
A Time-Dependent Metaheuristic Algorithm for Post
Enrolment-based Course Timetabling

Rhyd Lewis

June, 2008

Abstract A metaheuristic-based algorithm is presented for the post enrolment-based

course timetabling problem used in track-2 of the Second International Timetabling

Competition (ITC2007). The featured algorithm operates in three distinct stages –

a constructive phase followed by two separate phases of simulated annealing – and

is time dependent, due to the fact that various run-time parameters are calculated

automatically according to the amount of computation time available. Overall, the

method produces results in line with the official finalists to the timetabling competition,

though experiments show that this algorithm also seems to find certain instances more

difficult to solve than others. A number of reasons for this latter feature are discussed.

Keywords ITC2007 · Post enrolment timetabling · Metaheuristics · Neighbourhood

operators

1 Introduction

During late 2007 and early 2008 the Second International Timetabling Competition

(ITC2007) was organised and run by a group of timetabling researchers from five

different European Universities. The overall aim of this competition was to help people

interested in timetabling from various fields to compare and contrast their timetabling

methods using a common set of benchmark instances in a fair and accurate way.

On August the 1st 2007, the competition was officially started by the release of a

number of problem instances into the public domain. Entrants were invited to register

with the competition and to use these instances to help design algorithms that produced

solutions according to the competition evaluation criteria. On January 11th 2008, two

weeks before the end of the competition, a second set of problem instances was then

also released. Competitors were required to submit their results from both instance sets

Rhyd Lewis
Prifysgol Caerdydd/Cardiff University,
Cardiff Business School, Colum Drive, Cardiff,
WALES.
Tel: +44(0)29 2087 5559
Fax: +44(0)29 2087 4419
E-mail: lewisR9@cf.ac.uk

2

to the competition organisers by the 25th of January. The organisers then collected the

executables from selected entrants and ran these on their own benchmark machines,

together with a third “hidden” set of problem instances to officially rank the various

algorithms and choose a winner. Further details can be found on the competition’s

official webpage at http://www.cs.qub.ac.uk/itc2007/

Before holding ITC2007, it was decided that the competition would be split into

three tracks, each reflecting a different type of university timetabling problem, namely:

(1) Exam timetabling, (2) Post Enrolment-based Course timetabling, and (3) Curr-

iculum-based timetabling. Full descriptions of each of these problems can be found in

the various specification reports (McCollum et al., 2007; Lewis et al., 2007; Di Gaspero

et al., 2007), available on the competition webpage.

In this paper, we present an algorithm for the Post Enrolment-based Course time-

tabling problem used in track-2 of the competition. This particular problem model

simulates the real-world situation where students are given a choice of lectures that

they wish to attend, with the timetable then being constructed according to these

choices. The problem model is also based on the timetabling problem used for the first

international timetabling competition run in 2003, albeit with extra features (outlined

in Section 2 below). Research arising due to the first competition includes the ant colony

optimisation approach of Socha and Samples (2003), the simulated annealing-based

algorithm of Kostuch (2005), and the mixed metaheuristic approach of Lewis (2006).

A number of metaheuristic-based approaches for this problem-version are also offered

by Rossi-Doria et al. (2002). Various pieces of useful information concerning the first

competition are also available its official website at www.idsia.ch/files/ttcomp2002/

It should be noted that the algorithm presented in this paper was not officially

entered into ITC2007 due to the fact that the author was one of the competition or-

ganisers. However, in the spirit of fair-play, and in order to avoid any unfair advantages,

the author chose to work within the rules of the competition and did not make use of

any of the problem instances before they were officially released to all other competition

entrants.

In the next section we give a specification of the timetabling problem-version con-

sidered here. Readers interested in discovering more about this problem, including the

rationale of why this problem-version takes the form that it does, are invited to con-

sult the problem’s official specification document (Lewis et al., 2007), available on the

ITC2007 website. Following this, the proposed algorithm is then described in detail in

Section 3. Section 4 then contains details on the implementation and an analysis of the

final results gained by the algorithm. Finally, Section 5 concludes the paper.

