
 1

A Hybrid Genetic Algorithm for Curriculum
Based Course Timetabling

Soolmaz Massoodian1, Afsaneh Esteki2

February 2008

Abstract. In this paper we describe a genetic algorithm-based
approach with two main stages for solving the course timetabling
problem. A local search is applied to the algorithm at each stage.
The first stage eliminates the violations of hard constraints, and the
second one attempts to minimize the violations of soft constraints
while keeping the number of hard constraint violations zero.

Keywords. Genetic Algorithm, Local Search, Timetable, Course
Timetabling, Optimization

1. Introduction
The course timetabling problem involves assigning lectures to the time
periods and lecture rooms. A number of soft and hard constraints are to be
satisfied. A timetable is feasible if and only if all the hard constraints are
satisfied. The goal of our algorithms is to find a timetable with no violations
of hard constraints and minimum possible violations of soft ones in a given
time.
The course timetabling problem can be different from one university to
another. In this paper, our focus is on the curriculum based course
timetabling problem described in the track 3 of the second international
timetabling competition (ITC2007).
We present a system for automated construction of timetables. Our algorithm
is based on Genetic Algorithm, with a local search which is applied to the
algorithm in some generations and in different domains.
In the problem presented in ITC2007, it was assumed that for all the input
datasets, it is possible to find at least one feasible timetable. [1] So our focus in
the first stage is on the hard constraints only.

1
 soolmaz_massoodian@yahoo.com

BSc, Computer Engineering,software. The University of Isfahan. Isfahan, Iran
2
 esteki_afsaneh@yahoo.com

BSc, Computer Engineering,software. The University of Isfahan. Isfahan, Iran

 2

2. Description of the Problem
Below is the description of the problem according to the website of the second
international timetabling competition [1].
The problem consists of the following entities:
Days, Timeslots, and Periods. We are given a number of teaching days in the
week (typically 5 or 6). Each day is split in a fixed number of timeslots, which
is equal for all days. A period is a pair composed by a day and a timeslot. The
total number of scheduling periods is the product of the days times the day
timeslots.
Courses and Teachers. Each course consists of a fixed number of lectures to
be scheduled in distinct periods; it is attended by given number of students,
and is taught by a teacher. For each course there is a minimum number of
days that the lectures of the course should be spread in, moreover there are
some periods in which the course cannot be scheduled.
Rooms. Each room has a capacity, expressed in terms of number of available
seats. All rooms are equally suitable for all courses (if large enough).
Curricula. A curriculum is a group of courses such that any pair of courses in
the group have students in common. Based on curricula, we have the conflicts
between courses and other soft constraints.

The timetables are feasible if and only if the following hard constraints are
satisfied:
Lectures: A missing or extra lecture of a course.
Conflicts: Two conflicting lectures3 in the same period. Three conflicting
lectures count as 3 violations: one for each pair.
Room Occupancy: Two lectures in the same room at the same period. Any
extra lecture in the same period and room counts as one more violation.
Availabilities: Each lecture in a period unavailable for that course.

The following soft constraints should be satisfied if possible:
Room Capacity: For each lecture, the number of students that attend the
course must be less or equal than the number of seats of all the rooms that
host its lectures. Each student above the capacity counts as 1 point of penalty.
Minimum Working Days: The lectures of each course must be spread into a
minimum number of days. Each day below the minimum, counts as 5 points
of penalty.
Curriculum Compactness: Lectures belonging to a curriculum should be
adjacent to each other (i.e., in consecutive periods). For a given curriculum we
account for a violation every time there is one lecture not adjacent to any
other lecture within the same day. Each isolated lecture in a curriculum
counts as 2 points of penalty.
Room Stability: All lectures of a course should be given in the same room.
Each distinct room used for the lectures of a course, but the first, counts as 1
point of penalty.

3 Lectures belonging to the courses of the same curriculum or taught by the same teacher

 3

3. The algorithm
3.1 pseudo code
A pseudo code of the algorithm is presented here:

//Reads all the date from file
ReadData();

//Assigns integer values to the lectures
EncodeData();

//Sorts the courses to place lectures of more constrained courses in the
timetable first
sortCourses(CourseList);

//Creates a semi-random population of timetables
Initialize();

for(All timetables)
 //Calculates the fitnessHard value
 fitnessHARD(timetable);

generations=1;
do {

//SELECTION POOL

//Selects the better half of the population for the first half of the new
population
SelectBetterHalf();

//Selects the other half of the new population using tournament-3
SelectOtherHalf();

//CROSSOVER

//Crossover is not performed on the better half of population
for(i=population_size/2;i<population_size;i++)
{
 Choose a random number a;
 if(a<=crossover rate)
 //parent1 will be replaced by the offspring of parent1 and parent2

Crossover(parent1,parent2,parent1);
 If (a feasible timetable has not found yet)
 // Calculate only the violations of hard constraints for timetables;
 fitnessHARD(i);
 else

 4

 // Calculate the actual fitness of the timetables;
 fitness(i);
}

If(Maximum and average fitness of the population are very close)
 //To avoid convergence
 Increase mutation rate;

