
A Branch-and-cut Procedure
for the Udine Course Timetabling Problem

Edmund K. Burke1, Jakub Mareček123,
Andrew J. Parkes1, Hana Rudová2

1 Automated Scheduling, Optimisation and Planning Group
School of Computer Science, The University of Nottingham
Nottingham NG8 1BB, UK
e-mail: { ekb, jxm, ajp }@cs.nott.ac.uk

2 Faculty of Informatics, Masaryk University
Botanická 68a, Brno 602 00, The Czech Republic

3 Contact Author

Received: March 7, 2008 / Revised version: June 30, 2008

Abstract This paper describes a branch-and-cut procedure for an extension of
the bounded colouring problem, generally known as curriculum-based univer-
sity course timetabling. In particular, we focus on Udine Course Timetabling [di
Gaspero and Schaerf, J. Math. Model. Algorithms 5:1], which has been used in
Track 3 of the 2007 International Timetabling Competition. First, we present an al-
ternative integer programming formulation for this problem, which uses a lower
than usual number of variables and a mildly-increased number of constraints
(exponential in the number of periods per day). Second, we present the cor-
responding branch-and-cut procedure, where constraints from enumeration of
event/free-period patterns, necessary to reach optimality, are added only when
they are violated. We also describe further problem-specific cuts from bounds
implied by the soft constraints, cuts from patterns given by days of instruction
and free days, and all related separation routines. We also discuss applicability of
standard cuts from graph colouring and weighted matching. The results of our
preliminary experimentation with an implementation using ILOG Concert and
CPLEX 10 are provided. Within 15 minutes, it is possible to find provably opti-
mal solutions to two instances (comp01 and comp11) and good lower bounds for
several other instances.

Keywords integer programming, branch-and-cut, cutting planes, soft constraints,
educational timetabling, university course timetabling

2 Edmund K. Burke et al.

1 Introduction

There has recently been a considerable interest in curriculum-based university
course timetabling. This is largely due to the inclusion of a benchmark problem
in the field, Udine Course Timetabling [Gaspero and Schaerf, 2006], in Track 3 of
the 2007 International Timetabling Competition1.

The Udine Course Timetabling problem consists of an extension of pre-colouring
with a bounded number of uses of each colour2 (often difficult in its own right)
with an additional four complex soft constraints. The goal is to find a feasi-
ble bounded colouring, minimising the number of violations of the soft con-
straints. The soft constraints place emphasis on suitability of rooms with respect
to their capacities, suitability of the spread of the events of a course within the
weekly timetable, minimisation of the number of distinct rooms each course uses,
and most importantly, desirability of various patterns in distinct individual daily
timetables. This seems to represent a reasonable trade-off between extensibility to
real-world applications, given by the inclusion of some complex soft constraints,
and the ease of implementation of research prototypes of solvers, given by the
omission of a large number of other constraints. Modelling of these four soft con-
straints entails a considerable increase in the dimensions of the model, making
even modest real-life instances difficult to solve using a stand-alone integer pro-
gramming solver [Burke et al., 2008a, 2007], or standard branch-and-cut proce-
dures [Avella and Vasil’ev, 2005].

In this paper, we present a new branch-and-cut procedure, where a mildly
exponential number of cuts have to be considered to guarantee optimality, but
the separation can be carried out in what are in practice acceptable times. The
problem and the instances we focus on are introduced in more detail in Section
2. An outline of the integer programming we use formulation is given in Section
3. In Section 4, we present both original problem-specific cuts, and applications
of well known cuts from graph colouring Coll et al. [2002], Zabala and Méndez-
Dı́az [2006], Méndez-Dı́az and Zabala [2008] and weighted bipartite matching.
Details of an implementation are provided in Section 5 and its empirical analysis
is provided in Section 6.

2 Problem Description

In general, timetabling problems share the search for feasible bounded colour-
ings of conflict graphs, where vertices represent events. There is an edge between
two vertices of the conflict graph, if the corresponding events cannot take place
at the same time, for instance because some students want to attend both the
corresponding events or because those are taught by the same person. An assign-
ment of colours represents assignment of periods, and the bound on the number
of uses of a colour represents the limited number of rooms available. (See Welsh

1 http://www.cs.qub.ac.uk/itc2007/
2 See Burke et al. [2004] for more details about graph colouring and its applications to

timetabling.

http://www.cs.qub.ac.uk/itc2007/

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 3

[1967] or Burke et al. [2004] for more.) This graph colouring component is often
accompanied by a number of soft constraints, and the objective is to minimise
the total number of their violations. In university course timetabling [Bardadym,
1996, Carter and Laporte, 1997, Burke et al., 1997, Schaerf, 1999, Burke and Petro-
vic, 2002, Petrovic and Burke, 2004, McCollum, 2007], these soft constraints often
stipulate that:

– events should be timetabled for rooms of appropriate sizes
– at least (or at most) a certain number of days of instructions should be timetabled

for each group of students and each teacher
– daily timetables of students or teachers should not exhibit particular patterns.

For instance, a single event per day or long gaps in a daily timetable, or on the
other hand, six events per day with no gap around lunch time may be deemed
undesirable.

The particulars vary widely from university to university. In this paper, we study
the Udine Course Timetabling problem, which is maintained by Gaspero and
Schaerf [2003] at Università degli studi di Udine. There are two important assump-
tions:

– events are partitioned into disjoint subsets, called courses; events of any one
course have to take place at different times, are attended by the same number
of students, and are freely interchangeable

– a small number of distinct, possibly overlapping, sets of courses, represent-
ing enrolments prescribed to various groups of students, are identified and
referred to as curricula.

Due to the second assumption, this problem is often referred to as “curriculum-
based timetabling”, as opposed to “student enrolment based timetabling”, which
tries to minimise the number of conflicts among a possibly large number of en-
rolments. The complete input can be captured by seven constant sets and eight
mappings:

– C, U, T, R, D, P are sets of courses, curricula, teachers, rooms, days, and peri-
ods, respectively

– Ũ
u

is the non-empty set of courses in curriculum u
– N is a subset of C×P, giving forbidden course-period combinations
– Ec is the number of events course c has in a week
– Sc is the number of students enrolled in course c
– Mc is the prescribed minimum number of distinct week-days of instruction

for course c
– T̃

t
is the subset of courses C taught by teacher t

– Ar is the capacity of room r

– D̃
d

is the subtuple (ordered subset) of P corresponding to periods in day d
– W is a vector of non-negative weights (WRCap,WTSpr,WTCom,WRStb) for the

four soft constraints described below.