2 Problem description

A problem instance for track-2 of ITC2007 contains the following information:

– A set of n events that are to be scheduled into 45 timeslots (to be interpreted as

five days of nine, 1-hour timeslots);

– A set of m rooms where the events are to take place, each which has a specific

seating capacity;

– A set of room-features that are required by events and which are satisfied by rooms;

– A set of s students who attend various combinations of the events;

– A set of available timeslots for each of the n events (i.e. not all events are available

to be scheduled in all of the timeslots);

3

– A set of precedence requirements stating that certain events should occur be-

fore/after others in the timetable.

Given this information, the aim is to assign all of the n events to a room and a

timeslot, whilst obeying the following five hard constraints:1

HC1: No student should be required to attend more than one event in a particular

timeslot;

HC2: Each event should be assigned to a room that has enough seats for all of the

attending students and which satisfies all of the room-features required by the

event;

HC3: Only one event should be put into each room in any timeslot (i.e. no double-

booking of rooms);

HC4: Events should only be assigned to timeslots that are designated as “available”

for those events;

HC5: Where specified, events should be scheduled to occur in the correct order in the

week

In addition to these five hard constraints, it is also desirable for the following three

soft constraints to be satisfied:

SC1: Students should not be scheduled to attend an event in the last timeslot of a day

(that is, timeslots 9, 18, 27, 36, or 45);

SC2: Students should not have to attend events in three or more successive timeslots

occurring in the same day;

SC1: Students should not be required to attend just one event in a particular day

As is typical in timetabling research, for this problem the satisfaction of the hard

constraints is considered to be more important than the satisfaction of the soft con-

straints. Because of this, the competition rules state that a candidate solution should

be evaluated according to two separate values: the Distance to Feasibility and the Soft

Cost. The Distance to Feasibility is used because – in contrast to the first competition –

it is necessary to allow for the fact that an algorithm may not be able to assign all of the

n events into the timetable whilst obeying the hard constraints. For this competition,

it is therefore permissible to allow some events to remain unplaced in order to ensure

that none of the hard constraints are violated. (The ITC2007 rules stipulate that if an

algorithm produces a solution that contains any violations of the hard constraints, then

it is considered invalid and should be disqualified from the competition.) The Distance

to Feasibility is thus calculated by considering the events that are not placed in the

timetable. However, it is not the number of events that are considered here; rather it

is the total number of students that attend each of these unplaced events, reflecting

the real-world situation where we are interested in satisfying as many people’s needs as

possible within a timetable. Thus if, for example, a particular solution timetable has

three events that are unplaced, and the number of students attending each of these is

10, 5, and 8, then the Distance to Feasibility is simply (10 + 8 + 5) = 25. Note that if

all events are inserted into a timetable (whilst obeying the hard constraints), then its

Distance to Feasibility is zero.

The second value used for timetable evaluation is the Soft Cost, which is calculated

by simply counting the number of soft constraint violations in a timetable. For SC1, if

1 Note that hard constraints 1-3 are the same as those used in the first timetabling compe-
tition.

4

a student is scheduled to attend an event in the last timeslot of a day, then this results

in one penalty point. (Naturally, if there are x students in this class, we consider this

as x penalty points.) For SC2 if one student has three events in a row we count this

as one penalty point. If a student has four events in a row we count this as two, and

so on. Note that adjacent events occurring over two separate days are not counted as

a violation. Finally, for SC3 each time a student attends just one event on a day, this

results in one penalty point. The Soft Cost is simply the total of these three values.

(Further information on this cost measure can be found in (Lewis et al., 2007) or on

either of the competition webpages.)

Given these two values, the following procedure is used to compare solutions. First,

the solutions’ Distances to Feasibility are considered, and the solution with the lowest

value is deemed the winner. However, when two or more solutions are equal in this

respect, the winner is deemed the solution among these that has the lowest Soft Cost.

