bounded-domain continuous variables µ and σ, constraint

SPREAD(X, µ, σ)

states that the collection of values taken by the variables of X exhibits an arithmetic

mean µ and a standard deviation σ. Bound consistency is achieved in low polynomial

time [7] [8].

Formal language membership constraints. A deterministic finite automaton (DFA) may

be described by a 5-tuple A = (Q, Σ, δ, q0, F) where Q is a finite set of states, Σ is an

alphabet, δ : Q×Σ → Q is a partial transition function, q0 ∈ Q is the initial state, and

F ⊆ Q is the set of final (or accepting) states. Given an input string, the automaton

starts in the initial state q0 and processes the string one symbol at a time, applying the

transition function δ at each step to update the current state. The string is accepted

if and only if the last state reached belongs to the set of final states F . The languages

recognized by DFA’s are called regular languages.

Let X = {X1, X2, . . . , Xn} denote a vector of finite-domain variables with respective

domains D1, D2, . . . , Dn ⊆ Σ. Under a regular language membership constraint

REGULAR(X,A),

any sequence of values taken by the variables of X must belong to the regular language

recognized by A. Domain consistency is achieved in time linear in the size of a layered

graph built by unfolding the automaton over the variables [9]. A constraint based on

the larger class of context-free languages was subsequently proposed [10][11].

3 Common Requirements

While the precise requirements for an adequate solution vary between problems and

even among instances of a same problem, we attempt here a broad classification of the

typical requirements, based on the relevant literature and on our own experience [12]

[13] [14] [15]. More importantly, we will show how each class is modeled in constraint

programming.

6

3.1 Coverage

Perhaps the most basic requirement is that a sufficient number and variety of shifts

must be staffed throughout the planning period in order to guarantee minimum cover-

age of a demand curve. Sometimes there may be a target and/or a maximum allowed

coverage. In the case of shift scheduling, the demand is expressed at the finer level

of activities which are performed during a shift. The demand may also be expressed

indirectly in terms of periods of the day instead of shifts. Such periods form a partition

of the day into disjoint intervals of time. A staff member is present during a particular

period if and only if his shift covers the considered period (shifts are usually designed

so that they entirely cover one or several periods).

Consider the following example featuring such an indirection. There are five shifts:

q1 from midnight to 8am, q2 from 8am to 4pm, q3 from 8am to 8pm, q4 from 4pm

to midnight, and q5 (off). The day is partitioned according to four time periods

p1 =[midnight, 8am], p2 =[8am, 4pm], p3 =[4pm, 8pm] and p4 =[8pm, midnight].

Note that p1 is covered by shift q1, p2 by q2 and q3, p3 by q3, and q4, and p4 by

q4. Consider vectors q = (3, 5, 6, 3) and q = (6, 8, 9, 6) indicating the minimum and

maximum workforce allowed for each period (q
ℓ
≤ workforce at pℓ ≤ qℓ) on a given

day j. In order to express the constraint, we first introduce a vector M = 〈M1, . . . , M5〉

of auxiliary variables to represent the number of occurrences of each shift during day

j. Then, we state

GCC(M, Q, X⋆j),

P1 = M1, P2 = M2 + M3, P3 = M3 + M4, P4 = M4,

3 ≤ P1 ≤ 6, 5 ≤ P2 ≤ 8, 6 ≤ P3 ≤ 9, 3 ≤ P4 ≤ 6.

The first line links the occurrence variables to the main decision variables through the

global cardinality constraint described in Section 2.2. The second line builds simple

linear expressions of the occurrence variables to represent the number of occurrences

Pk for each period pk. Finally the third line expresses the coverage requirements for

periods.

3.2 Availability

A given staff member, according to his qualifications, full/part time status, vacation,

and outside responsibilities, is not available at all times. Some activities are not possible

at certain times of the day. There may be preassignments, forbidden assignments, and

even candidate vacation days from which a certain number must be selected. Most

availability constraints are easily modeled as unary constraints (Xij = q or Xij 6= q).

3.3 Workload

The number of hours worked by a staff member (or some other measure of his workload)

in the course of a week, two weeks, a month, or the whole planning period are regulated

by the work contract, sometimes with very little flexibility such as for cyclical scheduling

or in the case of nurses.

