
 

 

 

  

Abstract—Recent course scheduling competitions have seen 

solution approaches which construct an initial solution quickly, 

and then employ a local search to improve the solution. With 

the use of different seeds, this process is repeated, searching for 

the best solution.  Solutions with constraint violations provide 

little guidance on which constraints to relax in order to produce 

a better quality solution. Our approach seeks to construct 

several high quality initial solutions and analyze their 

characteristics which enables us to predict the relative success 

of the local search phase. With this capability, sets of initial 

solutions can be generated with selected constraint relaxations, 

leading to a prediction of which constraint relaxation can most 

improve the final solution, leading to a good quality solution. 

I. INTRODUCTION 

 The Metaheuristics Network sponsored an International 

Timetabling Competition in 2003 [9], involving a course 

scheduling problem. This competition was followed by a 

second competition, with different tiers focusing on 

variations of course scheduling. The objective is to assign 

courses to a day / time / room, avoiding “hard” conflicts and 

minimizing “soft” constraints  An evaluation function is used 

to determine the value of the solution based upon the soft 

constraint violations. 

 The majority of approaches to these problems involve a 

two-phase approach. The first phase establishes an initial 

solution, which is usually free of hard constraints (though not 

an absolute requirement). The second, and more intensive 

phase, is a local search, where course assignments are 

swapped or moved to other time periods, reducing the soft 

constraint violations and improving the quality of the 

solution.  Burke and Newall describe such an approach in 

[2]. Kostuch [6] reports the best results with a two phase 

approach. 

 

 The creation of the initial solution is typically highly 

stochastic and hence may or may not serve the local search 

phase well. Both phases are repeatedly performed with 

different seeds, to obtain the best overall solution. The initial 

solution represents little more than a starting point for the 

second phase. 
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 Our approach has two main objectives. The first is to 

develop a method to predict whether an initial solution will 

serve as a good base for the local search phase. The second 

objective is to use this prediction capability to generate sets 

of initial solutions, where each set relaxes a different 

constraint of the problem. These sets of initial solutions, 

differing only by their constraint relaxation, can identify the 

constraints most affecting the solution quality. The 

scheduler, could then re-consider a course’s constraints, or 

accept the existing soft constraint violations.  McCollum [7] 

speaks of a similar goal stating the need for “identification 

and comparison of key dataset characteristics and potential 

linkages with the likely best search approach to be taken”.  

II. PROBLEM  DEFINITION AND INITIAL SOLUTION  GENERATION  

In this paper we focus on the course timetabling problem 

of the Second International Timetabling Competition [8], 

held in 2007.  This problem, within Tier 3 of the 

competition, consists of instances with courses (each having 

multiple sections), curricula associated with sets of courses, 

course availability within weekly time-periods, and room 

capacities. Each instance has the following constraints: 

• Two sections cannot be scheduled in the same 

room during the same time period; 

• Teachers cannot teach two sections during the 

same time period; 

• Courses with the same curriculum can be 

scheduled during the same time period; 

• All sections of a course cannot be scheduled 

during an unavailable time period; 

• Sections should not violate room capacities; 

• Sections of a course with the same curriculum 

should be in a time period next to another section 

in the curriculum; 

• The course sections must run over a minimum 

number of days 

• All course sections should share the same room. 

 

The first four constraints are hard constraints, while the 

last four are soft constraints. Violations of the soft 

constraints increase the evaluation function. 

Our approach considers each course as a tile, with each 

section being a block in the tile. A similar approach was used 

by Kingston in [4,5]. In Kingston’s problem a “form” is the 

equivalent of a course, while a “meeting” is equivalent to a 

section. The sections are positioned in a greedy and 
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constructive manner within the scheduling grid, according to 

that course’s constraints. Bar-Noy and Moody showed tiling 

to be an effective approach to establishing a partial solution 

in [1].  Each section is placed in a “slot”, which is a 

combination of a room/time period. Each tile placement 

minimizes the soft constraint violations of the course, given 

the previously scheduled tiles. During the tiling step, the 

room capacity constraint is treated as a hard constraint.  As 

more courses are scheduled, remaining courses become 

increasingly more difficult to place, without violating hard 

constraints.  The courses are ordered for assignment based 

upon their scheduling “difficulty”, a function of the number 

of sections, curricula and unavailable time period 

constraints. Different orderings are generated through the 

introduction of a random factor, which can lower a course 

assignment in the order, delaying the tiling of the course. 