Sixteen problem instances are currently publicly available for track-2 of the compe-

tition: the eight “early” instances, which were released on the start date, and the eight

“late” instances, released two weeks before the close of the competition. These were

created using an automated generator and all are known to have at least one perfect

solution – that is, a solution where all of the n events are assigned to the timetable

without any constraint violations, hard or soft. For the competition, a benchmark tim-

ing program was also released which entrants were required to execute on their own

machines. This program specifies a time limit for each machine and ensures that en-

trants use approximately the same amount of computational effort when testing their

algorithms.

3 Algorithm Description

In this approach the strategy is to tackle the problem in three distinct stages, each with

a strict time limit, T1, T2, and T3 respectively. For our purposes, 1/3 of the available

time limit T is allocated to each stage, though of course other settings could be used

in practice. If a particular stage completes before reaching its time limit, then the

remaining time is passed on to the next stage. If Stage 3 completes early, then the

algorithm also halts early.

Stage 1

Insert as many events as
possible into the timetable

whilst obeying HC1, HC2,
HC3, and HC4

Stage 2

With the inserted events from
Stage 1, attempt to satisfy HC5

whilst not violating HC1, HC2,
HC3, or HC4

Stage 3

Attempt to satisfy the soft
constraints, whilst not

re-violating HC1, HC2, HC3,
HC4, or HC5

Start time
T

0
T

1
= 1/3(T) T

2
= 2/3(T)

Time limit
T

3
= T

Remove any remaining events (if

any) causing a violation of HC5

Fig. 1 High level description of the three stage algorithm. Here, T represents the time limit
defined by the competition benchmarking program

5

For guidance, a description of the main objectives of each stage is given in fig. 1.

As this demonstrates, the idea is to arrange the constraints into three different levels

of importance. At each successive stage, violations of constraints satisfied in previous

stages are then disallowed. In the first stage, attempts are made to try and satisfy

hard constraints 1 to 4 using specialised procedures that were proposed in some of

our earlier work (Lewis, 2006). Although these methods are generally effective, they do

not, however, seem immediately applicable to the remaining hard constraint HC5; thus

the second stage of the algorithm is concerned with the removal of violations of this

constraint. Finally, in Stage 3, the algorithm concentrates on removing as many soft

constraint violations as possible from the current timetable. At this point any unplaced

events are ignored.

In Stages 2 and 3 of this algorithm, optimisation is carried out using simulated an-

nealing (Kirkpatrick et al., 1983). Because this algorithm runs according to time limits,

when applying this metaheuristic it will be useful to calculate cooling schedules that

take the amount of available computation time into account. The aim is to therefore

allow the algorithm to perform a slower cooling (and therefore a wider, more global

search) when presented with a generous amount of run time, and a quicker cooling

(with a more intensive, greedy search) when only small amounts of time are available.

The method for calculating these parameters is described in Section 3.3.

In the next subsection, we will discuss some encoding and preprocessing issues that

are relevant in the design of this algorithm. Subsections 3.2, 3.3, and 3.4 will then

describe Stages 1, 2, and 3 of the algorithm respectively.

3.1 Encoding and Preprocessing Issues

For this approach a timetable is encoded using a two-dimensional (r× 45) matrix (i.e.

grid) in which rows represent rooms and columns represent timeslots. Throughout this

paper we refer to this timetable matrix as tt and will use the notation tt[i, j] to denote

the contents at location (i, j). Each cell in this grid (i.e. place in the timetable) can

be blank or will be occupied by exactly one event. Note that this latter feature means

that it is impossible to double-book a room, allowing us to disregard HC3.

It is also useful to carry out some preprocessing steps before executing the main

body of the algorithm. First, two additional matrices are constructed: the event-room

matrix, and the conflicts matrix (these were also used in the first timetabling compe-

tition by Kostuch (2005)). The event-room matrix is of dimensions n×m and is used

to indicate which rooms are suitable for which events. This can be easily calculated for

an event i by simply identifying which rooms satisfy both the seating capacity and the

features required by i. The n × n conflicts matrix, meanwhile, is very much like the

standard adjacency matrix used for representing graphs and indicates which pairs of

events conflict (i.e. cannot be assigned to the same timeslot). Thus, if two events i and

j have one or more students in common, or if both i and j can only be assigned to the

same single room r, then it is obvious that events can never be feasibly assigned to the

same timeslot, and so elements (i, j) and (j, i) in the conflicts matrix can be marked

as true.