7

A workload constraint is defined by a 5-tuple (i, jbeg, jend, h, h) and imposes that

the number of hours worked by staff member i over the time period (set of successive

days) [jbeg, jbeg+1 . . . jend] lies between h and h.

Consider the following example where there are seven shifts in Q: off (that lasts 0

hours); D4 and E4 (4 hours); D6 (6 hours); D8, N and E8 (8 hours). We consider the

workload requirement (i, 15, 21, 30, 35) that requires staff member i to work between

30 and 35 hours over the third week of the planning period (from day 15 to day 21).

Let h(X) represents the duration of the shift assigned to X. A straightforward way to

express the restriction is to state

Yj = h(Xij) (15 ≤ j ≤ 21)

30 ≤ Y15 + Y16 + · · · + Y21 ≤ 35,

using both linear and functional constraints.

In this case, simple bound consistency would normally be applied, unless the num-

ber of variables and the permitted range of total hours worked are small enough to

make the dynamic programming approach feasible. There is an alternate way to express

the constraint that will achieve domain consistency. Its cost is exponential in the num-

ber of distinct shift durations but this is always small in rostering problems. Let Q =

{Q1, . . . , Qp} be the partition of Q into classes of shifts having the same duration and

h1, . . . , hp be the durations of shifts in Q1, . . . , Qp. In our example, there are four classes

and the possible durations of the shifts are 0, 4, 6, and 8. Let T represent the set of

tuples (m1 . . . mp) such that h ≤
P

1≤k≤p hkmk ≤ h and
P

1≤k≤p mk = jend−jbeg +1.

For the example, T = {(m1, m2, m3, m4) : 30 ≤ 0 ∗m1 + 4 ∗m2 +6 ∗m3 + 8 ∗m4 ≤ 35

and m1+m2+m3+m4 = 7} = {(3, 0, 0, 4), (3, 0, 1, 3), . . .}. We introduce auxiliary vari-

ables Y = 〈Y1, . . . , Yjend−jbeg+1〉 with Yk = tQ(Xijbeg+k−1) (1 ≤ k ≤ jend − jbeg + 1),

table tQ giving the index of the duration class of the shift assigned to the decision

variable, and multiplicity variables M = 〈M1, . . . , Mp〉, with Mk (1 ≤ k ≤ p) counting

the number of variables in {Xijbeg
, . . . , Xijend

} whose assigned value belongs to class

Qk. To express the constraint, we state

GCC(M, 〈1, . . . , p〉, Y), EXTENSION(M, T).

In cyclical scheduling, workloads are often expressed not on calendar weeks but on

a sliding window of a given number of days. For example on any nine consecutive days,

five or six must be worked:

SLIDING GCC(X, 〈off, day, evening, night〉, 〈3, 1, 1, 1〉, 〈4, 9, 9, 9〉, 9).

3.4 Distribution

In rostering, many requirements aim for a fair distribution of shifts among staff mem-

bers and for balanced individual schedules. We distinguish balance for a certain type

of shift or for some other feature among the staff, either evenly or according to some

criterion such as seniority, distribution of weekends off across the planning period for

individual staff members, and relative proportion of certain types of shifts in individual

schedules. For the most part, this is not an issue for cyclical schedules but it can make

quite a difference in the quality of personnel schedules.

8

Consider the following example. A weekend on which one day is worked and the

other not is called a broken weekend, a generally undesirable feature. Let Bi represent

the number of broken weekends in staff member i’s schedule (these can be linked to the

decision variables in a similar way as before). We often do not know in advance how

many such weekends will occur in a schedule but we nevertheless wish the number of

broken weekends to be about evenly distributed among all staff members except the

first two, who have more seniority and should therefore have about half that of the

others:

Y1 = 2B1, Y2 = 2B2, Yi = Bi (3 ≤ i ≤ |I |), SPREAD(Y, µ, σ), σ < 1

3.5 Ergonomic considerations

This is the largest and most heterogeneous class. Various requirements ensure a certain

level of quality for the schedules produced and may be specified either globally for the

staff or only for certain individuals.

Typical requirements are: patterns of shifts over certain days such as alternating

between two types of shifts on weekends, length of stretches of shifts of identical type

to avoid working too few or too many days in a row on a certain shift, patterns of

stretches such as forward rotation (going from day shifts to evening shifts to night

shifts to day shifts again), and patterns of stretches of a given length that ask for at

least so many consecutive shifts of a certain type right after shifts of another type

or for (lunch) breaks after so many hours worked in shift scheduling. We also include

preferences and aversions.

