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Abstract. This article describes a conversion scheme for turning a curriculum-based 

timetabling problem into a school timetabling problem. The motivation for this paper is to give 

directions on how to solve problems lying between school timetabling and curriculum-based 

timetabling. The converted problem instances are solved using a previously published school 

timetabling algorithm. The algorithm finds a feasible solution within the given time limit for 12 of 

the 14 problems used in the 2nd International Timetabling Competition. This is probably the first 

paper that describes such a conversion scheme. 
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1   Introduction 
Several solution approaches to timetabling problems have been introduced in recent years. Most of 

the work has concentrated on examination, university and course timetabling (Schaerf 1999; Burke 

and Petrovic 2002; Burke et al. 2003; Burke et al. 2005; McCollum 2006; Burke and Rudová 

2006). Timetabling researchers have obtained very promising and practicable results in these 

problem areas. The 2nd International Timetabling Competition organized and run by the 

eventMAP research Group at Queen’s University (De Werra 1985) also concentrates on these 

problems. An important aim of the competition is to generate new approaches by attracting users 

from all areas of research. The second important aim is to close the gap that currently exists 

between research and practice within this important area of operational research. 

 

This article describes a conversion scheme for turning a curriculum-based timetabling problem 

into a school timetabling problem. The 2nd International Timetabling Competition tackles the 

curriculum-based timetabling problem (McCollum 2007), which consists of the weekly scheduling 

of the lectures for several university courses within a given number of rooms and time periods. 

The conflicts between courses are set according to the curricula published by the University, not 

on the basis of enrolment data. The formulation of the problem applies to University of Udine 

(Italy) and to many Italian and International Universities, although it is slightly simplified with 

regard to the real problem to maintain a certain level of generality. 

 

The school timetabling problem (Di Gaspero et al. 2007) has not been as extensively studied as 

the competition problems. We presented a school timetabling algorithm in (Nurmi 1998) and later 

extended it in (Nurmi and Kyngäs 2007). The original and extended algorithms were constructed 

to solve a school timetabling problem that arises at various Finnish school levels: comprehensive 

school, upper secondary school and higher education. The problem description is representative of 

many timetabling scenarios within the area of school timetabling. 

 

The school timetabling problem differs quite substantially from the curriculum-based 

timetabling problem. However, the most important components are the same, so we can convert 

the curriculum-based timetabling problem to the school timetabling problem. We implement five 

conversion methods, and finally solve the converted problem using our original school timetabling 

algorithm. We believe that this is the first article that describes a conversion scheme to turn the 

university/course timetabling problem into a school timetabling problem. 

2   Problem Description 
In the curriculum-based timetabling problem (the Competition problem) we are given a number of 

teaching days in the week. Each day is split into a fixed number of timeslots, which is equal for all 

days. Each course consists of a fixed number of lectures to be scheduled in distinct periods (days 

and timeslots), attended by a given number of students and taught by a teacher. Each room has a 

capacity, expressed as the number of available seats. All rooms are equally suitable for all courses 
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(if large enough). For each course there are a minimum number of days the course lectures should 

be spread over, moreover there are some periods for which the course cannot be scheduled. A 

curriculum is a group of courses whereby any pair of courses in the group has students in common. 

Based on the curricula, we have conflicts between courses and other soft constraints. The solution 

to the problem is the assignment of a period and a room to all lectures on each course. 

 

In the school timetabling problem the timetable frame consists of n weeks, where n = 1 in most 

problems. Each week is split into a fixed number of days and each day into a fixed number of 

timeslots. A lecture is a predefined combination of a teacher, a student group, a room and the 

length of the lecture in timeslots. The sets of teachers, student groups and rooms are fixed. The 

student groups can have common students. In the Finnish problem each group should have at least 

a given number of periods in a day, but should not have more than another given number of 

periods. The rooms can be classified into certain room types. Some lectures (courses) can be 

scheduled to occur in the correct order during the week. 

Table 1.  The curriculum-based timetabling problem and the school timetabling problem. 

Properties 
Curriculum-based timetabling 

problem (Competition problem) 

School timetabling problem 

(Finnish problem) 

Timeslots 
Weekly schedule, typically 5-6 days and 

5-6 periods per day 

Weekly schedule, typically 5 days and 8 

periods per day 

Teachers Pre-assigned to courses Pre-assigned to courses 

 Unavailability constraints Unavailability constraints 

 No timeslot preferences Timeslot preferences 

Students Students enroll on courses 
Students either do not enroll on courses 

or only enroll on optional courses 

Student 

groups 
No student group concept 

Students are preassigned to base groups, 
and also assigned to optional groups, 

which are built according to students’ 

enrolments on optional courses. Some 

base/optional groups must be scheduled 

for different periods because they have 
common students. 