A formal model of the problem is given in Section 3. Informally, however, the
goal is to produce a mapping from events to period-rooms pairs such that:

4 Edmund K. Burke et al.

1. For each course c, Ec events are timetabled
2. No two events take place in the same room in the same period
3. No two events of a single course, no two events taught by a single teacher, and

no two events included in a single curriculum are taught at the same time
4. No event of course c is taught in a period p, if 〈c, p〉 is in N.
5. A linear combination of penalty terms

WRCap PRCap +PTSpr WTSpr +PTCom WTCom +PRStb WRStb

is minimised, where
– PRCap (for “room capacity”) is the number of students left without a seat

at an event, summed across all events; this is the difference of the number
of students attending an event minus capacity of the allocated room over
all events where the difference is positive

– PTSpr (for “spread of events of a course over distinct week-days”) sums
the difference of the number of prescribed distinct week-days of instruc-
tion minus the actual number of distinct week-days of instruction over all
courses where the difference is positive

– PTCom (for “time compactness”) is the number of isolated events in daily
timetables of individual curricula; for a given curriculum “we account for
a violation every time there is one lecture not adjacent to any other lecture
on the same day” [Gaspero et al., 2007]

– PRStb (for “room stability”) is the number of distinct course-room alloca-
tions on the top of a single course-room allocation of per course.

The original paper of Gaspero and Schaerf [2003] described only four in-
stances of the Udine Course Timetabling Problem of up to 252 events and 57 dis-
tinct enrolments, with (WRCap,WTSpr,WTCom,WRStb) = (1, 5, 2, 0), that is, with-
out any room stability penalty. Fourteen more instances of up to 434 events and
81 distinct enrolments have now been made available in Track 3 of the Interna-
tional Timetabling Competition, with weights (WRCap,WTSpr,WTCom,WRStb) =
(1, 5, 2, 1) [Gaspero et al., 2007, Cesco et al., 2008]. (That is, with the room stabil-
ity now included, hence making the problems significantly more difficult). Their
dimensions are summarised in Table 1.

Although the instances might seem small, they do pose a challenge to mod-
ern exact solvers. Exact solvers for timetabling problems have been under de-
velopment since Lawrie [1969] generated feasible solutions to a school timetabl-
ing problem using branch and bound and Gomory cuts. Tripathy [1984], for in-
stance, solved a large instance of a school timetabling problem using branch
and bound and Lagrangian relaxation. Another milestone is the study of Carter
[1989], who solved instances of a course timetabling problem with several soft
constraints of up to 287 events using Lagrangian relaxation. More recently, mod-
est instances have even been solved using off-the-shelf solvers [Dimopoulou and
Miliotis, 2004, Qualizza and Serafini, 2004, Daskalaki et al., 2004, 2005, Mirhas-
sani, 2006]. For instance, Daskalaki et al. [2004, 2005] solved instances of up to
211 events using ILOG CPLEX, without introducing any user cuts. Al-Yakoob
and Sherali [2007] and Schimmelpfeng and Helber [2007] modelled more com-
plex problems, although they have not introduced any constraints penalising

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 5

interaction between events in timetables (other than straightforward conflicts),
which make the problem considerably more difficult. In the most rigorous study
so far, Avella and Vasil’ev [2005] presented a branch-and-cut solver for the Ben-
evento Course Timetabling Problem, which forbids some interactions of events
in timetables other than conflicts using hard constraints. They have been able to
solve instances of up to 233 events and 14 distinct enrolments, but conceded that
application of their solver to the four then available instances of Udine Course
Timetabling yielded “poor results”. Several integer programming formulations
of Udine Course Timetabling have been described in Burke et al. [2008a, 2007].
On many instances from the International Timetabling Competition 2007, how-
ever, the run-time of the linear programming (LP) for the most compact formula-
tion sufficient to reaching optimality remains prohibitive to producing solutions
competitive with heuristic based on local search within reasonable time limits.

Table 1: Instances of the Udine Course Timetabling problem: numbers of rooms and
periods; the number of courses and the sum of their events in a week; frequency,
or the portion of period-room slots in use, and utilisation, or the portion of period-
seat slots in use [Beyrouthy et al., 2007]; the number of distinct enrolments (“curri-
cula”); numbers of edges and density in conflict graphs (CG) with vertices represent-
ing courses, rather than events [Burke et al., 2007].

Instance AKA R
oo

m
s

Pe
ri

od
s

C
ou

rs
es

Ev
en

ts

Fr
eq

ue
nc

y
(u

se
d

sl
ot

s)

U
ti

lis
at

io
n

(u
se

d
se

at
s)

C
ur

ri
cu

la

Ed
ge

s
in

C
G

(c
ou

rs
e-

ba
se

d)

D
en

si
ty

of
C

G
(c

ou
rs

e-
ba

se
d)

comp01 Fis0506-1 6 30 30 160 88.89 % 45.98 % 14 53 12.18 %

comp02 Ing0203-2 16 25 82 283 70.75 % 46.28 % 70 401 12.07 %

comp03 Ing0304-1 16 25 72 251 62.75 % 38.30 % 68 342 13.38 %

comp04 Ing0405-3 18 25 79 286 63.56 % 33.22 % 57 212 6.88 %

comp05 Let0405-1 9 36 54 152 46.91 % 43.50 % 139 917 64.08 %

comp06 Ing0506-1 18 25 108 361 80.22 % 45.28 % 70 437 7.56 %

comp07 Ing0607-2 20 25 131 434 86.80 % 41.71 % 77 508 5.97 %

comp08 Ing0607-3 18 25 86 324 72.00 % 37.39 % 61 214 5.85 %

comp09 Ing0304-3 18 25 76 279 62.00 % 32.67 % 75 251 8.81 %

comp10 Ing0405-2 18 25 115 370 82.22 % 36.38 % 67 481 7.34 %

comp11 Fis0506-2 5 45 30 162 72.00 % 56.23 % 13 75 17.24 %

comp12 Let0506-2 11 36 88 218 55.05 % 35.06 % 150 1181 30.85 %

comp13 Ing0506-3 19 25 82 308 64.84 % 38.14 % 66 216 6.50 %

comp14 Ing0708-1 17 25 85 275 64.71 % 34.78 % 60 368 10.31 %

6 Edmund K. Burke et al.

Table 2: Linear programming relaxations of a compact formulation of the Udine
Course Timetabling problem, referred to as Monolithic by Burke et al. [2008b], and
of the subset of the proposed formulation with mildly exponential number of con-
straints we use at the root node, with all implied bounds added statically: dimensions
of matrices after all automatic reductions in-built in CPLEX 10 and root relaxation
time using default settings of CPLEX 10 (Dual Simplex) and manually tuned CPLEX
10 Barrier LP solver.