Our final act of preprocessing considers the hard constraint HC4. First of all, note

that if we have a constraint “event i must occur before event j”, then this will auto-

matically imply the constraint “event j must occur after event j”. For this approach,

this means that all occurrences of HC5 can be conveniently stored in a compact way

6

Table 1 Heuristic rules used in Stage 1.

Heuristic Description

h1 Choose the event with the smallest number of suitable
places in tt to which it can be assigned.

h2 Choose the unplaced event that conflicts with the most
other events.

h3 Choose an event randomly.
h4 Choose the place that is suitable for the least number of

other unplaced events in U .
h5 Choose the place in the timeslot with the fewest events in.
h6 Choose a place randomly.
h7 Choose the event with the least number of students.

using an array A of n lists, where each list A[i] contains only the events that need to

be scheduled before event i in the timetable. (The “after” constraints do not need to

be considered). Second, we can also make further additions to A by noting that hard

constraint HC5 is transitive (i.e. if event i must occur before event j, and event j must

occur before event k, then this implies that event i must also occur before event k).

In some of the competition instances, not all of the implied constraints due to this

transitivity are present in the given problem files, and so it makes sense to calculate

these in order to gain a better understanding of the number of constraints that need

to be considered when trying to solve the problem.

3.2 Algorithm Description: Stage 1

In Stage 1, the objective is to insert as many of the n events into the timetable as possi-

ble without violating the first four hard constraints. A precise pseudo-code description

is presented fig. 2. As is shown, this stage takes as arguments the empty timetable tt,

an iteration-limit I, and a list of currently unplaced events U (to begin with, |U | = n).

Events are then taken one-by-one from U and are inserted into suitable places in tt.2

In order to try and maximise the number of events that are inserted at this point,

heuristic rule h1 is used to select the next event, with ties being broken using h2, and

further ties with h3 (refer to Table 1). Note that these heuristics are akin to those

used in the Dsatur algorithm for graph colouring (Brelaz, 1979), though in this case

h1 also takes the issue of room allocation into account. Rule h1 therefore selects events

based on the state of the current partial timetable tt, and prioritises those with the

least remaining feasible options. Meanwhile, rule h2 prioritises those events that have

the highest number of conflicts which, as a rule of thumb, are often the more problem-

atic events to insert. Note that events with no remaining place-options are ignored at

this point. Finally, to select a place for each event, rule h4 is used, which chooses the

place whose occupation will have the least effect on the place-options of the remaining

unplaced events in U . Ties of this rule are broken using h5 and further ties with h6.

At the end of this assignment stage, the list U will be empty (in which case all

of the events have been assigned to the timetable), or U will only contain events that

2 In this section the term “suitable” is used to indicate a place in the timetable that will
not result in the violation of hard constraints 1 to 4.

7

Stage-1(tt, U , I)
(1) while (∃ events in U with suitable places in tt)
(2) Select an event e ∈ U that has suitable places in tt;
(3) Choose a suitable place p for e;
(4) Move e from U into tt at place p;
(5) Iterated-Heuristic-Search(tt, U , I);

Iterated-Heuristic-Search(tt, U , I)
(1) while (U 6= ∅ and (timelimit T1 not reached))
(2) Heuristic-Search(tt, U , I);
(3) if (U 6= ∅)
(4) V ← Extract-Some-Events(tt, |U |);
(5) Heuristic-Search(tt, U , I);
(6) U ← U ∪ V ;

Heuristic-Search(tt, U , I)
(1) Make a list P of all the unoccupied places in tt;
(2) i← 0;
(3) while (U 6= ∅ and P 6= ∅ and i < I)
(4) foreach (u ∈ U and p ∈ P)
(5) if (p is a suitable place in tt to assign u)
(6) Put u into p in tt;
(7) Remove u from U and p from P ;
(8) if (U 6= ∅ and P 6= ∅)
(9) repeat
(10) Choose a random event e in tt and p ∈ P ;
(11) if (p is suitable place in tt to assign e)
(12) Move e from its current place to p;
(13) Update P to reflect the changes;
(14) i← i+ 1;
(15) until (i = I or (e has been moved to p))

