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Abstract. In this paper we describe a genetic algorithm-based 
approach with two main stages for solving the course timetabling 
problem. A local search is applied to the algorithm at each stage. 
The first stage eliminates the violations of hard constraints, and the 
second one attempts to minimize the violations of soft constraints 
while keeping the number of hard constraint violations zero. 
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1. Introduction 
The course timetabling problem involves assigning lectures to the time 
periods and lecture rooms. A number of soft and hard constraints are to be 
satisfied. A timetable is feasible if and only if all the hard constraints are 
satisfied. The goal of our algorithms is to find a timetable with no violations 
of hard constraints and minimum possible violations of soft ones in a given 
time. 
The course timetabling problem can be different from one university to 
another. In this paper, our focus is on the curriculum based course 
timetabling problem described in the track 3 of the second international 
timetabling competition (ITC2007). 
We present a system for automated construction of timetables. Our algorithm 
is based on Genetic Algorithm, with a local search which is applied to the 
algorithm in some generations and in different domains.  
In the problem presented in ITC2007, it was assumed that for all the input 
datasets, it is possible to find at least one feasible timetable. [1] So our focus in 
the first stage is on the hard constraints only. 
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2. Description of the Problem 
Below is the description of the problem according to the website of the second 
international timetabling competition [1]. 
The problem consists of the following entities: 
Days, Timeslots, and Periods. We are given a number of teaching days in the 
week (typically 5 or 6). Each day is split in a fixed number of timeslots, which 
is equal for all days. A period is a pair composed by a day and a timeslot. The 
total number of scheduling periods is the product of the days times the day 
timeslots.  
Courses and Teachers. Each course consists of a fixed number of lectures to 
be scheduled in distinct periods; it is attended by given number of students, 
and is taught by a teacher. For each course there is a minimum number of 
days that the lectures of the course should be spread in, moreover there are 
some periods in which the course cannot be scheduled. 
Rooms. Each room has a capacity, expressed in terms of number of available 
seats. All rooms are equally suitable for all courses (if large enough). 
Curricula. A curriculum is a group of courses such that any pair of courses in 
the group have students in common. Based on curricula, we have the conflicts 
between courses and other soft constraints.  
 

The timetables are feasible if and only if the following hard constraints are 
satisfied: 
Lectures: A missing or extra lecture of a course. 
Conflicts: Two conflicting lectures3 in the same period. Three conflicting 
lectures count as 3 violations: one for each pair. 
Room Occupancy: Two lectures in the same room at the same period. Any 
extra lecture in the same period and room counts as one more violation. 
Availabilities: Each lecture in a period unavailable for that course. 
 
The following soft constraints should be satisfied if possible: 
Room Capacity: For each lecture, the number of students that attend the 
course must be less or equal than the number of seats of all the rooms that 
host its lectures. Each student above the capacity counts as 1 point of penalty. 
Minimum Working Days: The lectures of each course must be spread into a 
minimum number of days. Each day below the minimum, counts as 5 points 
of penalty. 
Curriculum Compactness: Lectures belonging to a curriculum should be 
adjacent to each other (i.e., in consecutive periods). For a given curriculum we 
account for a violation every time there is one lecture not adjacent to any 
other lecture within the same day. Each isolated lecture in a curriculum 
counts as 2 points of penalty. 
Room Stability: All lectures of a course should be given in the same room. 
Each distinct room used for the lectures of a course, but the first, counts as 1 
point of penalty. 

                                                
3 Lectures belonging to the courses of the same curriculum or taught by the same teacher 
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3. The algorithm 
3.1 pseudo code 
A pseudo code of the algorithm is presented here:   
 
//Reads all the date from file 
ReadData(); 
  
//Assigns integer values to the lectures 
EncodeData(); 
 
//Sorts the courses to place lectures of more constrained courses in the 
timetable first 
sortCourses(CourseList); 
 
//Creates a semi-random population of timetables 
Initialize(); 
 
for(All timetables) 
 //Calculates the fitnessHard value 
 fitnessHARD(timetable); 
 
generations=1; 
do { 
 

//SELECTION POOL 
 
//Selects the better half of the population for the first half of the new 
population 
SelectBetterHalf(); 
 
//Selects the other half of the new population using tournament-3 
SelectOtherHalf(); 
 