Monolithic formulation Proposed formulation

Instance R
ed

uc
ed

LP
di

m
en

si
on

s

Ba
rr

ie
r

LP
so

lv
er

ru
nt

im
e

at
ro

ot
no

de

R
ed

uc
ed

LP
di

m
en

si
on

s
at

ro
ot

no
de

D
ua

lS
im

pl
ex

so
lv

er
ru

nt
im

e
at

ro
ot

no
de

Ba
rr

ie
r

LP
so

lv
er

ru
nt

im
e

at
ro

ot
no

de

comp01 6484× 5760 18.91 s 6516× 5500 27.70 s 3.58 s

comp02 30034× 27693 87.58 s 30128× 26703 1185.02 s 54.90 s

comp03 26862× 25489 80.91 s 26941× 24563 674.44 s 49.97 s

comp04 33608× 31265 63.83 s 33698× 30525 1191.92 s 41.00 s

comp05 16189× 14859 77.45 s 16259× 12129 149.74 s 84.64 s

comp06 44050× 41120 186.71 s 44168× 40113 1798.53 s 73.17 s

comp07 60611× 57012 510.05 s 60745× 55895 1798.75 s 192.35 s

comp08 35642× 33180 71.06 s 35735× 32397 1175.29 s 43.25 s

comp09 32308× 29979 88.31 s 32391× 29024 1085.17 s 48.23 s

comp10 45870× 43257 246.26 s 45996× 42279 1798.97 s 105.03 s

comp11 8702× 7126 9.31 s 8733× 6672 26.03 s 7.69 s

comp12 27552× 25007 295.08 s 27652× 22117 669.02 s 134.76 s

comp13 35597× 33200 70.13 s 35691× 32353 1176.16 s 37.34 s

comp14 33288× 30872 83.65 s 33384× 30057 987.88 s 55.86 s

(See Table 2.) Optimal solutions of yet larger real-life instances, such as those at
Purdue [Rudová and Murray, 2003, Murray et al., 2007], then seem to be out of
reach for exact methods.

3 The Integer Programming Formulation

In order to model the Udine Course Timetabling problem using integer program-
ming, it is necessary to choose decision variables. It seems tempting to see the
problem as a variation of the three-index assignment [Balas and Qi, 1993, Gwan
and Qi, 1992] with side constraints and to use a binary variable for each event-
room-period combination. This encoding harks back to Vlach [1967] and corre-

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 7

sponds to the trivial formulation of graph colouring, where the number of binary
variables is the product of the number of vertices and an upper bound on the
number of colours. There are, however, many alternative formulations of graph
colouring (see Burke et al. [2007]) and it seems reasonable, instead of just using
the trivial formulation, to use the best available formulation of graph colouring
that would admit formulation of the soft constraints. After exploring a number of
such alternatives, Burke et al. [2007] proposed a formulation based on a suitable
clique-partition, which is given implicitly in many graph colouring applications.
For Udine Course Timetabling, this formulation translates to a smaller number of
binary decision variables, given by the product of the numbers periods, rooms,
and courses, rather than events. This encoding will be used throughout this pa-
per in the “core” set of decision variables x. There are also four dependent sets
of variables v, m, z, and y, whose values are derived from the values of x in the
process of solving:

– x are binary decision variables indexed with periods, rooms and courses.
Their values are constrained so that in any feasible solution, course c should
be taught in room r at period p, if and only if xp,r,c is set to one.

– v are binary decision variables indexed with courses and days. Their values
are constrained so that in any feasible solution, there is at least one event of
course c held on day d, if and only if vd,c is set to one.

– y are binary decision variables indexed with rooms and courses. Their values
are constrained so that in any feasible solution, yr,c is set to one if and only if
room r is used by course c.

– m are integer decision variables indexed with courses, whose values are bounded
below by zero and above by the number of days in a week. Their values are
constrained so that in any feasible solution, mc is the number of days course
c is short of the recommended days of instruction, Mc.

– z are integer decision variables indexed with curricula and days. Their values
are bounded by zero from below and by the maximum penalty undesirable
patterns in a timetable of one curriculum for one day can attract from above.
The constraints statically present in the formulation force zu,d to values larger
or equal to one if at least one pattern-penalising constraint is violated in the
timetable for curriculum u and day d given by the solution. Higher values of
zu,d are enforced only dynamically, using Type 1 cuts described in Section 4.

The objective function can be expressed as:

min WRCap
∑
r∈R

∑
p∈P

∑
c∈C

Sc>Ar

xp,r,c (Sc − Ar) + WTCom
∑
u∈U

∑
d∈D

zu,d

+ WTSpr
∑
c∈C

mc + WRStb
∑
c∈C

((∑
r∈R

yr,c

)
− 1

)

8 Edmund K. Burke et al.

Hard constraints can be formulated as follows:

∀c ∈ C
∑
p∈P

∑
r∈R

xp,r,c = Ec (1)

∀p ∈ P∀r ∈ R
∑
c∈C

xp,r,c ≤ 1 (2)

∀p ∈ P∀c ∈ C
∑
r∈R

xp,r,c ≤ 1 (3)

∀p ∈ P∀t ∈ T
∑
r∈R

∑
c∈T̃

t

xp,r,c ≤ 1 (4)

∀p ∈ P∀u ∈ U
∑
r∈R

∑
c∈Ũ

u

xp,r,c ≤ 1 (5)

∀ 〈c, p〉 ∈ N
∑
r∈R

xp,r,c = 0 (6)

Constraint (1) enforces a given number of events to be taught for each course.
Constraints (2–4) stipulate that only one event within a single course or curri-
culum or taught by a single teacher can be held at any given period. Notice the
similarity of constraints (1–4) and the clique-based formulation of graph colour-
ing. Notice also that constraint (5) renders constraint (2) redundant, if there are
no courses outside of any curricula. Finally, constraint (6) forbids the use of some
periods in timetables of some courses, corresponding to a pre-colouring exten-
sion.