Extract-Some-Events(tt, q)
(1) V ← ∅;
(2) for (i← 1 to q)
(3) Randomly choose two events e and g in tt;
(4) Move either e of g (according to h7) from tt to V ;

Fig. 2 Pseudo-code description of Stage 1. Here, tt represents the (r × 45) timetable matrix
and U and V are lists of unplaced events. (When Stage-1 is first called, |U | = n.) I defines
the iteration limit of the Heuristic-Search procedure.

have no suitable places in tt. In the latter case, the procedure Iterated-Heuristic-

Search is called, which is used to try and transfer further events from U into tt,

ensuring that hard constraints 1-4 are not violated in the process. To start, the sub-

procedure Heuristic-Search is called, which operates by repeatedly attempting to

move events from U into free (i.e. blank) places in tt (lines (3)-(7)). While doing this,

however, Heuristic-Search also shuffles the events within tt so that the free places

change position (lines 9-15). The rationale of this latter action is that it offers the

possibility of further events in U being added to tt when we loop back to line (1)

of Heuristic-Search. However, although the Heuristic-Search procedure is quite

effective in reducing the number of unplaced events, in initial experiments it was also

noticed that it is only able to do this for a fairly short period of time, after which

8

the process stagnated, with no further events being transferred from U into tt. To

counter this, Iterated-Heuristic-Search therefore includes a mechanism intended

for re-invigorating the process, which is achieved by the procedure Extract-Some-

Events, which removes other events from tt and puts these into a second list V . Of

course, by removing events from tt, extra free places are created that can be used by

some of the events in U . Thus the events in V are put to one side temporarily, and

Heuristic-Search is again applied using U and the new, emptier timetable. Finally,

upon completion of this second phase of heuristic search, the events in V are added to

the events (if any) that still reside in U and the entire Iterated-Heuristic-Search

process is repeated.

Examining Iterated-Heuristic-Search, two important features become appar-

ent. First, it is noticeable that if we choose to transfer some events from tt into V (line

(4)) and then subsequently add the contents of V to U (line (6)), then unless the heuris-

tic search operation on line (5) has managed to transfer a particular number of events

from U into tt, then the overall number of unplaced events may actually increase, thus

conflicting with the objectives of Stage 1. However, in practice if such a situation arises,

it is usually only temporary because the number of events in U is generally seen to

decrease again when the algorithm loops back to the start of the procedure. The second

issue, meanwhile, concerns the strategy of event extraction used in Extract-Some-

Events. One choice available here is to simply choose events randomly for removal.

However, in this particular case it seems sensible to bias the choice towards removing

smaller events from the timetable, due to the fact that unplaced events containing less

students will attract a lower Distance to Feasibility measure when the timetable is

evaluated. Thus, heuristic rule h7 (Table 1) is used here. Note also that |U | events are

currently extracted here, though a different value could be used here in theory.

Table 2 summarises the effectiveness of Stage 1 on the sixteen problem instances.

Details on the sizes of each instance are also included here: the number of events n,

rooms m and students s. It can be seen that with twelve of the instances, an average of

over 90% of events are inserted into the timetable by the heuristic assignment rules h1

to h6. With the remaining four instances, which each feature averages in the low to mid

80s, it is noticable that n = 400 and m = 10 in each case. This means that if all events

are inserted into these timetables, then a proportion of 400
450 = 0.89 of the available

places will be occupied, which is far higher than the remaining twelve instances, which

each have occupancy rates of ≤ 0.44. Regardless of this however, it can also be seen

that after the subsequent application of Iterated-Heuristic-Search, generally all

of the remaining events are inserted into the timetable, thus fulfilling the objectives of

Stage 1.