 No unavailability constraints Unavailability constraints 

 No timeslot preferences Timeslot preferences 

Rooms 

Each room has a capacity expressed in 

number of seats. All rooms are equally 

suitable for all courses. 

No capacity constraints, but rooms with 

the same resources can be grouped 

together (room groups) 

 No unavailability constraints Unavailability constraints 

Courses 

A course is a pre-assigned combination 

of a teacher, a number of student 

enrolments and a total number of 

periods 

A course is a pre-assigned combination 

of a teacher, a student group, a room 

and a total number of periods 

 

For each course there are a minimum 

number of days the lectures of the 

course should be spread over 

No such constraint 

 

Conflicts between courses are set 

according to the curricula published by 

the university, not based on student 

enrolment data 

Conflicts between courses are set 

according to the timetable published by 
the school 

 No precedence constraint 
Some courses are scheduled to occur in 

the correct order in the week 

Lectures 
A lecture is an instance of a course 

taking one or more periods  

A lecture is an instance of a course 

taking a pre-assigned number of periods 

Curricula 

A curriculum is a group of courses 

where any pair of courses in the group 

has students in common 

No curriculum concept 

Solution 
Assignment of a period and a room to 

all lectures of each course 

Assignment of a starting period to all 

lectures 

 

 

The problem is to assign predefined lectures to periods in such a way that no teacher, student 

group (if common students) or room is involved in more than one lecture in the same timeslot, and 

the other constraints are satisfied. The solution to the school timetabling problem is the assignment 

of a starting period to all lectures. The most common soft constraints are: 
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1. The timetable of a student group should have as few idle periods as possible. 

2. The school day of some student groups should not start in the first period. 

3. The school day of some student groups should end as early as possible. 

4. The timetable of some teachers should have as few idle periods as possible. 

5. For some teachers the preferred daily minimum and maximum number of periods are 

given. 

6. Some teachers prefer not to be scheduled in certain periods. 

7. Some teachers should only be scheduled on a limited number of days. 

8. The lessons of a subject should be on different days (for the same student group). 

 

Table 1 summarizes the curriculum-based timetabling problem (CP) and the school timetabling 

problem (SP). The five major differences are 

 

1. SP has no concept for a curriculum. 

2. CP has no concept for a student group. 

3. In CP, students enroll on courses and room assignments should be made based on the 

number of student enrollments on each course. 

4. In SP, rooms are pre-assigned to lectures. 

5. In SP, both the number of lectures on a course and the number of periods in each lecture 

are pre-assigned, and cannot be dynamically changed as in CP. 

 

Table 2.  Hard and soft constraints of the competition problem and the corresponding construction of the 

school timetabling problem. 

Hard 

constraints 
Competition problem 

Corresponding construction of the 

school timetabling problem 

Course clashes 
Two lectures on a course cannot 

take place in the same period 
SP hard constraint 

Curriculum 

clashes 

Two courses belonging to a 

curriculum cannot take place in the 

same period. Some courses belong 

to two or more curricula. 

A student group construction method 

Room clashes 
Two lectures cannot take place in 

the same room in the same period 
SP hard constraint 

Teacher 

clashes 

Two lectures having the same 
teacher cannot take place in the 

same period 

SP hard constraint 

Teacher 

unavailabilities 

A lecture cannot be scheduled to a 

period where the teacher is 

unavailable 

SP hard constraint 

Soft 

constraints 
  

Minimum 

working days 

The lectures on each course must 
be spread over a minimum number 

of days 

A lecture construction method 

Curriculum 

compactness 1 

Lectures belonging to a curriculum 

should be assigned to consecutive 
periods 

SP soft constraint 

Curriculum 

compactness 2 

For a given curriculum there 

should not be a single one-period 

lecture assigned to a day 

SP soft constraint 

Room 

capacities 

The number of students that attend 

a lecture (a corresponding course) 

must be less than or equal to the 

number of seats in the room that 

hosts the lecture 

A room assignment heuristic 

Room stability 
All lectures on a course should be 
given in the same room 

A room assignment heuristic + 

A room group construction method + A 

room group deconstruction heuristic 

 

 

Table 2 summarizes the hard and soft constraints of the competition problem. CP is easier to 

solve to feasibility than the school timetabling problem. There are three main arguments for this. 
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The pre-assignment of rooms to lectures adds an extra hard constraint to SP. In CP, the room 

assignment only affects the number of soft constraint violations. A further hard constraint in SP 

concerns the student groups. Each student belongs to at least one base group and also to a varying 

number of optional groups. Students in the same base group take most of the courses together. The 

optional groups are built according to students’ enrolments on optional courses. The base and 

optional groups are published by the school. Two lectures must be scheduled in different periods if 

their base/optional groups have common students. Finally, in SP we have to preassign the number 

of periods to each lecture, while in CP we can dynamically change both the number of lectures and 

the number of periods in each lecture. 