//sorts the chromosome pool to prevent performing mutation on a good
timetable created by crossover
sortpool(pool);

//MUTATION

//Mutation is not performed on good chromosomes
for(i=population_size/4;i<population_size;i++)
{
 Choose a random number a;
 if(a<=mutation_rate)
 mutation(i);

If (a feasible timetable has not found yet)
 fitnessHARD(i);
 else
 fitness(i);

}

If(Max fitness of this generation>Max fitness of the previous generation)

If(A feasible timetable has not found yet)
 Local search is applied to best chromosome;

else
 Local search is applied to the columns of the best chromosome;

} while(!((time is over) OR (a timetable for which all soft and hard constraints
are satisfied is found)))

 5

3.2 How it works

The timetables represent the chromosomes. The terms chromosome and
timetable are used in this paper interchangeably. The columns in the
timetables represent the periods (day and timeslot) and the rows represent
the rooms, therefore each location of a timetable defines a room and a period.
Every integer number assigned to a course lecture will be placed in an empty
timetable's location (See Fig.1). The circled numbers 23, 24, 25 and 26 in Fig.1
belong to the lectures of the same course. Using this method, we never have a
missing or extra lecture or more than one lecture in the same location. So the
only hard constraints to consider will be conflicts and availability.
The algorithm sees the timetables as 1D arrays of integers (See Fig.2). The
input data is first encoded using the permutation encoding. Then a
population of chromosomes in the initialization step is generated to form the
first generation. In each generation the operations mutation and crossover are
applied to a subset of population which does not contain the best
chromosomes. The population size is fixed; meaning in each generation, for
every good chromosome added to the population, a bad chromosome is
discarded.
Since we want to find the best possible timetable in a limited time, we focus
on the hard constraints first. Our algorithm has two main stages. In the first
stage, we only consider the hard constraints and try to find a timetable in
which all the hard constraints are satisfied. This means the fitness function we
use at this stage, calculates only the violations of hard constraints, therefore
the fitness value it assigns to each timetable is not the actual fitness of it, but it
works for comparing the timetables. We refer to this fitness as fitnessHard.
To save the time, the local search is applied only to the best chromosome of
the population. We apply the local search every time an improvement is made
in the maximum fitnessHard of the population. In the end of the first stage we
have at least one feasible timetable.
The algorithm goes to the second stage if and only if a feasible timetable is
found. In this stage the main fitness function is used and the actual fitness for
each timetable is calculated. Every time an improvement is made in the
maximum fitness of the population, a local search is applied to the columns of
best chromosome of the population. In this local search, for calculating the
fitness of the timetable to which the local search is being applied, after every
exchange of values within the same column, a different fitness function is
used. This fitness function calculates only the violations of soft constraints.
Since the only possible violations of hard constraints in our algorithm are
conflicts and availability constraints, a feasible timetable can never become
infeasible by exchanging values in any pairs of its locations which are within
the same column. So we don’t need to calculate the hard constraints
violations.

 6

Fig.1.A timetable

Fig.2.Chromosomes as 1D arrays of integer

 7

3.3 Encoding

To encode the data, we use permutation encoding [2]. In this method the
chromosomes are a sequence of integer values, from 1 to the number of genes,
with no missing or repeated number. A location having a value greater than
the total number of lectures is considered an empty location.
We assign to each course as many integer numbers as the number of its
lectures, starting from 1. So the biggest integer number assigned is equal to
the total number of lectures. After assigning values to the courses, the course
list is sorted.

3.4 Initialization

The algorithm in the initialization step creates a semi-random population of
chromosomes. The algorithm does not place a course lecture in a timeslot
which is not available for that course, and we try to keep this constraint
satisfied in the next generations as much as possible.
Since the course list is sorted, the integer numbers belonging to the courses
which are more constrained will be placed in the timetable first. Integer
numbers which start immediately after the last number assigned to a lecture
will be assigned to empty locations of the timetable. So in each timetable we
have all the numbers from 1 to the total number of timetable locations, with
no missing or repeated number.

3.5 Evaluation
A fitness value is assigned to each timetable based on its number of violations
of hard and soft constraints. In each generation the chromosomes are
evaluated and then the chromosome pool is sorted. We use a fitness function
to calculate the fitness of each timetable [3]. Our fitness function considers a
much bigger penalty for a violation of a hard constraint than one of a soft
constraint. We don't want to lose a feasible timetable for an unfeasible one
with a smaller number of soft constraints under any circumstances.

() ()
1000

0.999 0.001 1i i i i

Fitness
H hard S soft

=
× × + × × +∑ ∑

Here iH and ihard are the penalty value imposed to the violation of the hard

constraint ith and the total number of its violations respectively. iS and

isoft are the penalty value imposed to the violation of the soft constraint ith

and the total number of its violations respectively.