The formulation of soft constraints is less trivial. Indeed, as will be shown in
Section 6 and Table 2, the formulation presented below is quite challenging for
modern general purpose integer programming solvers, even after strengthening
proposed in Section 5. Values of x can be aggregated into v using constraints (7–
8), in effect constructing daily timetables for individual curricula. Subsequently,
the number of distinct week-days of instruction course c is short of the prescribed
value Mc, can be forced into mc using constraint (9):

∀c ∈ C ∀d ∈ D∀p ∈ D̃
d ∑

r∈R

xp,r,c ≤ vd,c (7)

∀c ∈ C ∀d ∈ D
∑
r∈R

∑
p∈D̃

d

xp,r,c ≥ vd,c (8)

∀c ∈ C
∑
d∈D

vd,c ≥ Mc −mc (9)

The “natural” formulation of penalisation of patterns [Burke et al., 2008a] oc-
curring in daily timetables of individual curricula goes through the daily timeta-
bles bit by bit, first checking isolated events in the first and the last period of
the day, and later looking for triples of consecutive periods with only the middle

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 9

period occupied by an event: For an instance with four periods per day, this is:

∀u ∈ U, d ∈ D,∀ 〈p1, p2, p3, p4〉 ∈ D̃
d∑

c∈Ũ
u

∑
r∈R

(xp1,r,c − xp2,r,c) ≤ zu,d (10)

∑
c∈Ũ

u

∑
r∈R

(xp4,r,c − xp3,r,c) ≤ zu,d (11)

∑
c∈Ũ

u

∑
r∈R

(xp2,r,c − xp1,r,c − xp3,r,c) ≤ zu,d (12)

∑
c∈Ũ

u

∑
r∈R

(xp3,r,c − xp2,r,c − xp4,r,c) ≤ zu,d (13)

Finally, values of y are constrained analogously to values of v:

∀p ∈ P∀r ∈ R∀c ∈ C xp,r,c ≤ yr,c (14)

These constraints complete the proposed formulation.

4 Cuts

This proposed formulation of Udine Course Timetabling has to use cuts from
event/free-period patterns to be exact. As usual, we refer to these “necessary”
cuts as “Type 1” cuts. We further describe two more classes of problem-specific
cuts, which are not strictly necessary to reach optimality, but improve the perfor-
mance considerably, when added on violation. We refer to those as “Type 2” cuts.
Finally, we discuss the applicability of standard cuts from the graph colouring
and bipartite weighted matching components to the problem at hand.

4.1 Cuts from Event/Free-Period Patterns (Type 1)

Constraints (10–13) penalising patterns of events and free periods in distinct
daily timetables are obviously not complete. The penalty zu,d incurred to each
curriculum-day pair can in theory be arbitrarily high, although Constraints (10–
13) cannot force it to any value higher than one. This, however, can be done by
enumeration of the daily event/free-period patterns and the penalties they incur
[Burke et al., 2008a]. When n is the number of periods per day, patterns in daily
timetables of individual curricula can also be thought of as A = 〈a1, . . . , an〉,
where ai is equal to one if there is an event in the timetable of the given curricu-
lum in period i of the given day and −1 otherwise. If pattern A is to be penalised
with penalty p and an auxiliary constant m =

∑
a∈A,a=1 a, we can formulate the

constraint as:

∀u ∈ U ∀d ∈ D ∀ 〈p1, p2, . . . , pn〉 ∈ D̃
d

p

−m +
n∑

i=1

ai

∑
c∈Ũ

u

∑
r∈R

wc,pi

 ≤ zu,d (15)

10 Edmund K. Burke et al.

Notice that this constraint is linear. For instance, with three periods per day, pe-
nalisation of the pattern A = 〈a1, a2, a3〉 with penalty p and m =

∑
a∈A,a=1 a it

corresponds to:

∀u ∈ U ∀d ∈ D ∀ 〈p1, p2, p3〉 ∈ D̃
d

p

−m + a1

∑
c∈Ũ

u

∑
r∈R

wc,p1 + a2

∑
c∈Ũ

u

∑
r∈R

wc,p2 + a3

∑
c∈Ũ

u

∑
r∈R

wc,p3

 ≤ zu,d

(16)

Burke et al. [2008a] have shown on a monolithic formulation that although these
constraints tend to be dense, the progress of the integer programming solver can
be sped up on many instances even by adding all of them initially, statically. This
is rather surprising, as the number of such constraints is mildly exponential: Al-
though it is linear in the number of patterns, the number of patterns is exponen-
tial in the number of periods per day. Hence, it is obviously better to add the
constraints dynamically, only when they are violated, which does not happen
very often on instances from the International Timetabling Competition, where
penalty PTSpr is in good solutions low and evenly spread across courses. Mak-
ing the formulation exponentially smaller by adding the cuts from enumeration
of event/free-period patterns only dynamically thus considerably improves the
performance.

4.2 Cuts from Implied Bounds (Type 2)

Another class of problem-specific cuts can be derived from implied bounds. For
instance, constraint (1) stipulates that there have to be at least Ec events of course
c in the weekly timetable. Constraints (7–8) set vd,c to one, if and only if there is
an event of course c in the timetable for day d. Logically, it follows that for each
course c with Ec > 0, at least one of vd,c has to be set to one. However, modern
general integer programming solvers need:

∀c ∈ C
∑
d∈D

vd,c ≥ 1 (17)

∀c ∈ C
∑
r∈D

vd,c ≤ Ec (18)

Similarly, events of each course c take place at least in one room, but in fewer
rooms than Ec:

∀c ∈ C
∑
r∈R

yr,c ≥ 1 (19)

∀c ∈ C
∑
r∈R

yr,c ≤ Ec (20)

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 11

In a similar fashion, we can add also:

∀r ∈ R∀c ∈ C
∑
p∈P

xp,r,c ≥ yr,c (21)

∀c ∈ C mc ≤ Mc − 1 (22)

Finally, we can add:

∀r ∈ R∀c ∈ C
∑
p∈P

xp,r,c ≤ Ecyr,c (23)

Perhaps surprisingly, these simple constraints improve the performance of mod-
ern integer programming solvers by an order of magnitude, even when added
statically. It might, therefore, be interesting to study the automation of their gen-
eration for general integer programming.