One way to handle the latter is to consider them as the previously discussed avail-

abilities, though this may be too strict and lead to overconstrained instances. We

discuss another way in Section 4. As for the rest, they are all restrictions on the com-

binations of values taken by a sequence of variables and each can be modeled as a

regular language. In shift scheduling, because the sequencing rules for activities and

breaks are very constraining, all such rules are usually handled together in a single

regular language.

For example in cyclical scheduling, most authors assume that a change of shift type

can only occur after a rest period. If in addition only forward rotations are allowed, the

only possible patterns in a three-shift system (a, b and c) are then aoa, bob, coc, aob,

boc and coa (“o” indicates an off shift). The corresponding regular language can be

described by the automaton A illustrated at Figure 3, giving the following constraint

for each staff member i:

REGULAR(Xi⋆,A).

In some cyclical scheduling instances, vertical constraints on stretches of shifts are

also imposed, e.g., no more than three Fridays in a row may be worked in the evening.

This can be handled in a similar way as before, constraining a column of decision

variables instead of a row.

4 Soft Constraints

Constraint programming’s main strength is the reduction of the search space through

powerful inference at level of individual constraints. For this to work, the underlying

9

1

b

b

c

a
o

63

b
o

b

74

c
o

c

c

52

a
o

a

o

o

o
a

Fig. 3 An automaton corresponding to a forward rotation requirement.

assumption is that constraints are hard, i.e. cannot be violated. In rostering, require-

ments regarding coverage, availability, and even workload are usually hard. However

some distribution and ergonomic rules may be soft. Staff members may also have con-

flicting preferences, leading to an overconstrained instance. We outline how cp can

soften constraints while still performing inference on them.

The idea is to augment each soft constraint with a “cost” variable Z which represents

the amount of violation of the constraint under the corresponding assignment of its

variables [16]. The newly defined problem is not overconstrained anymore. For example,

a binary constraint γ(X, Y) will be augmented to γ(X, Y, Z). If (X = 1, Y = 3) is a solution

of γ, the corresponding tuple will be (X = 1, Y = 3, Z = 0); if (X = 1, Y = 2) isn’t, the

corresponding tuple could be (X = 1, Y = 2, Z = 1) or some other positive value for Z,

depending on the violation measure.

If we ask to minimize the (weighted) sum of violation costs or simply bound the

violation cost of each soft constraint, we can solve the problem with a traditional

constraint programming solver. The important feature of this approach is that inference

can still be applied, this time based on cost. For example, several of the most common

constraints admit an inference algorithm that can be formulated as a network flow

algorithm. In that case, violation arcs are added to the network, each with a cost

corresponding to some violation measure of the constraint. The modified inference

algorithm, instead of looking for a feasible flow, will compute minimum cost flows [17].

5 Constraint-Centered Search Heuristics

One of the main criticisms of constraint programming is that it is often necessary

to design customized search heuristics in order to solve one’s problem efficiently and

robustly. Some generic search heuristics are available but they may not be robust

enough for the given problem and suffer from occasionally long runtimes. The design

of generic robust search heuristics has recently caught the attention of the research

community — we present one such approach [18].

Constraints have played a central role in constraint programming because they

capture key substructures of a problem and efficiently exploit them to boost inference.

We can do the same thing for search with constraint-centered heuristics which guide

the exploration of the search space toward areas that are likely to contain a high

number of solutions. These heuristics are based on solution counting information at

the level of individual constraints and revolve around the following two concepts. Given

a constraint γ(X1, . . . , Xk) and respective finite domains Di 1≤i≤k, let #γ(X1, . . . , Xk)

denote the number of solutions of constraint γ, called its solution count. Given a variable

10

Xi in the scope of γ, and a value d ∈ Di, we will call

σ(Xi, d, γ) =
#γ(X1, . . . , Xi−1, d, Xi+1, . . . , Xk)

#γ(X1, . . . , Xk)

the solution density of pair (Xi, d) in γ. It measures how often a certain assignment is

part of a solution.