3.3 Algorithm Description: Stage 2

In Stage 2 of the algorithm, attention is turned towards eliminating violations of the

remaining hard constraint HC5. As mentioned earlier, this is done using simulated

annealing (SA). The cost function C(tt) used in this phase is:

C(tt) =

n∑

i=1

|A[i]|∑

j=1

f(i, j), (1)

where

9

Table 2 Percentage of events inserted into the timetable before and after applying Iterated-
Heuristic-Search. Presented figures are the means of 51 runs on each instance together with
the standard deviation.

Instance n m s Before (%) After (%)

comp-2007-2-1 400 10 500 86.3± 1.2 100± 0.0
comp-2007-2-2 400 10 500 83.8± 1.2 100± 0.0
comp-2007-2-3 200 20 1000 95.3± 1.2 100± 0.0
comp-2007-2-4 200 20 1000 92.1± 1.3 100± 0.0
comp-2007-2-5 400 20 300 92.8± 1.0 100± 0.0
comp-2007-2-6 400 20 300 92.1± 0.9 100± 0.0
comp-2007-2-7 200 20 500 93.2± 1.1 100± 0.0
comp-2007-2-8 200 20 500 93.3± 1.1 100± 0.0
comp-2007-2-9 400 10 500 85.6± 1.4 100± 0.0
comp-2007-2-10 400 10 500 81.1± 1.4 100± 0.1
comp-2007-2-11 200 10 1000 94.5± 1.3 100± 0.0
comp-2007-2-12 200 10 1000 91.3± 1.2 100± 0.0
comp-2007-2-13 400 20 300 90.0± 1.2 100± 0.0
comp-2007-2-14 400 20 300 90.8± 0.9 100± 0.0
comp-2007-2-15 200 10 500 91.4± 1.3 100± 0.0
comp-2007-2-16 200 10 500 98.0± 0.8 100± 0.0

f(i, j) =

{
1 if (slot(i) ≥ slot(A[i]j))

0 otherwise.
(2)

(Here, A refers to the array of lists described in Section 3.1, A[i]j indicates the jth

element in the list A[i], and slot(i) indicates the timeslot that event i is assigned to in

the timetable tt.) This cost function therefore reflects the number of violations of HC5

and, obviously, the aim in this stage is to try and produce a solution tt with C(tt) = 0.

The neighbourhood operator used in this phase randomly selects two distinct cells

tt[a, b] and tt[c, d] in the timetable and swaps their contents. When choosing the two

cells it is necessary that tt[a, b] 6= tt[c, d], thereby ensuring that two blank cells are

not selected together (obviously, swapping two blank cells will result in an identical

timetable). If the neighbourhood move causes a violation of hard constraints 1-4, then

it is immediately rejected and reset; otherwise it is accepted, and tt is re-evaluated

using C.

Note that an application of this neighbourhood operator results in one of two

actions. The first occurs when two occupied cells are selected, which causes the places

of the two associated events to be swapped in the timetable. The second occurs when

one occupied and one blank cell are selected, causing just one event to be moved to a

different place in the timetable. Note also that the probability of each of these actions

occurring is directly related to the proportion of occupied cells in the timetable –

assuming (without loss of generality) that n events are present in a timetable with

p = 45m places, then the probability of a swap occurring is:

P (swap) =
n

p
× n− 1

p− 1
, (3)

(i.e. the conditional probability of selecting one occupied cell in the grid, followed by

another, different occupied cell). The probability of performing a move, meanwhile, is:

10

P (move) =

(
p− n
p
× 1.0

)
+

(
n

p
× p− n
p− 1

)
, (4)

(i.e the sum of the probability of selecting a blank cell followed by an occupied cell,

and the probability of selecting an occupied cell followed by a blank).

Given the above cost function and neighbourhood operator, a straightforward ap-

plication of SA is now used: starting at an initial “temperature” t0, during execution

the temperature variable is slowly reduced according to a temperature update rule

ti+1 = αti, where α (0 < α < 1) is a variable known as the “cooling rate”. At each

temperature ti, a Markov chain of length n2 is then generated by performing n2 ap-

plications of the neighbourhood operator. Any move that increases the cost of the

timetable is then accepted with a probability exp(−δ/ti), where δ is the cost change

that this move causes. Any move that reduces or leaves the cost unchanged, meanwhile,

is accepted automatically.