4.3 Cuts from Day of Instruction/Day off Patterns (Type 2)

Another large class of cuts from implied bounds are then cuts from day of instruc-
tion/day off patterns. For all courses c where penalty mc is zero, the number of
events taking place on a single day cannot be higher than one plus the number
of events not necessary to maintain the spread of events throughout the week
(Ec −Mc). If we take into the account the possibly non-zero number of violations
of the compounding soft constraint (mc), we obtain:

∀c ∈ C ∀d ∈ D
∑

p∈D̃
d

∑
r∈R

xp,r,c ≤ 1 + Ec − Mc + mc (24)

This constraint then can be naturally extended to cover two days:

∀c ∈ C ∀d1 ∈ D∀d2 ∈ {d ∈ D | d > d1}∑
p∈D̃

d1∪D̃
d2

∑
r∈R

xp,r,c ≤ 2 + Ec − Mc + mc (25)

In general, it is possible to come up with constraints linking an arbitrary num-
ber n of days:

∀c ∈ C ∀d1 ∈ D∀d2 ∈ {d ∈ D | d > d1} . . .∀dn ∈ {d ∈ D | d > dn−1}∑
p∈

nS
i=1

D̃
di

∑
r∈R

xp,r,c ≤ n + Ec − Mc + mc (26)

It seems, however, that constraints linking more than two days are not vio-
lated often enough to merit separation and addition of such dense constraints.

12 Edmund K. Burke et al.

4.4 Cuts from Graph Colouring (Type 2)

Several large classes of cuts can also be obtained from the bounded graph colour-
ing and bipartite weighted matching components implicit in Udine Course Time-
tabling. Although the usual linear programming relaxations are known to be
rather weak [Caprara, 1998], there are a number of known classes of cuts [Coll
et al., 2002, Campêlo et al., 2003]. In timetabling terms, the most potent class of
clique cuts corresponds to:

∀q ∈ Q∀p ∈ P
∑
r∈R

∑
c∈q

xp,r,c ≤ 1, (27)

where Q is a collection of subsets of courses, which correspond to complete sub-
graphs in the course-based conflict graph. The strength of these cuts is known
both in theory and practice: Chvátal [1973] has shown that for perfect graphs, the
relaxation with cuts from cliques is a convex hull of integer points; Méndez-Dı́az
and Zabala [2008] compare clique cuts to other known classes of cuts empirically;
finally, as Table 3 suggests, for timetabling instances with dense enough conflict
graphs, clique cuts improve the performance considerably.

Coll et al. [2002], Campêlo et al. [2003] and Méndez-Dı́az and Zabala [2008]
also provide proofs of validity and full-dimensionality of several further classes
of inequalities for the standard formulation of graph colouring:

– cuts from odd holes
– cuts from odd antiholes
– cuts from paths
– symmetry-breaking block colour inequalities
– neighbourhood inequalities replacing edgewise inequalities
– multicolour inequalities strengthening edgewise inequalities.

Unfortunately, as conceded by Méndez-Dı́az and Zabala [2008], it seems that
when the run time of separation routines is taken into account, no combination of
these cuts is clearly superior to clique cuts alone. Avella and Vasil’ev [2005], how-
ever, give some limited evidence that cuts from odd holes are helpful in branch
and cut routines for timetabling. The performance of the remaining cuts on in-
stances from timetabling is yet to be investigated.

4.5 Cuts from Bipartite Weighted Matching (Type 2)

Similarly, Balas and Saltzman [1991], Gwan and Qi [1992] and Balas and Qi [1993]
have proposed a number of strong valid inequalities for the three-index assign-
ment problem, which seem easy to translate to timetabling. These include:

– cuts from combs
– cuts from bulls.

It should be noted that implementation of cuts from the three-index assignment
problem or weighted bipartite matching has never been described in the context

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 13

of university course timetabling, as far as we know, although the implementation
should not be difficult using a standard weighted bipartite matching codes, such
as Blossom IV by Cook3. (See Ahuja et al. [1993] for an overview.) The perfor-
mance of these cuts is yet to be investigated.

5 The Implementation

The proposed solver has been implemented using ILOG Concert libraries in C++
[ILOG, 2006], with ILOG CPLEX 10 as the integer programming solver. The im-
plementation contains separation routines for cuts from days of instruction / day
off patterns, cuts from event / free period patterns, and cuts from cliques, de-
scribed below, and uses inequalities from implied bounds statically. Separation
routines for cuts from graph colouring other than clique cuts, as well as cuts
from bipartite weighted matching have not been implemented yet and remain
the subject of future work.

Our approach to the separation of cuts from event/free-period patterns can
best be described as “brute force”. For each curriculum and each daily timetable
of the curriculum, we go through all patterns to check for violations. As the num-
ber of patterns is exponential in the number of periods per day, we have not been
able to show a polynomial worst-case upper bound on the runtime of the separa-
tion routine. Due to the low number of periods per day in the instances we have
encountered, however, it seems to perform well. Similarly, the number of day of
instruction/day off patterns is exponential in the number of days in a week. It
seems reasonable, however, to consider the number of days in a week as a con-
stant, and hence a “brute force” check for violations of inequalities from day of
instruction/day off patterns runs in polynomial time.