 

It is quite rational to ask whether there is any purpose in converting a somewhat easier problem 

into a more difficult problem and then trying to solve that problem. The motivation is to give 

directions on how to solve problems lying between school timetabling and curriculum-based 

timetabling. To convert CP to SP, we need to implement five conversion methods. Figure 1 shows 

the conversion scheme. We have two main goals here: first, to build the student group structure 

from the curricula structure (Student group construction method) and second, to preassign a room 

to each lecture (Room assignment heuristic). The pre-assignment of rooms ensures that all lectures 

on a course are given in the same room. Thus the Room stability soft constraint will never be 

violated. 

 

After the pre-assignment of rooms we can make the task of the school timetabling algorithm 

easier by grouping some rooms together (Room group construction method). Rooms with a 

roughly equal number of seats will be grouped together. Examples of such room groups in real-

world timetabling problems are computer rooms and rooms for language studies. If the number of 

rooms in the group is n, we do not have a room clash in a timeslot until we have assigned more 

than n lectures to the timeslot that hosts the room group.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The conversion scheme and the five conversion methods. 

 

When the school timetabling algorithm has produced a solution we have to ungroup the rooms. 

That is, we have to assign a room from the group to each lecture that hosts the group in the 

solution (Room group deconstruction heuristic). Unfortunately, we can no longer ensure that all 

lectures on a course are given in the same room and the Room stability soft constraint will then be 

violated. As a result, the more rooms we put in the room groups, the easier it will be to construct a 
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Room group 
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Solution.txt 

Validate the solution 
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feasible timetable, but at the same time we introduce more soft constraint violations. 

 

In SP, both the number of lectures on a course and the number of periods in each lecture are 

pre-assigned. Therefore, we need to construct a fixed number of lectures from the course list of CP 

(Lecture construction method). When constructing the lectures we have to consider the soft 

constraints. For example, the Minimum working days soft constraint states that the lectures on 

each course must be spread over a minimum number of days.  

3   Conversion Methods 
We need to implement five conversion methods to be able to convert a curriculum-based 

timetabling problem into a school timetabling problem. Figure 1 and Table 2 summarize the 

conversion scheme. The outlines of the conversion are as follows: First, we read a competition 

problem from a text file and then determine the difficulty of the problem. Next, we construct the 

lectures of the courses and create the student groups from the curricula. Then we pre-assign a room 

to each lecture. If the level of difficulty is greater than one (see Chapter 5), we construct the room 

groups in order to make the task of the school timetabling algorithm easier. We have now created 

an instance of the school timetabling problem. 

 

We solve the problem instance using our original school timetabling algorithm (Nurmi 1998). 

The algorithm uses the configuration that was found to work best in (Nurmi and Kyngäs 2007). 

We do no further fine-tuning of the algorithm. We read the solution of the algorithm from the 

program (RWTSolver) database and deconstruct the room groups created earlier. Finally, we write 

this newly created solution to a text file, and validate it using the competition validator (McCollum 

2007). A description of each of the conversion methods follows. 

 

Lecture construction method 

 

In the curriculum-based timetabling problem each course is given a total number of periods to be 

lectured. While constructing a timetable we can dynamically change both the number of lectures 

and the number of periods for each lecture. This gives a great deal of flexibility when minimizing 

soft constraint violations, especially Minimum working days, Curriculum compactness 1 and 

Room stability. 

 

In the school timetabling problem both the number of lectures on a course and the number of 

periods for each lecture are pre-assigned. We need to construct a fixed number of lectures from the 

course list of CP. Basically, we have two options: 

 

a)  spread the lectures over the number of days or 

b)  spread the lectures to match the Minimum working days (soft constraint). 

 

For example, if we have a course with eight periods of lectures and the Minimum working days is 

three, we get the following preassignments in the 5-day timetable: 

 

a)  2, 2, 2, 1, 1, or 

b)  3, 3, 2. 

 

It should be intuitively clear that spreading lectures to match Minimum working days performs 

better. It has a built-in mechanism to reduce the number of soft constraint violations. Our test runs 

confirmed this intuition.  

 

Student group construction method 

 

In the curriculum-based timetabling problem, a curriculum is a group of courses where any pair of 

courses in the group has students in common. In the school timetabling problem, an individual 

student has no meaning; instead, students are pre-assigned to one or more base groups. Each 

student belongs to one base group and most of the lessons are scheduled based on this group. In 

addition, a student belongs to a number of optional groups, which are constructed based on the 

students’ course choices. For example, one student prefers to take optional courses in Science and 

Sports and another in Art and Music. Each course is assigned to one and only one student group, 
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either base or optional. Base and optional groups define a matrix, which in turn determines which 

groups cannot have lectures at the same time.  