 8

3.6 Selection
In each generation we want the better chromosomes to replace the very bad
ones. So the algorithm doesn’t perform the crossover and mutation operations
on the best chromosomes. In the selection step, the better half of the
population is directly sent to the next generation. The other half is selected
using a Tournament-K method [2]. In this method, K chromosomes are
chosen from the population, and the one with a greater fitness value will be
copied into the next generation. This is repeated until the desired number of
chromosomes is copied into the next generation.

3.7 Crossover

Partially Mapped Crossover (PMX) [4] is employed in this algorithm. In PMX,
the two parents are broken in 2 points. The part between the two points from
the first parent is copied directly into the child, and the rest is copied into the
child from the second parent in a way it does not cause any missing or extra
integer number. Using this method we never have a timetable with a missing
or repeated lecture. Since the population size is fixed, the child will be
replaced the first parent. Crossover will not be applied to the best
chromosomes.

3.8 Mutation
The mutation function randomly exchanges the values in every pair in a
random number of location pairs of a timetable. The mutation function checks
availabilities before every exchange of values, not to cause any violation of
availability constraint. The mutation rate is not fixed. In each generation the
maximum and average fitness values are calculated. If the two numbers are
close enough to each other, the mutation rate is increased to avoid any chance
of an early convergence.

4. Results and conclusions
In this paper a course timetabling problem was presented and a solution
based on genetic algorithm and local search was proposed. By increasing the
mutation and crossover rates, and sending the better half of the population
directly to the selection pool, plus the semi-random nature of our
initialization step, we avoided an early convergence, and some improvements
were observed. Figure.3 shows a comparison between a basic genetic
algorithm and the algorithm after the changes above.
In the basic genetic algorithm, there is a risk of losing a good chromosome by
applying mutation or crossover operation to it, thus the curve for this type of
genetic algorithm is not necessarily ascending, while in our improved genetic
algorithm the curve is ascending.

 9

0
100
200
300
400
500
600
700
800
900

1000
1100

1 101 201 301 401 501 601 701 801 901 1001 1101 1201

Generations

M
ax

im
u

m
 F

it
n

es
sH

ar
d

After changes Normal GA

Fig.3 Basic GA and the improved GA

Then a local search was added to the algorithm as we described earlier, and
Great improvements were observed. In Figure.4 the time it took for the first
algorithm (the algorithm with no local search) to find a feasible timetable was
786 seconds, while by using the local search and running the program with
the same random seed, it was decreased to 99 seconds. The fitness values on
the vertical axis in figures 3 and 4 are the fitness values calculated in the first
stage, thus they are not the actual fitness values, and are based only on the
number of violations of hard constraints.

0

200

400

600

800

1000

1200

1 101 201 301 401 501 601 701 801 901

Generations

M
ax

im
u

m
 F

it
n

es
s

H
ar

d

with local search without local search

Fig.4 The effect of the local search on the first stage

 10

Figure.5 shows result for the same run of the algorithm as Figure.4, after a
feasible timetable is found. The fitness values on the vertical axis in figure 5
are the actual fitness values which are calculated in the second stage.
It is obvious in this figure that the local search speeds up the algorithm in
improving the maximum fitness of the population.

0

100

200

300

400

500

600

700

800

900

1000

1 21 41 61 81 101 121 141 161 181 201 221

Generations

M
ax

im
u

m
 F

it
n

es
s

with local search without local search

Fig.5 The effect of the local search on the second stage

 11

References:

[1] http://www.cs.qub.ac.uk/itc2007

[2] Whitely, D.: A Genetic Algorithm Tutorial, Computer Science department,
 Colorado State University, 2003.

[3] Erben, W.;Keppler, J. : A Genetic Algorithm Solving a Weekly Course-
 timetabling Problem. Department of Computer Science, Fachhochschule
 Konstanz, D-78462 Konstanz, 1995.

[4] Goldberg,D.E. :Genetic Algorithms, In Search, Optimization and
 Machine Learning,1998,Addison-Welsy Publishing Co.

[5] Rossi-Doria, O.; Paechter, B., A Memetic Algorithm for University
 Timetabling. School of Computing, Napier University.

[6] W.Carter, M.: A Comprehensive Course Timetabling and Student
 Scheduling System at the University of Waterloo. Mechanical and
 Industrial Engineering, University of Toronto.

[7] Abramson, D.; Abela, J.: A Parallel Genetic Algorithm for Solving the
 School Timetabling Problem. High Performance Computation Project
 Division of Information Technilogy. Appeared in 15 Australian Computer
 Science Conference, Hobart, Feb 1992, pp1-1.

[8] Burke, E.; Elliman, D., Weare, R.: A Genetic Algorithm for University
 Timetabling. Department of Computer Science, University of Nottingham,
 NG7 2RD.

[9] Arntzen, H.; Lokketangen, A.: A Local Search Heuristic for a University
 Timetabling Problem.

[10] Abdullah, S.; K.Burk, E., McCollum, B.: A Hybrid Approach to the
 University Course Timetabling Problem.

[11] B. Cooper, T.; H. Kingston, J.: The Complexity of Timetable Construction
 Problems. Technical Report Number 495, February 1995, Basser
 Department of Computer Science University of Sydney NSW 2006