For clique cuts, we are using two imperfect separation routines. Both are im-
perfect for the two obvious reasons. Firstly, the number of valid inequalities one
can obtain from cliques is given by the product of the upper bound on the num-
ber of colours and the number of cliques in the graph, which is exponential. Sec-
ondly, generating large cliques, which are most useful, is obviously hard for any
heuristic, both in theory [Zuckerman, 2007] and in practice [Méndez-Dı́az and
Zabala, 2008]. In the first routine, we check for violations of a small number of
large cliques, discovered at the root node. (That is within the reported time limit.)
In the second routine, we check for violations of triangles. If we find a triangle
that violates the inequality (27), we try to “grow” it into a large clique. If this
“growing” makes any progress, we use the cut from the resulting larger clique.
Otherwise, we discard the cut. In both the large clique discovery and enumer-
ation of triangles, we benefit greatly from using a course-based conflict graph
[Burke et al., 2007], which is much smaller than the event-based one. Further im-
provements could perhaps be gained by using more sophisticated clique finding
routines [Tomita et al., 2006] at the root node and more efficient heaviest triangle
finding routines [Czumaj and Lingas, 2007] at other nodes.

3 http://www2.isye.gatech.edu/∼wcook/blossom4/

http://www2.isye.gatech.edu/~wcook/blossom4/

14 Edmund K. Burke et al.

Finally, a limited experimentation with the “manual” tuning of parameters
has been attempted on the instances from the International Timetabling Compe-
tition 2007. It seems that the default auto-tuning procedures inbuilt in CPLEX per-
form reasonably well, although they are often unable to choose the right method
of linear programming (LP). Hence, we have implemented an auto-tuning proce-
dure that solves a much smaller instance of linear programming, effectively im-
plementing the bounded graph colouring component, using various LP solvers.
(This formulation is denoted as Surface in the study of Burke et al. [2008b] and
its LP relaxation can be often solved within a single second.) We then use the LP
solver performing best on the much smaller formulation for solving the larger in-
stance. Experiments confirm that this choice corresponds to the best performing
solver on the formulation presented in this paper.

6 Computational Experience

The implementation has been evaluated using the Linux version of CPLEX ver-
sion 10.00 restricted to run on a single processor of a desktop PC equipped with
two Intel Pentium 4 processors clocked at 3.20 GHz and with 2 GB of RAM. All
computations were restricted to a single processor. The timetabling benchmark4

by Gaspero et al. [2007] runs for 780 seconds when no other computationally de-
manding processes are running on the computer. When, for comparison, we pro-
vide lower bounds obtained by Lach and Lübbecke [2008a] and upper bounds
obtained the winning solver of Track 3 in the International Timetabling Competi-
tion (ITC) 2007, developed by Müller [2008], we normalise their run times using
this benchmark.

The performance of the proposed solver varies widely from instance to in-
stance. For relatively easier instances comp01 and comp11 from the ITC 2007,
root relaxations obtained using the proposed formulation take 3.58 s and 7.69 s,
respectively, to solve using ILOG CPLEX 10 Barrier LP Solver. In the remaining
instances, the root relaxation is yet more expensive, taking up to 192 seconds on
comp07. (It should be noted that ILOG CPLEX 10 using the default settings or
auto-tuning chooses CPLEX Dual Simplex LP Solver, which results in dramati-
cally higher LP solver run times.) Lower bounds obtained from the LP relaxation
at the root node do not seem to suffer from the need to add Type 1 cuts to achieve
optimality, and thanks to the static addition of cuts from implied bounds provide
considerably better lower bounds than the monolithic formulation of Burke et al.
[2007]. For instance, for comp05, it is possible to obtain a lower bound of 33 af-
ter 48 hours, by tuning the solver for “best bound” and using cuts from implied
bounds. When we apply also the cuts from patterns, it is possible to obtain the
lower bound of 183 within 30 minutes. For complete results obtained using ILOG
CPLEX 10 Barrier LP Solver, see Table 2.

Together, the good lower bounds and the low run time obtained using the
Barrier LP solver, seem to suggest that the integer programming solver should
be able to make progress fast. Indeed, provably optimal solutions for instances

4 http://www.cs.qub.ac.uk/itc2007/benchmarking/

http://www.cs.qub.ac.uk/itc2007/benchmarking/

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 15

Table 3: Lower bounds obtained using various formulations: The proposed formula-
tion uses cuts from event/free-period patterns and implied bounds (“IB”) in all runs,
with optional addition of cuts from the day of instruction/day off patterns (denoted
“patterns”) or clique-cuts (“cliques”). Further results are forthcoming.

Lower bounds Upper b.

Instance Bu
rk

e
et

al
.[

20
08

b]
:M

on
ol

it
hi

c
(3

0
m

in
.w

/o
cu

ts
)

Pr
op

os
ed

fo
rm

ul
at

io
n

(3
0

m
in

.w
/

IB
)

Bu
rk

e
et

al
.[

20
08

b]
:S

ur
fa

ce
(3

0
m

in
.w

/
IB

)

Pr
op

os
ed

fo
rm

ul
at

io
n

(3
0

m
in

.w
/

IB
an

d
cl

iq
ue

s)

Pr
op

os
ed

fo
rm

ul
at

io
n

(3
0

m
in

.w
/

IB
an

d
pa

tt
er

ns
)

La
ch

an
d

Lü
bb

ec
ke

[2
00

8a
]

(r
oo

tw
/

C
PL

EX
11

)

La
ch

an
d

Lü
bb

ec
ke

[2
00

8a
]

(5
8.

5
m

in
.w

/
C

PL
EX

11
)

M
ül

le
r

[2
00

8]
(1

0
ti

m
es

12
.6

m
in

.)

comp01 -11 4 5 4 5 4 4 5
comp02 -59 0 0 0 6 0 8 51
comp03 -53 0 2 0 43 1 23 84
comp04 -56 0 0 0 2 12 27 37
comp05 -29 17 33 26 183 93 101 330
comp06 -71 6 6 6 6 7 7 48
comp07 -98 0 0 0 0 0 0 20
comp08 -56 0 1 0 2 2 34 41
comp09 -57 0 6 0 0 19 40 109
comp10 -86 0 0 0 0 2 4 16
comp11 -17 0 0 0 0 0 0 0
comp12 -58 7 12 4 5 31 32 333
comp13 -56 0 4 0 0 20 37 66
comp14 -62 0 23 0 0 40 41 59

comp01 and comp11 can be obtained within fifteen minutes of run time. Results
of longer runs are forthcoming and will be made available.