 

To build the student group structure of SP from the curricula structure of CP we create a group 

for each curriculum. Next, if two or more curricula share a course, we create a single group for 

each such course and delete such courses from other groups. Finally, we define the above-

mentioned overlap matrix. For example, if we have the following curricula: 

 

Curricula 1 Course A, Course B, Course C 

Curricula 2 Course A, Course C 

Curricula 3 Course C, Course D, Course E 

Curricula 4 Course F, Course G, Course H, 

 

we create the following groups and matrix: 

 

 Group 1  Course B 

Group 2  (deleted) 

Group 3  Course D, Course E 

Group 4  Course F, Course G, Course H 

Group 5  Course A 

Group 6  Course C. 

 

Overlap Group 1 Group 3 Group 4 Group 5 Group 6 

Group 1 (x)   x X 

Group 3  (x)   X 

Group 4   (x)   

Group 5 x   (x) X 

Group 6 x x  x (x) 

 

Room assignment heuristic 

 

In the curriculum-based timetabling problem, students enroll on courses and room assignments 

should be made based on the number of student enrollments on each course. The number of 

students that attend a course must be less than or equal to the number of seats in the room that 

hosts the lecture. In the school timetabling problem, a room is pre-assigned to each lecture. 

Therefore, we need to implement a heuristic that assigns a room to each lecture. 

 

First, we create a course-room matrix. Then we assign the number of periods on the course to 

each cell where the room can host the course. Next, we assign the total number of periods in a 

week to the last row of the matrix indicating the maximum sum. The problem now is to select one 

non-empty cell from each row so that the sum of the selected cells in each column is less than or 

equal to the total number of periods. Table 3 gives a sample problem instance.  
 

Table 3.  A competition problem instance and the corresponding generalized assignment problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Room 1 Room 2 Room 3 

Course A 1 1 1 

Course B 2 2 2 

Course C 3 3 3 

Course D 4 4 4 

Course E  1 1 

Course F  2 2 

Course G  3 3 

Course H   4 

Course I   3 

 ≤ 8 ≤ 8 ≤ 8 

Total number of periods in a week: 8 

 

Course A 1 period 10 students 

Course B 2 periods 20 students 

Course C 3 periods 30 students 

Course D 4 periods 40 students 

Course E 1 period 50 students 

Course F 2 periods 60 students 
Course G 3 periods 70 students 

Course H 4 periods 80 students 

Course I 3 periods 90 students 

 

Room 1 41 seats 

Room 2 73 seats 

Room 3 95 seats 
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This problem is actually a classical generalized assignment problem (Martello and Toth 1990). 

The mathematical formulation of the generalized assignment problem is given in formula (1): 

 

 

              cost(x) =                                          
 

 

 

 

 

 

 
 

 

 

The generalized assignment problem (GAP) can be stated as finding a minimum cost 

assignment of n jobs to m agents, such that each job is assigned to one and only one agent and 

each agent’s resource capacity is honored.  

 

GAP is NP-hard (Fischer et al. 1986) and even APX-hard to approximation (Chekuri and 

Khanna 2000). Moreover, the problem of finding whether a feasible solution exists is NP-

Complete. Even if many heuristics for GAP exist (Kellerer et al. 2004; Cohen et al. 2006; 

Fleischer et al. 2006), we decided to build a new heuristic that seeks a feasible solution. We need a 

fast enough heuristic in the Timetabling Competition since we have only a limited time in which to 

solve a problem instance. 

  

In our room assignment problem courses correspond to jobs and rooms correspond to jobs. We 

define a cost function as 
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wij = ci for all room j that can host the course, 

wij = ∞ for all room j that cannot host the course and 

Wi = W  for all i, 

 

where ci is the number of periods of the course i, W is the total number of periods in a week and a 

is a large constant value (for example nW). We seek a solution whereby the first part of the cost 

function is zero. A course i is assigned to room j, if xij = 1.  

 

The heuristic is based on the greedy hill-climbing mutation operator introduced in our school 

timetabling algorithm (Nurmi 1998). The application of the operator for GAP is as follows. The 

operator is based on moving a selected cell ce1 from its old column col1 to a new column col2, 
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causes the most decrease in the cost function when considering only the removal cost. The 

operator stops if the last move causes an increase in the cost function value and if the value is 

larger than that of the previous non-improving move.  