This stochastic factor enables various initial solutions to be 

constructed, though the tiling process is constructive.  

At the tiling step conclusion, remaining unscheduled 

sections, due to the room capacity constraint, are scheduled. 

If unscheduled sections still exist, this course assignment 

order is not included in the set of initial solutions.  

III.   INITIAL SOLUTION ANALSYIS AND LOCAL SEARCH 

PHASE   

Each initial solution is analyzed for its support of the local 

search phase. Several local search approaches are available, 

and we utilize a simple swapping method. The swapping 

method involves switching the slots of two sections, or 

moving a section to an unused slot. Our implementation 

calculates the impact on the evaluation function when 

swapping each section with every other section.  The swap 

causing the largest reduction is actually performed, breaking 

ties randomly. The schedule is then reevaluated for positive 

swap candidates. This process repeats until no swaps can be 

made to improve the evaluation function.  This hill-climbing 

method does not make a swap, unless there is an immediate 

benefit to the evaluation function. 

Our objective is to analyze the quality of the initial 

solutions and predict whether they will lead to a high quality 

final solution. This approach embeds a common constraint 

processing technique of “look-ahead strategies” described by 

Dechter [3]. In this strategy, the remaining domains of 

unassigned variables are used for ordering purposes. We 

extend this concept to evaluate the overall value of the 

solution in terms of reaching a high quality final solution.  

Our analysis of an initial solution looks at several 

characteristics of the solution:  

• Solution Value:  the evaluation function value of the 

initial solution before the local search phase 

• Total Swap Count: The total number of possible 

swaps in the solution which have a positive effect on 

the evaluation function.  

• Swapability Value: This section prorates the 

reduction in the evaluation function over all possible 

moves. For example, if a section can be moved to 

two time periods, each swap’s value is multiplied by 

0.5 and added to this value. 

• Movement Value: This section counts the total 

number of slots a section can be assigned to, given 

the section currently in that slot is removed from the 

time period. A section’s movement to another slot is 

often restricted by other sections within the slot’s 

time-period having the same curricula or having the 

same instructor. If section A in time-period 1 is 

swapped with section B in time-period 2, we need to 

be sure section A does not violate a hard constraint 

with any other course (other than A) in time-period 

2. We need not worry about hard constraint 

relationships between A and B, since they will be in 

different time-periods after the swap. This value 

indicates how tightly constrained the schedule is with 

respect to hard constraints. 

 

We seek to create a prediction factor based upon a 

function of the initial solution characteristics discussed 

above. The following tables in figures 1 and 2 show the 

initial solution analysis for three instances from the 

competition. Each instance has had 20 initial solutions 

generated, differing only by the assignment order of the 

courses in the tiling step. For each initial neighborhood, the 

four characteristics above are presented, along with the final 

solution value after the local search phase. 

 
Seed Initial 

Solution 

Value 

Move- 

ment 

Value 

Swap- 

ability 

Factor 

Total 

Swap 

Count 

Final 

Solution 

Value 

1 193 14596 1451 1542 16 
2 225 14240 2173 1434 64 
3 286 14591 1415 1868 74 
4 276 14474 1665 1584 78 
5 230 14224 1523 1590 22 
6 315 14439 2119 1494 88 
7 224 14089 2414 2014 25 
8 230 14132 1582 1892 56 
9 263 14371 2036 1558 28 

10 331 14283 2557 1886 28 
11 286 14258 2668 2228 52 
12 253 14251 2148 1976 59 
13 225 14259 1437 1842 24 
14 270 14295 1951 1912 28 
15 271 14305 2551 1650 45 
16 221 14438 1861 1736 47 
17 260 14316 3586 2144 32 
18 227 14049 1390 1862 54 
19 186 14576 1476 1288 23 
20 304 14287 2320 1558 25 