7 Conclusions

We have proposed a branch-and-cut procedure for Udine Course Timetabling,
a university course timetabling problem with multiple soft constraints. It is us-
ing a formulation that reduces the number of variables necessary to formulate
the soft constraints, at the cost of working with a mildly exponential number
of constraints, which can be added on violation. The gains obtained from the

16 Edmund K. Burke et al.

change of formulation in the terms of linear-programming solver run-time are
bounded from above by a factor of 10, when the linear programming solver is
fine-tuned, and by two or three orders of magnitude, when the default linear pro-
gramming solver settings inbuilt in ILOG CPLEX 10 are used. The runtime of the
linear programming solver, however, might still hinder the applicability of this
approach to considerably larger instances [Rudová and Murray, 2003, Murray
et al., 2007]. The proposed formulation also uses some implied bound statically
and hence provides considerably better lower bounds. Several large problem-
specific classes of valid inequalities are then discussed and the corresponding
separation routines are proposed. The applicability of standard cuts from graph
colouring and weighted bipartite matching is also discussed. Together, the cuts
do improve the performance considerably. Overall, the procedure provides the
present best lower bounds for instances of Udine Course Timetabling used in the
2007 International Timetabling Competition, (including optimal solutions for two
of them within fifteen minutes). It promises to deliver optima for some more in
longer runs and seems reasonably easy to apply to a number of other timetabling
problems with soft constraints.

Future work could focus on several issues:

– Establishing the dimension of the underlying polytope and providing proofs
of full-dimensionality of the cuts we employ

– Exploring alternative branching rules, such as pseudocost and strong branch-
ing only within y first, or branching on the value of the four components in the
objective function. So far, we have used only the default branching. It seems
that adding the dense constraints necessary to branch on the value of the com-
ponents of the objective function may be rather challenging

– Exploring the performance of various general primal and improvement heuris-
tics on integer programming instances from timetabling applications. Notice
that on instances from the International Timetabling Competition, the search
often proceeds at the pace of a hundred or fewer nodes per hour, and hence
takes some time to reach the leaves of the search tree at the depth of ten thou-
sand or more, where the linear programming relaxation is integral. Hence all
feasible solutions are obtained by running heuristics and the choice of primal
and improvement heuristics is crucial to improving the performance profile,
as well as to improving the run-time necessary to reach optimality.

– Providing optima for all instances from the International Timetabling Com-
petition, perhaps with the help of a problem-specific local search heuristic
providing a good feasible solution at the root node.

We would be delighted to share code, experience, and data with any researchers
interested in pursuing these directions.

Acknowledgments

The authors are grateful to Andrea Schaerf and Luca Di Gaspero, who kindly
maintain the Udine Course Timetabling Problem, including all data sets. An-
drew Parkes has been supported by the UK Engineering and Physical Sciences

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 17

Research Council under grant GR/T26115/01. Hana Rudová has been supported
by project MSM0021622419 of Ministerstvo školstvı́, mládeže a tělovýchovy and
by the Grant Agency of the Czech Republic under project 201/07/0205.

References

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: The-
ory, algorithms, and applications. Prentice-Hall, 1993.

Salem Mohammed Al-Yakoob and Hanif D. Sherali. A mixed-integer program-
ming approach to a class timetabling problem: A case study with gender poli-
cies and traffic considerations. European J. Oper. Res., page In press., 2007.

Pasquale Avella and Igor Vasil’ev. A computational study of a cutting plane al-
gorithm for university course timetabling. J. Scheduling, 8(6):497–514, 2005.

Egon Balas and Li Qun Qi. Linear-time separation algorithms for the three-index
assignment polytope. Discrete Appl. Math., 43(1):1–12, 1993.

Egon Balas and Matthew J. Saltzman. An algorithm for the three-index assign-
ment problem. Oper. Res., 39(1):150–161, 1991.

Victor A. Bardadym. Computer-aided school and university timetabling: The
new wave. In Edmund K. Burke and Peter Ross, editors, Practice and Theory of
Automated Timetabling, volume LNCS 1153 of Lecture Notes in Computer Science,
pages 22–45, Berlin, 1996. Springer.

Camille B. Beyrouthy, Edmund K. Burke, Dario Landa Silva, Barry McCollum,
Peter McMullan, and Andrew J. Parkes. Towards improving the utilisation of
university teaching space. J. Op. Res. Soc., to appear, 2007. Also appeared as
NOTTCS-TR-2006-5.

Edmund K. Burke and Patrick De Causmaecker, editors. Practice and Theory of
Automated Timetabling, volume LNCS 2740 of Lecture Notes in Computer Science,
Berlin, 2003. Springer.

Edmund K. Burke and Sanja Petrovic. Recent research directions in automated
timetabling. European J. Oper. Res., 140(2):266–280, 2002.

Edmund K. Burke, Kirk Jackson, Jeffrey H. Kingston, and Rupert F. Weare. Au-
tomated university timetabling: The state of the art. Comput. J., 40(9):565–571,
1997.

Edmund K. Burke, Dominique de Werra, and Jeffrey H. Kingston. Applications
to timetabling. In Jonathan L. Gross and Jay Yellen, editors, Handbook of Graph
Theory, pages 445–474. CRC, London, UK, 2004.

Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and Hana Rudová. On
a clique-based integer programming formulation of vertex colouring with
applications in course timetabling. Technical Report NOTTCS-TR-2007-
10, The University of Nottingham, Nottingham, 2007. Also available at
http://arxiv.org/abs/0710.3603.

Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and Hana Rudová. Penalis-
ing patterns in timetables: Novel integer programming formulations. In Stefan
Nickel and Jörg Kalcsics, editors, Operations Research Proceedings 2007, Berlin,
2008a. Springer.

18 Edmund K. Burke et al.

Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and Hana Rudová. Decom-
position, reformulation, and diving in timetabling. Technical Report NOTTCS-
TR-2008-02, The University of Nottingham, Nottingham, 2008b.

Manoel Campêlo, Ricardo C. Corrêa, and Yuri Frota. Cliques, holes and the vertex
coloring polytope. Inform. Process. Lett., 89(4):159–164, 2003.

Alberto Caprara. Properties of some ILP formulations of a class of partitioning
problems. Discrete Appl. Math., 87(1-3):11–23, 1998.

Michael W. Carter. A Lagrangian relaxation approach to the classroom assign-
ment problem. INFORMS J. Comput., 27:230–245, 1989.