 

We could further improve the operator by introducing a tabu list, which prevents reverse order 

moves in the same sequence of moves. Another improvement would be to use the simulated 

annealing refinement introduced in (Nurmi 1998). However, we were able to find a feasible 

solution to all GAPs arising from the competition problems with no need to use either of these 

improvement methods. An example of one application of the greedy hill-climbing mutation 

operator is given in Figure 2. The problem was introduced in Table 3. The solution states that 

room 1 hosts courses C and D, room 2 hosts courses A, B, F and G, and room 3 hosts courses E, H 

and I. 
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(1) 1 1    1 [1] 1    1 (1) 1 

(2) 2 2    (2) 2 2    (2) 2 2 

(3) 3 3    (3) 3 3    (3) 3 3 

4 (4) 4    4 (4) 4    4 (4) 4 

 (1) 1     (1) 1     1 [1] 

 (2) 2     (2) 2     (2) 2 

 3 (3)     3 (3)     3 (3) 

  (4)      (4)      (4) 

  (3)      (3)      (3) 

6 7 10    5 8 10    5 7 11 

≤ 8 ≤ 8 ≤ 8    ≤ 8 ≤ 8 ≤ 8    ≤ 8 ≤ 8 ≤ 8 
 

 

1 (1) 1    1 (1) 1    1 (1) 1 

(2) 2 2    (2) 2 2    2 [2] 2 

(3) 3 3    (3) 3 3    (3) 3 3 

4 (4) 4    [4] 4 4    (4) 4 4 

 1 (1)     1 (1)     1 (1) 

 (2) 2     (2) 2     (2) 2 

 [3] 3     (3) 3     (3) 3 

  (4)      (4)      (4) 

  (3)      (3)      (3) 

5 10 8    9 6 8    7 8 8 

≤ 8 ≤ 8 ≤ 8    ≤ 8 ≤ 8 ≤ 8    ≤ 8 ≤ 8 ≤ 8 
 

 

Fig. 2. An example of one application of the greedy hill-climbing mutation operator for the problem instance 

given in Table 3. The parentheses denote the current solution, the bolded value denotes the (old) selected cell 

cei and the square brackets denote the new selected cell in the new column colj. 

 

Table 4.  A GAP instance with no feasible solution and a new instance for which a feasible solution can be 

found. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If no feasible GAP solution exists (or if we are unable to find one), we have to make the 

problem easier by allowing a course to be assigned to a room that has too few seats. For example, 

no feasible room assignment exists for the competition problem “Early dataset1” (Di Gaspero 

2007). We ease the problem by first selecting a course-room pair for which the difference between 

number of attending students and size of room is greater than zero and minimized. Then we set the 

number of students attending that course to the size of the room. Next we try to solve this new 

GAP. This process is repeated until a feasible solution is found. Table 4 gives an example. The 

number of students attending course H will be set to 73. 

 

Room group construction method 

 

We usually need to make an instance easier by grouping some rooms together. This gives 

flexibility because we do not have a room clash in a timeslot until we have assigned more than n 

lectures to the timeslot that hosts the room group, where n is the number of rooms in the group. 

 R1 R2 R3   R1 R2 R3 

Course A 1 1 1  Course A (1) 1 1 

Course B 2 2 2  Course B 2 (2) 2 

Course C 3 3 3  Course C (3) 3 3 

Course D 4 4 4  Course D (4) 4 4 

Course E  1 1  Course E  1 (1) 

Course F  2 2  Course F  (2) 2 

Course G   3  Course G   (3) 

Course H   4  Course H  (4) 4 

Course I   3  Course I   (3) 

 ≤ 8 ≤ 8 ≤ 8   ≤ 8 ≤ 8 ≤ 8 

Cost = 2a + 3 Cost = 2a + 3 Cost = 3a + 4 

Cost = 2a + 3 Cost = a + 2 Cost = 1 
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The idea is to group such rooms together that can host exactly the same courses. For example, in 

the sample case given in Table 5, rooms 2 and 3 can both host courses A, B and C.  

 

A pseudo code for the room group construction is given in Figure 3. The construction is quite 

straightforward. We first sort rooms by size and courses by attending students. Then we go 

through the course list and find groups of courses that can host exactly the same rooms. Finally we 

extract the room groups from the course list (see Table 5). 

 

Table 5.  An example of the room group construction method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Pseudo code for the room group construction method. 

 

Room group deconstruction heuristic 

 

When the school timetabling algorithm has produced a solution we have to assign a room from the 

room group to each lecture that hosts the group in the solution. We need a fast heuristic since we 

have only a limited time in which to solve a problem instance. Even if good heuristics might exist 

for this problem, we decided to build a new greedy heuristic. The heuristic starts by sorting one-

hour lectures first by timeslot and then by course for each room group. Then it selects each lecture 

in turn and finds a room that by then hosts the course the most. If there is a tie, it selects a room 

that hosts the least total number of lectures. A pseudo code for the heuristic is given in Figure 4. 

Table 6 gives a sample problem instance and Table 7 gives a solution to the instance using the 

room group deconstruction heuristic. The solution includes five Room stability soft constraint 

violations. 
 