Fig. 1. Results From Instance 1 

 
Seed Initial 

Solution 

Value 

Move- 

ment 

Value 

Swap- 

ability 

Factor 

Total 

Swap 

Count 

Final 

Solution 

Value 

1 514 112138 2289 23996 179 
2 567 112705 3342 25782 173 
3 596 113062 3443 26312 182 
4 573 111655 2676 24900 189 



 

 

 

5 528 112097 2709 23354 188 
6 563 112405 1900 25818 185 
7 562 112398 2422 25256 181 
8 616 112111 3824 26426 197 
9 572 112091 3589 25098 185 

10 562 113192 2979 25778 195 
11 601 112817 2623 27270 200 
12 558 112666 2951 26218 184 
13 564 112066 3366 25936 204 
14 615 112523 3037 26264 199 
15 566 112059 3512 25566 216 
16 556 113078 2723 26060 205 
17 520 111665 2365 24954 181 
18 574 112342 3038 25164 186 
19 564 112296 2449 25182 207 
20 562 113190 2979 25578 165 

Fig. 2. Results From  Instance 8 

IV.   RESULTS   

Our results, shown in Figures 1 and 2, show a high 

correlation between the Initial Solution Value and the Final 

value. In the three instances shown, as well as for the other 

instances not reported here, we note that the best final 

solution value came from one of the top five initial solutions. 

 Other factors can be used to separate the set of high 

quality initial solutions. Consider seed 1 and 19 in instance 

1, shown in Figure 1. Seed 19 had a better initial value, but 

less number of total swaps available. Comparing seed 19 to 

seed 20, the final solution results were nearly identical 

although there is a 70% difference in the initial solution 

value. In this instance, the swapability factor was 50% higher 

in seed 20, indicating potential in performing swaps to 

improve the evaluation function.  The best final solution of 

instance 8 came from the use of seed 20. However that 

seed’s initial value of 562 was 48 higher than seed number 1. 

This greater degree of improvement in the local search phase 

could possibly can be attributed to the higher movement and 

swap factors within seed 20 versus seed 1.  

 Our results demonstrate, for certain seeds, that we have an 

ability to predict, within a range of a probability distribution, 

the relative quality of the final solution.  We intend to 

continue to analyze these results, so we can pick the initial 

solution for the local search phase, from a given set of initial 

solutions. Our work will produce a prediction factor, based 

upon these and perhaps other initial solution characteristics.  

Using the prediction factor, we will first show how our 

prediction factor can forecast the solution quality of our 

swapping technique. We will then investigate if our 

forecasting can predict the success of other local search 

methods. 

V.   FUTURE   WORK   

The prediction factor will enable our work to concentrate 

on generating sets of initial solutions, with each set differing 

only in a constraint relaxation. For example, the 

unavailability of a course can be relaxed, the minimum 

number of sections can be reduced, or the curricula modified 

for a course.  These modifications could be done by a 

manual scheduler, to try to improve the schedule. Our 

approach will enable a scheduler to make these constraint 

relaxations, and quickly view the effect on the schedule’s 

quality.  

The Traveling Tournament Problem, introduced by Trick 

[10], provides another problem to evaluate our approach’s 

ability to predict the success of the search phase. In this 

problem, a subset of all tiles are placed in the schedule, 

without violating hard constraints. Remaining tiles are 

broken into blocks, which are scheduled in a greedy fashion. 

The success of this second (greedy) phase may be predicted 

by analyzing factors similar to those discussed for the course 

scheduling problem. 

We will use our predictability factor to continue to 

forecast the success of the local search phase. We will also 

validate our approach by submitting initial solutions to other 

local search phases. This step will verify that our 

predictability factor can also provide an indication of the 

solution quality for other local search approaches.  

VI.   CONCLUSIONS   

Scheduling professionals in the field need high quality 

schedules and guidance on schedule constraint relaxation to 

achieve a useable schedule. Our approach uses a tiling 

method to quickly construct quality initial solutions, and 

assigning to each initial solution a factor predicting the 

quality of the final solution. 
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