//CROSSOVER 

 
//Crossover is not performed on the better half of population 
for(i=population_size/2;i<population_size;i++) 
{ 
 Choose a random number a; 
 if(a<=crossover rate) 
 //parent1 will be replaced by the offspring of parent1 and parent2 

Crossover(parent1,parent2,parent1); 
 If (a feasible timetable has not found yet) 
 // Calculate only the violations of hard constraints for timetables; 
  fitnessHARD(i); 
 else 
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 // Calculate the actual fitness of the timetables; 
  fitness(i); 
}  
 
If(Maximum and average fitness of the population are very close) 
 //To avoid convergence  
 Increase mutation rate; 
 
//sorts the chromosome pool to prevent performing mutation on a good 
timetable created by crossover 
sortpool(pool); 
 

//MUTATION 
  
//Mutation is not performed on good chromosomes 
for(i=population_size/4;i<population_size;i++) 
{ 
 Choose a random number a; 
 if(a<=mutation_rate) 
  mutation(i); 
 

If (a feasible timetable has not found yet) 
  fitnessHARD(i); 
 else 
  fitness(i); 
 
} 
 
If(Max fitness of this generation>Max fitness of the previous generation) 

If(A feasible timetable has not found yet) 
  Local search is applied to best chromosome; 

else 
  Local search is applied to the columns of the best chromosome; 
  
} while(!( (time is over) OR (a timetable for which all soft and hard constraints 
are satisfied is found))) 
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3.2 How it works 

The timetables represent the chromosomes. The terms chromosome and 
timetable are used in this paper interchangeably. The columns in the 
timetables represent the periods (day and timeslot) and the rows represent 
the rooms, therefore each location of a timetable defines a room and a period. 
Every integer number assigned to a course lecture will be placed in an empty 
timetable's location (See Fig.1). The circled numbers 23, 24, 25 and 26 in Fig.1 
belong to the lectures of the same course. Using this method, we never have a 
missing or extra lecture or more than one lecture in the same location. So the 
only hard constraints to consider will be conflicts and availability. 
The algorithm sees the timetables as 1D arrays of integers (See Fig.2). The 
input data is first encoded using the permutation encoding. Then a 
population of chromosomes in the initialization step is generated to form the 
first generation. In each generation the operations mutation and crossover are 
applied to a subset of population which does not contain the best 
chromosomes. The population size is fixed; meaning in each generation, for 
every good chromosome added to the population, a bad chromosome is 
discarded. 
Since we want to find the best possible timetable in a limited time, we focus 
on the hard constraints first. Our algorithm has two main stages. In the first 
stage, we only consider the hard constraints and try to find a timetable in 
which all the hard constraints are satisfied. This means the fitness function we 
use at this stage, calculates only the violations of hard constraints, therefore 
the fitness value it assigns to each timetable is not the actual fitness of it, but it 
works for comparing the timetables. We refer to this fitness as fitnessHard.  
To save the time, the local search is applied only to the best chromosome of 
the population. We apply the local search every time an improvement is made 
in the maximum fitnessHard of the population. In the end of the first stage we 
have at least one feasible timetable. 
The algorithm goes to the second stage if and only if a feasible timetable is 
found. In this stage the main fitness function is used and the actual fitness for 
each timetable is calculated. Every time an improvement is made in the 
maximum fitness of the population, a local search is applied to the columns of 
best chromosome of the population. In this local search, for calculating the 
fitness of the timetable to which the local search is being applied, after every 
exchange of values within the same column, a different fitness function is 
used. This fitness function calculates only the violations of soft constraints. 
Since the only possible violations of hard constraints in our algorithm are 
conflicts and availability constraints, a feasible timetable can never become 
infeasible by exchanging values in any pairs of its locations which are within 
the same column. So we don’t need to calculate the hard constraints 
violations. 
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Fig.1.A timetable 

 
 
 
 
 
 

 
Fig.2.Chromosomes as 1D arrays of integer 
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3.3 Encoding  

To encode the data, we use permutation encoding [2]. In this method the 
chromosomes are a sequence of integer values, from 1 to the number of genes, 
with no missing or repeated number. A location having a value greater than 
the total number of lectures is considered an empty location. 
We assign to each course as many integer numbers as the number of its 
lectures, starting from 1. So the biggest integer number assigned is equal to 
the total number of lectures. After assigning values to the courses, the course 
list is sorted. 
 