  GroupSet 

Course A 10 students 1 

Course B 20 students 1 

Course C 30 students 2, 3 

Course D 40 students 4, 5 

Course E 50 students 4, 5 

Course F 60 students 4, 5 

Course G 70 students 6 

  Room Groups 

Room 1 21 seats G1 

Room 2 31 seats G2 

Room 3 33 seats G2 

Room 4 61 seats G3 

Room 5 63 seats G3 

Room 6 71 seats G4 

1. Sort roomlist by room size in ascending order 
2. Sort courselist by attending students in ascending order 
3. Set Course = first course in a course list 
   Set Room = first room in a room list 
   Set GroupSet(c) = {} for all courses c 
4. If Attendants(Course) > Size(Room) 
      Add Room to GroupSet(c) for all c in C 
   Else 
      Set C = {} 
   End 
5. If Attendants(Course) ≤ Size(Room) 
      Add Room to GroupSet(Course) 
      Set C = C U {Course} 
   Else 
      Goto 7 
   End 
6. Set Course = next course in a course list and Goto 5 
7. Set Room = next room in a room list and Goto 4 
8. Extract room groups from GroupSet 
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Table 6.  An instance of the room group deconstruction problem. The subscripts denote the order in which 

the lectures will be processed. 

 

 

 

 

 

 

 

 

 

 

 

Table 7.  A solution to the problem instance given in Table 6 using the room group deconstruction heuristic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Pseudo code for the room group deconstruction heuristic. 

 

Courses 

Timeslots 
C1 C2 C3 C4 C5 C6 C7 

00 x1   x2    
01 x3 x4 x5     
02     x6   
03   x7 x8  x9  
10      x10 x11 
11  x12  x13  x14  
12 x15  x16     
13  x17 x18     
20     x19   
21     x20 x21 x22 
22 x23     x24 x25 
23 x26  x27    x28 

Courses 

Timeslots 
C1 C2 C3 C4 C5 C6 C7 

00 A   B    

01 A C B     

02     C   

03   B A  C  

10      C A 

11  C  A  B  

12 A  B     

13  C B     

20     C   

21     C B A 

22 A     B C 

23 A  B    C 

For each room group G 
   Break lectures belonging to G into one-hour-lectures 
   Sort one-hour-lectures first by timeslot and then by course 
   For each lecture L in the sort list 
      If timeslot(L) ≠ timeslot(Lprev) 
         For each R set RoomSet(R) = False 
      End 
      Max = 0 
      For each room R in G  
         If Not RoomSet(R) 
            If number of assignments for R > Max 
               bestR = R 
               Max = number of assignments for R 
               Tie = False 
            Else If number of assignments for R = Max 
               Tie = True 
            End 
         End If 
      Next 
      If Tie 
         Select a room (bestR) which hosts the least total 
         number of lectures 
      End 
      Set Room(L) = bestR 
      Set RoomSet(bestR) = True 
   Next 
Next 
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We could use the heuristic each time we find a new solution candidate in the school timetabling 

algorithm. However, our goal is not to change the original algorithm at all. We could also apply 

the heuristic with some minor changes to be able to produce several solutions. Then we could pick 

the best among these. We ended up using the heuristic only once in order to lower the running 

time. 

4   Complexity of the Competition 
As we know very well, the timetabling problem is a very tough one. It is clear that limiting the 

running time of an algorithm affects its design process. The main point is to find a solution fast 

enough and with sufficient quality, not to find the solution of the best quality. In any competition 

the solution candidates must easily be comparable and the results must be reproducible. This could 

be realized without any running time restrictions.  

 

The competition participants were asked to benchmark their computers with the program 

provided in order to know how much time they have available to run their program on their 

computers. The competition rules emphasized that all the finalists will be run on a standard 

computer, thus creating a level competition. However, it is not possible to provide a perfectly 

equitable benchmark program across many platforms and algorithms, and any such program is 

inevitably more favorable to some computers than others. We tested the benchmark program on 

three different computers. The results are given in Table 8. Our algorithm should run an equal 

number of generations in each computer in the time given by the benchmark program. However, 

the results are quite far from each other. At one time we started to suspect that there might be a 

problem in our algorithm (program). Therefore, we ran the algorithm on eight different computers 

for 14,000 generations (9,889,446 cost function evaluations) on each computer. Every computer 

produced exactly the same solution, so the program works properly. 

 

Table 8. The results between the benchmark program and the number of generations run by our algorithm in 

the time limit given by the benchmark program. 

 

 

 

 

 

 

 

 

The organizers of the Timetabling Competition have done excellent work in providing 

researchers with a computing challenge that is very much a combination of theory and practice. 