Because this algorithm is time dependent, it is a good idea to choose a cooling

rate α that allows Markov chains to be generated at as many temperatures as possible

between the initial temperature t0 and some end temperature. To calculate such a

cooling rate the SA algorithm is first run for 5% of Stage 2’s allocated time, and the

number of Markov chains generated is recorded. This figure is then used to predict

the number µ of Markov chains that will be generated in the remaining 95% of time.

Using µ, we can then calculate a value for α that ensures that the temperature will be

reduced from t0 to a specific end temperature tµ in exactly µ steps as:

α = (tµ/t0)1/µ. (5)

In our case, following other works (van Laarhoven and Aarts, 1987; Abramson

et al., 1996) the initial temperature t0 is determined automatically by performing a

small sample of neighbourhood moves and then calculating the variance of the cost

over these moves. The end temperature tµ, meanwhile, needs to be set by the user (see

Section 4).

Finally, Stage 2 completes either when a timetable tt with a cost C(tt) = 0 is found,

or when the time limit T2 is reached. If the latter occurs, then the best solution found

during this stage is taken, and events that are causing a violation of HC5 are removed

one-by-one until the timetable is seen to be completely free of any hard constraint

violations. This resultant timetable is then passed on to Stage 3.

Table 3 summarises the effects of Stage 2 on the sixteen competition instances.

Note that there is no observable correlation between the initial and final costs of the

timetables. In total, twelve of the instances feature final costs with a mean and standard

deviation close to zero, indicating that the procedure is able to successfully complete

its objectives in the majority, if not all of these runs. Once again, the four that are

causing the most difficulties are instances 1, 2, 9, and 10, which are the same “trou-

blesome” instances that we met in Section 3.2. Perhaps one reason for this is that

candidate solutions to these instances have a higher proportion of their cells occupied

(up to 89% of available places) – thus, according to eq. (3), up to 79% of applications

of the neighbourhood operator result in a swapping action (in contrast with the re-

maining instances, where at most 19.7% of proposed neighbourhood moves are swaps).

Of course, a swapping action is more likely to be rejected than a move, as both events

need to be assigned to places that are suitable. It is possible that this higher rate of

rejection will make movements in the search space more restricted, making exploration

11

Table 3 Cost of the timetable (using cost function C) at the start and end of Stage 2, and
the number of extra events that are removed in order to make it free of all hard constraint
violations. Presented figures are the means of 51 runs on each instance together with the
standard deviation.

Instance Start End Removed

comp-2007-2-1 18.6± 3.5 0.7± 0.9 0.7± 0.9
comp-2007-2-2 17.0± 3.8 2.1± 2.1 2.1± 2.0
comp-2007-2-3 10.8± 2.1 0.0± 0.0 0.0± 0.0
comp-2007-2-4 9.7± 2.0 0.0± 0.0 0.0± 0.0
comp-2007-2-5 69.3± 8.9 0.0± 0.0 0.0± 0.0
comp-2007-2-6 68.2± 5.2 0.0± 0.1 0.0± 0.1
comp-2007-2-7 9.1± 2.5 0.0± 0.0 0.0± 0.0
comp-2007-2-8 8.2± 2.2 0.0± 0.0 0.0± 0.0
comp-2007-2-9 21.3± 3.0 3.5± 1.9 3.4± 1.7
comp-2007-2-10 19.5± 2.8 5.5± 3.0 5.3± 2.9
comp-2007-2-11 8.0± 2.1 0.0± 0.0 0.0± 0.0
comp-2007-2-12 8.5± 2.9 0.0± 0.3 0.0± 0.3
comp-2007-2-13 64.9± 7.3 0.0± 0.2 0.0± 0.2
comp-2007-2-14 69.9± 7.0 0.1± 0.3 0.1± 0.3
comp-2007-2-15 9.2± 2.4 0.0± 0.0 0.0± 0.0
comp-2007-2-16 12.3± 2.4 0.0± 0.0 0.0± 0.0

and resultant improvements in cost harder to achieve. We will return to this topic in

Section 4.

