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Abstract. In the problem of community nurse timetabling where the
visits have accompanying time windows, knowing the order of the vis-
its is not enough, the actual times of the visits need to be known. This
is normally solved using a simple greedy approach, but the solutions
reached this way can exhibit serious flaws . We show how the determina-
tion of these times can be modelled as a convex optimization problem,
and demonstrate how this can be solved using Particle Swarm Optimiza-
tion. Initial results show that this approach is far superior to the greedy
approach.

1 Introduction

A very important aspect of mental health services is the provision of nurses to
clients living in the community. This is a very complex procedure which needs
to be done well so as to give the best possible care without exceeding financial
budgets.

When timetabling these nurses, there are several constraints (some hard,
some soft) and preferences to consider. These include (not in any particular
order):

— Required durations of visits.

— Travel times between clients.

— Time windows (either constraints or preferences).

— Nurses must have the necessary skills to deal with the clients’ needs.

— Clients may need two nurses working together.

— Clients’ preferences - the provision of the "right” nurse can be a very strong
preference, though usually not a hard constraint.

— Employee preferences, important to ensure good staff retention rates.

— Costs of travel and overtime.

This is not an exhaustive list.

The problem is a cross between employee timetabling and vehicle routing.
Very few researchers have considered this combination. One of the first major
attempts to solve the problem was done by Eveborn et al.[1] However their model
conflicts with some of our objectives.



2 Model

Since no soft constraint or preference is overwhelmingly more important than any
other, they are considered all together in an optimization problem with several
weighted sub-objectives, giving an overall cost function to be minimised. Final
determination of weights will depend upon consultation with the customers and
the results of experimentation, to ensure that effective practical timetables are
achieved.

The finished software not only needs to provide timetables from scratch but
must also be usable to repair situations when sudden unexpected changes occur,
such as staff sickness. Possibilities are needed within a matter of minutes and
may involve the relaxation of some hard constraints - which the timetabler will
have to choose. For these reasons a VRP based local search is used.

The model has an outer loop and an inner loop. The outer loop being the
local search procedure, which defines solutions as an ordered list of visits for
each nurse. Considerable work is ongoing to ensure that this procedure is highly
effective and efficient. The order of visits is insufficient to specify the exact
timetable, or critically, its cost. For this the precise times of each visit must be
determined, this is done in the inner loop. This paper discusses the inner loop
algorithm, and the advantages it provides to the outer loop.

3 Determining Visit Times

A common method for determining visit times for problems with time windows
is a greedy approach. For example, events are considered in topological order of
their dependencies and each event is timetabled to start at the earliest possible
time, or at the start of the time window, whichever is later.

However, this will frequently give a severely suboptimal(by many objectives)
solution. For example, the time window for a visit early in a nurse’s schedule may
be later than that for several visits later in the schedule. The greedy approach
will place the former visit within its time window, with the result that the later
visits will be timetabled considerably after their windows. It would be better for
the former event to be timetabled well before its time window in order to allow
for the later visits to be timed more appropriately. The model used in the inner
loop therefore needs to be more complex than a simple greedy approach.

3.1 Flat Linear Approach

Consider an ordered set of visits {V;} with durations {D;}, with time windows
starting at {A4;} and ending at {B; + D, }; thus ideally the start time S; of event
V; will lie between A; and B;. Denoting the distances of the start from the sides
of the window as «, and (3, our aim is to minimise the function:

Zwi(oﬂ—ﬂ) where o = |4; — S;| and 8 = |B; — S|



subject to the visits being carried out in the required order and with sufficient
time to travel between visits. The set of weights {w;} can be altered to reflect
the relative importance of visits being within their allotted time windows.

This objective function was chosen because when A4; < S; < B; (Fig 1) the
function achieves its minimum with a value of B; — A;. As S; moves a distance
0 out of this range (Fig 2) then the function increases linearly with §. This
objective can be minimised by Linear Programming, however, slight changes to
it make LP unusable.
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Fig. 2. If S; is not in window

3.2 Other Objectives

The outer loop(local search) has control over the domain of the subproblem. The
local search decides the order in which the visits should occur which directly
corresponds to the constraints and hence the domain of the subproblem.

Bot the local search and the subproblem have information that could be
useful to the other. The subproblem knows of gaps in the schedule where it
would be good to insert new events and also of places where it would be very
bad. The local search knows how long working days should be, to whom events
should be assigned, etc... It therefore seems a good idea that there should be a
high level of communication between the local search and the subproblem.

One way this can happen is by the solution of different objectives, objectives
that the local search can dynamically construct. This is more than just setting



weights, it is the construction of specific objectives whose solution helps the local
search make a decision.
Possible uses of dynamically constructed objectives include:

— Determining if the order of events should be changed.
— Finding gaps of specified size to insert new events.
— Penalising with nonlinear functions eg logarithmic or exponential.

Many of the objectives that could be constructed could be solved by an
exact traditional technique, and due to the small instance size of the problem,
could also be done quite quickly. However, such techniques require knowledge
about the objective, and may even need to be tailored around the objective’s
structure. This isn’t possible as the objectives are being constructed at run time.
We therefore need a system which will work well with little/no knowledge of the
function it is optimising.

4 Particle Swarm Optimization

The system is built around Particle Swarm Optimisation (PSO), a technique
developed by Kennedy & Eberhart[2] for continuous optimisation problems. In
PSO, a Discrete time simulation of a particle system is run. Particles move
around solution space with velocities determined by the positions of the best so-
lution found by that particle and the globally best solution found, incorporating
a random element. A great advantage of this is that no knowledge of the objec-
tive function or constraints is required. Therefore it is very useful for this work.
It is a heuristic method that does not guarantee a precise optimum, but this is
not important to us as long as the solutions are quite close to the optimum.

There appears to have been no previous reported use of PSO for genuinely
continuous problems arising in timetabling; however the continuous approxima-
tion of a very similar problem has been solved using PSO by Akjiratikarl and
Yenradeea[3].

The results from the inner loop are cached and the PSO only runs on altered
data. Here its time complexity is O(Npd), where N is the number of iterations,
p the number of particles and d the number of visits in the calculation. The
time constant can be made very small with expert programming, especially on
computers supporting vector mathematics and threading.

Initial experiments show that with the flat linear objective, PSO solutions
are significantly better than greedy solutions Fig 3 and on average are within
1% of the optimal solution. Further experimentation will determine the most
effective values of N and p, to achieve the best trade-off between time taken
and solution quality. Effective methods for setting initial particle positions and
momentums are also being investigated.

The presentation will describe the PSO implementation and experimental
results.
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Fig. 3. Greedy Percentage Above PSO (Flat Linear Objective)
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