Michael W. Carter and Gilbert Laporte. Recent developments in practical course
timetabling. In Edmund K. Burke and Michael W. Carter, editors, Practice and
Theory of Automated Timetabling, volume LNCS 1408 of Lecture Notes in Computer
Science, pages 3–19, Berlin, 1997. Springer.

Fabio De Cesco, Luca Di Gaspero, and Andrea Schaerf. Benchmarking
curriculum-based course timetabling: Formulations, data formats, instances,
validation, and results. In Practice and Theory of Automated Timetabling, to ap-
pear, 2008.

Vašek Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Math., 4:305–337, 1973.

Pablo Coll, Javier Marenco, Isabel Méndez-Dı́az, and Paula Zabala. Facets of the
graph coloring polytope. Ann. Oper. Res., 116:79–90, 2002.

Artur Czumaj and Andrzej Lingas. Finding a heaviest triangle is not harder than
matrix multiplication. In SODA ’07: Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 986–994, Philadelphia, PA, 2007.
SIAM.

Sophia Daskalaki, Theodore Birbas, and Efthymios Housos. An integer program-
ming formulation for a case study in university timetabling. European J. Oper.
Res., 153:117–135, 2004.

Sophia Daskalaki, Theodore Birbas, and Efthymios Housos. Efficient solutions
for a university timetabling problem through integer programming. European
J. Oper. Res., 160:106–120, 2005.

Maria Dimopoulou and Panagiotis Miliotis. An automated university course
timetabling system developed in a distributed environment: A case study. Eu-
ropean J. Oper. Res., 153:136–147, 2004.

Luca Di Gaspero and Andrea Schaerf. Multi neighborhood local search with ap-
plication to the course timetabling problem. In Burke and Causmaecker [2003],
pages 262–275.

Luca Di Gaspero and Andrea Schaerf. Neighborhood portfolio approach for local
search applied to timetabling problems. J. Math. Model. Algorithms, 5(1):65–89,
2006.

Luca Di Gaspero, Barry McCollum, , and Andrea Schaerf. The second inter-
national timetabling competition (ITC-2007): Curriculum-based course time-
tabling (Track 3). Technical Report 2007/08/01, University of Udine DIEGM,
Udine, Italy, 2007.

Geena Gwan and Li Qun Qi. On facets of the three-index assignment polytope.
Australas. J. Combin., 6:67–87, 1992.

A Branch-and-cut Procedure for the Udine Course Timetabling Problem 19

ILOG. ILOG CPLEX Advanced Programming Techniques. ILOG S. A., Incline Vil-
lage, NV, 2006.

Gerald Lach and Marco E. Lübbecke. Curriculum based course timetabling: Op-
timal solutions to the udine benchmark instances. In Practice and Theory of Au-
tomated Timetabling, to appear, 2008a.

Gerald Lach and Marco E. Lübbecke. Optimal university course timetables and
the partial transversal polytope. In Catherine C. McGeoch, editor, Experimental
algorithms, volume LNCS 5038 of Lecture Notes in Computer Science, pages 235–
248, Berlin, 2008b. Springer.

N. L. Lawrie. An integer linear programming model of a school timetabling prob-
lem. Comput. J., 12:307–316, 1969.

Barry McCollum. A perspective on bridging the gap between theory and practice
in university timetabling. In Edmund K. Burke and Hana Rudová, editors,
Practice and Theory of Automated Timetabling, volume LNCS 3867 of Lecture Notes
in Computer Science, pages 3–23, Berlin, 2007. Springer.

Isabel Méndez-Dı́az and Paula Zabala. A cutting plane algorithm for graph col-
oring. Discrete Appl. Math., 156(2), 2008.

S. A. Mirhassani. A computational approach to enhancing course timetabling
with integer programming. Appl. Math. Comput., 175:814–822, 2006.

Tomáš Müller. ITC-2007 solver description: A hybrid approach. In Practice and
Theory of Automated Timetabling, to appear, 2008.

Keith Murray, Tomáś Müller, and Hana Rudová. Modeling and solution of a com-
plex university course timetabling problem. In Edmund K. Burke and Hana
Rudová, editors, Practice and Theory of Automated Timetabling, volume LNCS
3867 of Lecture Notes in Computer Science, pages 193–213, Berlin, 2007. Springer.

Sanja Petrovic and Edmund K. Burke. University timetabling. In Joseph Le-
ung, editor, Handbook of Scheduling: Algorithms, Models, and Performance Analy-
sis, pages 1001–1023. CRC Press, Boca Raton, FL, 2004. ISBN 1584883979.

Andrea Qualizza and Paolo Serafini. A column generation scheme for faculty
timetabling. In Edmund K. Burke and Michael A. Trick, editors, Practice and
Theory of Automated Timetabling, volume LNCS 3616 of Lecture Notes in Computer
Science, pages 161–173, Berlin, 2004. Springer.

Hana Rudová and Keith Murray. University course timetabling with soft con-
straints. In Burke and Causmaecker [2003], pages 310–328.

Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Rev., 13
(2):87–127, 1999.

Katja Schimmelpfeng and Stefan Helber. Application of a real-world university-
course timetabling model solved by integer programming. OR Spectrum, 29:
783–803, 2007.

Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time com-
plexity for generating all maximal cliques and computational experiments.
Theor. Comput. Sci., 363(1):28–42, 2006.

Arabinda Tripathy. School timetabling – A case in large binary integer linear
programming. Management Sci., 30:1473–1489, 1984.

Milan Vlach. Branch and bound method for the three-index assignment problem.
Ekonom.-Mat. Obzor, 3:181–191, 1967.

20 Edmund K. Burke et al.

Dominic J. A. Welsh, and Martin B. Powel. An upper bound for the chromatic
number of a graph and its application to timetabling problems. Computer J., 10
(1):85–86, 1967.

Paula Zabala and Isabel Méndez-Dı́az. A branch-and-cut algorithm for graph
coloring. Discrete Appl. Math., 154(5):826–847, 2006.

David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory Comput., 3(6):103–128, 2007.

	Introduction
	Problem Description
	The Integer Programming Formulation
	Cuts
	The Implementation
	Computational Experience
	Conclusions