From this information we can derive simple branching heuristics, such as selecting

the variable-value pair of highest solution density among all constraints or first choosing

the constraint with the lowest solution count and then selecting the highest solution

density pair in the scope of that constraint. One interesting feature of such search

heuristics is that they are automatically built from the model since they are a product

of its component constraints — adjustments to a model in order to reflect a problem’s

evolution over time will be accompanied by adjustments to the search heuristic.

6 Conclusion

Constraint programming is well adapted to solve rostering problems because their

complex requirements are matched by the expressiveness of the approach and because

the focus is on satisfaction rather than optimization. The study of rostering by cp

researchers also led to the identification of new combinatorial substructures which

enriched the modeling language with new families of constraints.

References

1. Trick, M.: A Dynamic Programming Approach for Consistency and Propagation for Knap-
sack Constraints. Annals of Operations Research 118, 73–84 (2003)

2. Hentenryck, P.V., Carillon, J.P.: Generality versus specificity: An experience with ai and
or techniques. In: AAAI, pp. 660–664 (1988)

3. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table constraints. In:
Benhamou [19], pp. 284–298

4. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: AAAI/IAAI,
Vol. 1, pp. 209–215 (1996)

5. Régin, J.C., Puget, J.F.: A filtering algorithm for global sequencing constraints. In:
G. Smolka (ed.) CP, Lecture Notes in Computer Science, vol. 1330, pp. 32–46. Springer
(1997)

6. van Hoeve, W.J., Pesant, G., Rousseau, L.M., Sabharwal, A.: Revisiting the sequence
constraint. In: Benhamou [19], pp. 620–634

7. Pesant, G., Régin, J.C.: Spread: A balancing constraint based on statistics. In: P. van Beek
(ed.) CP, Lecture Notes in Computer Science, vol. 3709, pp. 460–474. Springer (2005)

8. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: The deviation constraint. In: P.V. Hen-
tenryck, L.A. Wolsey (eds.) CPAIOR, Lecture Notes in Computer Science, vol. 4510, pp.
260–274. Springer (2007)

9. Pesant, G.: A regular language membership constraint for finite sequences of variables. In:
M. Wallace (ed.) CP, Lecture Notes in Computer Science, vol. 3258, pp. 482–495. Springer
(2004)

10. Sellmann, M.: The theory of grammar constraints. In: Benhamou [19], pp. 530–544
11. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou [19], pp. 751–755
12. Laporte, G., Pesant, G.: A General Multi-Shift Scheduling System. J. Oper. Res. Soc. 55,

1208–1217 (2004)
13. Bourdais, S., Galinier, P., Pesant, G.: Hibiscus: A constraint programming application to

staff scheduling in health care. In: F. Rossi (ed.) CP, Lecture Notes in Computer Science,
vol. 2833, pp. 153–167. Springer (2003)

11

14. Gendreau, M., Ferland, J.A., Gendron, B., Hail, N., Jaumard, B., Lapierre, S.D., Pesant,
G., Soriano, P.: Physician scheduling in emergency rooms. In: E.K. Burke, H. Rudová
(eds.) PATAT, Lecture Notes in Computer Science, vol. 3867, pp. 53–66. Springer (2006)

15. Demassey, S., Pesant, G., Rousseau, L.M.: Constraint programming based column gener-
ation for employee timetabling. In: R. Barták, M. Milano (eds.) CPAIOR, Lecture Notes

in Computer Science, vol. 3524, pp. 140–154. Springer (2005)
16. Régin, J.C., Petit, T., Bessière, C., Puget, J.F.: An Original Constraint Based Approach

for Solving over Constrained Problems. In: R. Dechter (ed.) Proceedings of the Sixth In-
ternational Conference on Principles and Practice of Constraint Programming (CP 2000),
LNCS, vol. 1894, pp. 543–548. Springer (2000)

17. van Hoeve, W.J., Pesant, G., Rousseau, L.M.: On global warming: Flow-based soft global
constraints. J. Heuristics 12(4-5), 347–373 (2006)

18. Zanarini, A., Pesant, G.: Solution counting algorithms for constraint-centered search
heuristics. In: C. Bessiere (ed.) CP, Lecture Notes in Computer Science, vol. 4741, pp.
743–757. Springer (2007)

19. Benhamou, F. (ed.): Principles and Practice of Constraint Programming - CP 2006, 12th
International Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings,
Lecture Notes in Computer Science, vol. 4204. Springer (2006)