3.4 Initialization 

The algorithm in the initialization step creates a semi-random population of 
chromosomes. The algorithm does not place a course lecture in a timeslot 
which is not available for that course, and we try to keep this constraint 
satisfied in the next generations as much as possible.  
Since the course list is sorted, the integer numbers belonging to the courses 
which are more constrained will be placed in the timetable first. Integer 
numbers which start immediately after the last number assigned to a lecture 
will be assigned to empty locations of the timetable. So in each timetable we 
have all the numbers from 1 to the total number of timetable locations, with 
no missing or repeated number. 
 
3.5 Evaluation 
A fitness value is assigned to each timetable based on its number of violations 
of hard and soft constraints. In each generation the chromosomes are 
evaluated and then the chromosome pool is sorted. We use a fitness function 
to calculate the fitness of each timetable [3]. Our fitness function considers a 
much bigger penalty for a violation of a hard constraint than one of a soft 
constraint.  We don't want to lose a feasible timetable for an unfeasible one 
with a smaller number of soft constraints under any circumstances.  
 

( ) ( )
1000

0.999 0.001 1i i i i

Fitness
H hard S soft

=
× × + × × +∑ ∑

 

 

Here iH  and ihard  are the penalty value imposed to the violation of the hard 

constraint ith and the total number of its violations respectively. iS  and 

isoft are the penalty value imposed to the violation of the soft constraint ith 

and the total number of its violations respectively.  
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3.6 Selection 
In each generation we want the better chromosomes to replace the very bad 
ones. So the algorithm doesn’t perform the crossover and mutation operations 
on the best chromosomes. In the selection step, the better half of the 
population is directly sent to the next generation. The other half is selected 
using a Tournament-K method [2]. In this method, K chromosomes are 
chosen from the population, and the one with a greater fitness value will be 
copied into the next generation. This is repeated until the desired number of 
chromosomes is copied into the next generation. 
 
3.7 Crossover 

Partially Mapped Crossover (PMX) [4] is employed in this algorithm. In PMX, 
the two parents are broken in 2 points. The part between the two points from 
the first parent is copied directly into the child, and the rest is copied into the 
child from the second parent in a way it does not cause any missing or extra 
integer number. Using this method we never have a timetable with a missing 
or repeated lecture. Since the population size is fixed, the child will be 
replaced the first parent. Crossover will not be applied to the best 
chromosomes. 
 
3.8 Mutation 
The mutation function randomly exchanges the values in every pair in a 
random number of location pairs of a timetable. The mutation function checks 
availabilities before every exchange of values, not to cause any violation of 
availability constraint. The mutation rate is not fixed. In each generation the 
maximum and average fitness values are calculated. If the two numbers are 
close enough to each other, the mutation rate is increased to avoid any chance 
of an early convergence. 
 
 
 

4. Results and conclusions 
In this paper a course timetabling problem was presented and a solution 
based on genetic algorithm and local search was proposed. By increasing the 
mutation and crossover rates, and sending the better half of the population 
directly to the selection pool, plus the semi-random nature of our 
initialization step, we avoided an early convergence, and some improvements 
were observed. Figure.3 shows a comparison between a basic genetic 
algorithm and the algorithm after the changes above. 
In the basic genetic algorithm, there is a risk of losing a good chromosome by 
applying mutation or crossover operation to it, thus the curve for this type of 
genetic algorithm is not necessarily ascending, while in our improved genetic 
algorithm the curve is ascending. 
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Fig.3 Basic GA and the improved GA 

 
 
Then a local search was added to the algorithm as we described earlier, and 
Great improvements were observed. In Figure.4 the time it took for the first 
algorithm (the algorithm with no local search) to find a feasible timetable was 
786 seconds, while by using the local search and running the program with 
the same random seed, it was decreased to 99 seconds. The fitness values on 
the vertical axis in figures 3 and 4 are the fitness values calculated in the first 
stage, thus they are not the actual fitness values, and are based only on the 
number of violations of hard constraints. 
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Fig.4 The effect of the local search on the first stage 
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Figure.5 shows result for the same run of the algorithm as Figure.4, after a 
feasible timetable is found. The fitness values on the vertical axis in figure 5 
are the actual fitness values which are calculated in the second stage. 
It is obvious in this figure that the local search speeds up the algorithm in 
improving the maximum fitness of the population. 
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Fig.5 The effect of the local search on the second stage 
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