However, it is an unpleasant task to design a benchmark program that tries to take every aspect of 

every algorithm into consideration. Our algorithm, for example, is very much dependent on 

memory usage and bus speeds, not so much on processor power. 

 

We cannot guarantee that our results will be reproducible on different computers. The main 

reason can be seen in Figure 1. After the school timetabling algorithm has produced a solution, we 

still need to deconstruct the room groups to get the final solution. Because the school timetabling 

algorithm produces a different solution on different time stamps, we will get a different final 

solution depending on the total running time. Another reason can also be seen in Figure 1. At first 

we determine the level of difficulty of the problem to find out how many time-consuming 

operations we can use for the problem in hand. But since we do not know the total running time of 

our algorithm on a particular computer, we cannot predict the running time of the operations 

either. 

 

In order to answer criticisms by some of the participants and to push forward the spirit of the 

competition, the organizers proposed a larger set of possible formulations (De Cesco et al. 2008). 

We strongly believe that they have succeeded in their aim of capturing many real-world 

formulations, as well as encouraging researchers to reduce their problems to one of them, gaining 

the opportunity to compare and assess their results. That is exactly what we are doing. 

 

Computer 
Benchmark 

program 

Number of generations run by the 

algorithm in the time limit given by 

the benchmark program 

1 377 s 12,161 

2 429 s 6,689 

3 468 s 9,985 
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Table 9 presents the formulations of the competition problem and the problem we are actually 

solving. The fact that the competition formulation is a sub-formulation of our formulation can 

easily be seen. The Windows component counts as many violations as there are idle periods (i.e., 

periods without teaching). The IsolatedLectures component only considers the number of such 

incidents, not their length. The minimum number of lectures in our formulation is two 

(StudentMinMaxLoad component). The Room assignment heuristic guarantees that the number of 

students attending a course is less than or equal to the number of seats in the room that hosts the 

lecture (RoomCapacity). Furthermore it can be used to assign a suitable room to each course 

(RoomSuitability). The Lecture construction method creates double lectures (DoubleLectures). 

 

 
Table 9. Problem formulation descriptions using the terminology presented in (De Cesco et al. 2008). A dash 

sign means that the component is not included and the numbers mean the weight associated to the component. 

 
 Competition formulation Our formulation 

Lectures Hard Hard 

Conflicts Hard Hard 

RoomOccupancy Hard Hard 

Availability Hard Hard 

RoomCapacity 1 Hard 
   

MinWorkingDays 5 5 

IsolatedLectures 2 – 

Windows – 2 

RoomStability 1 1 

StudentMinMaxLoad – 1 

TravelDistance – – 

RoomSuitability – Hard 

DoubleLectures – Hard 

 

5   Competition Results 
This chapter presents our results to the competition track 3, which tackles the curriculum-based 

timetabling problem (Di Gaspero 2007). Chapters 2 and 3 described how we convert a curriculum-

based timetabling problem into a school timetabling problem. We solve the school timetabling 

problem using the algorithm presented in (Nurmi 1998). The algorithm is basically a genetic 

algorithm with one mutation operator and no recombination operators. The two most important 

features of the algorithm are the greedy hill-climbing mutation (GHCM) operator and the adaptive 

genetic penalty method (ADAGEN), which is a multiobjective optimization method. We do no 

fine-tuning of the algorithm, but use the same configuration found to work best in (Nurmi and 

Kyngäs 2007). 

 

We present our results applying the rules of the competition. The main points here are that 

 

− our algorithm runs on a single processor computer, 

− we have 468 seconds to run the algorithm on our computer according to the benchmark 

program provided, 

− the algorithm uses no other knowledge about a problem instance but those provided in the 

problem file, and the same version of the algorithm is used for all instances, and 

− our results are repeatable within the given computer time (but only using the same 

computer that the results were originally obtained with). 

 

As pointed out in Chapter 4, limiting the running time of an algorithm affects its design process. 

In our case this means that first we have to determine the difficulty of a problem instance to find 

out how many time-consuming operations we can use for the instance in hand. For the competition 

problem instance c we define the degree of difficulty as: 

 

 diff(c) = )3(,
Co

CuGr

Te

Un

PoPeDa

To −××
××

 

 

where 
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 To = Total number of periods in all the courses, 
 Da = Number of days, 
 Pe = Number of periods in a day, 
 Ro = Number of rooms, 
 Un = Number of unavailabilities, 
 Te = Number of teachers, 
 Gr = Number of student groups created, 
 Cu = Number of curricula and 
 Co = Number of courses. 
 

The degree of difficulty does not necessarily define the overall difficulty of the problem 

instance, but it is designed to determine the difficulty for our algorithm under competition rules 

(mainly time limit). We classify the competition problem instances into five levels based on their 

diff(c) values. Table 10 summarizes the five levels. 

 

Table 10. Five levels of difficulty based on the degree of difficulty of a problem instance.  

Degree of difficulty, diff(c) Level of difficulty, level(c) 

[0.0, 1.4) 1 = very easy 

[1.4, 2.2) 2 = easy 

[2.2, 3.0) 3 = moderate 

[3.0, 3.8) 4 = difficult 

[3.8, ∞) 5 = hard 

 

 

The competition rules stated that in order to compare two solutions, the number of hard 

constraint violations will be calculated and the solution with the lowest value for this will be the 

winner. If the two solutions are tied, the number of soft constraint violations will be calculated. 

The winner will be the solution that has the lowest value here. Our school timetabling algorithm 

uses a multiobjective optimization method (ADAGEN), which minimizes both hard and soft 

constraints at the same time. So there is a contradiction of some sort between the rules and our 

algorithm. We must first concentrate on minimizing the hard constraints and we have to do that 

quickly and then we should put all the effort into minimizing the soft constraints. That is, the 

algorithm solves a competition problem in two phases. 

 

Based on the level(c) value of the problem instance, we first determine which soft constraints 

we cannot afford to minimize while minimizing all the hard constraints. This problem is then 

solved using ADAGEN multioptimization. When the algorithm has found a feasible solution, it is 

started again with all the soft constraints active this time. The second phase of the algorithm ends 

when the competition time limit is reached. Table 11 summarizes the use of room groups and soft 

constraints based on the level(c) value. Even if the lecture construction method creates exactly the 

number of lectures given by the Minimum working days (soft constraint), the algorithm can still 

place two lectures on the same day. Therefore, we have to minimize this soft constraint as well. If 

a competition problem is very easy to solve, we do not have to use the room group construction 

method.  

 

A soft constraint in the objective function is weighted based on its penalty value given in the 

competition rules. When a feasible solution is found, all the weights of the soft constraints are set 

to their corresponding penalty values and the algorithm is started again. 

 

 
Table 11. The use of room groups and soft constraints based on the difficulty of a problem instance. The 

numbers correspond to the weights of the soft constraints in the objective function of the ADAGEN method. 

 

Level(c) 
Room groups 

in use 

Minimum 

working days 

Curriculum 

compactness 1 

Curriculum 

compactness 2 

Very easy No 5 1 2 

Easy Yes 5 1 2 

Moderate Yes 5 1 0 

Difficult Yes 1 0 0 

Hard Yes 0 0 0 

When feasible     
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solution found 

(phase II) 

(no change) 5 1 2 

 

 

We are finally ready to present our results to the competition problems. The early and late 

problems were available at the time of writing this article. We solved these 14 problems and found 

a feasible solution to 12 of them within the given time limit, which was 468 seconds for the 

computer used. The problems E5 and L5 cannot be solved to feasibility using our formulation (see 

Chapter 4). The time spent on the conversion scheme is about two percent (10 seconds) of the total 

running time. Table 12 summarizes the results. 

 

 
Table 12. Results for the early (E) and late (L) competition problems. The cost of the best solution is the 

weighted sum of the soft constraint violations given by the validator provided by the organizers. The number 

of violations is given for each soft constraint. The last column gives the best solutions found in the 

competition (McCollum 2007). 

 
 

diff(c) level(c) 
Best 

found 

Minimum 

working 

days 

Curriculum 

compactness 

1 + 2 

Room 

capacities 

Room 

stability 
Best 

known 

E1 0.720 1 12 0 0 12 0 5 

E2 3.179 4 173 1 66 0 36 50 

E3 3.002 4 158 2 63 0 22 71 

E4 2.185 2 93 1 32 0 24 35 

E5 6.841 5 H = 7     309 

E6 3.669 4 206 5 75 0 31 48 

E7 3.437 4 179 0 64 0 51 20 
         

L1 2.527 3 122 1 42 0 33 40 

L2 2.721 3 179 5 61 0 32 105 

L3 3.834 5 164 2 66 0 22 16 

L4 0.564 1 0 0 0 0 0 0 

L5 9.136 5 H = 5     333 

L6 2.403 3 163 3 60 0 28 66 

L7 3.264 4 142 1 53 0 31 57 

 

6   Conclusions and Future Work 
In this article we considered a conversion scheme for turning a curriculum-based timetabling 

problem to a school timetabling problem. Our algorithm found a feasible solution for 12 of the 14 

problems used in the 2nd International Timetabling Competition within the given time limit. We 

believe that our approach gives directions on how to solve problems lying between school 

timetabling and curriculum-based timetabling problems. 

 

Our direction for future research would be to strengthen the presented conversion methods and 

heuristics, and to solve the different combinations of problems presented in (De Cesco et al. 2008). 

Another direction for future work would be to tackle Round-Robin Scheduling (Rasmussen and 

Trick 2006). 
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