3.4 Algorithm Description: Stage 3

In Stage 3, attention is turned towards satisfying the soft constraints of the problem.

When this part of the algorithm is invoked, one of two situations will have occurred:

either a valid timetable with a Distance to Feasibility of zero will have been produced

or, after having spent 2/3’s of the available run time trying to deal with the hard

constraints, we will have settled for a timetable that has a number of unplaced events.

In the latter case, these unplaced events are not considered any further – i.e. they are

effectively eliminated from the problem.

The application of SA used here is again straightforward, with the cooling scheme

being calculated in the same way as Stage 2. The neighbourhood operator is also the

same as Stage 2, though in this case, moves that cause a violation of hard constraint

HC5 (in addition to the previous four) are also immediately reset. Finally, the cost

function used here is simply the Soft Cost (see Section 2), which is appropriate due

to the fact that no hard constraint violations are permitted in the timetable from this

point onwards.

4 Implementation and Analysis of Final Results

The algorithm was implemented using C++ under Linux using the g++ 4.1.1 compiler

under the -O3 optimisation option. All experiments were run on a 1.8GHtz machine

with 256MB RAM, which was granted a time limit 636 seconds by the competition

benchmarking program. Because many of this algorithm’s parameters are calculated

12

Table 4 Summary of the final results obtained from 51 runs on each problem instance. In
each case the Distance to Feasibility is presented together with the associated Soft Cost (in
brackets).

Instance Best Q1 Median Q3 Worst

comp-2007-2-1 0 (1294) 0 (1600) 17 (1492) 32 (1693) 105 (1944)
comp-2007-2-2 0 (1599) 18 (1718) 46 (1826) 80 (2016) 213 (2176)
comp-2007-2-3 0 (278) 0 (416) 0 (457) 0 (523) 0 (664)
comp-2007-2-4 0 (388) 0 (538) 0 (589) 0 (644) 0 (761)
comp-2007-2-5 0 (22) 0 (123) 0 (193) 0 (268) 0 (638)
comp-2007-2-6 0 (369) 0 (606) 0 (696) 0 (767) 20 (708)
comp-2007-2-7 0 (74) 0 (300) 0 (421) 0 (529) 0 (890)
comp-2007-2-8 0 (0) 0 (162) 0 (206) 0 (256) 0 (366)
comp-2007-2-9 0 (1582) 59 (1829) 80 (2312) 120 (1864) 214 (1609)
comp-2007-2-10 0 (2380) 83 (2339) 126 (2262) 194 (2303) 372 (2159)
comp-2007-2-11 0 (344) 0 (456) 0 (541) 0 (605) 0 (800)
comp-2007-2-12 0 (486) 0 (660) 0 (741) 0 (852) 125 (710)
comp-2007-2-13 0 (365) 0 (538) 0 (631) 0 (707) 19 (766)
comp-2007-2-14 0 (222) 0 (558) 0 (660) 0 (786) 27 (685)
comp-2007-2-15 0 (266) 0 (301) 0 (344) 0 (366) 0 (455)
comp-2007-2-16 0 (99) 0 (165) 0 (194) 0 (215) 0 (265)

automatically, only two values needed to be chosen for these experiments: I, the itera-

tion limit used for Iterated-Heuristic-Search in Stage 1, and the end temperature

tµ for the two annealing phases. In practice, the algorithm did not seem to be partic-

ularly sensitive to variations in I, providing that values of around 100n or more were

used.3 Values of I less than this tended to cause the process to stagnate too readily.

Considering the end temperature tµ, if this was set too high then it tended to mean

that too many increases in cost were permitted throughout the run, making the search

more of a random walk. On the other hand, if tµ was too low, then the algorithm

spent too much time at low temperatures, making it more greedy and increasing its

probability of getting stuck in a local minimum. On the whole, however, the algorithm

did not seem too sensitive to variations in tµ, provided that values of around 0.000005

to 0.0001 were used. For all experiments here, parameter settings of I = 1000n and

tµ = 0.00001 (for both annealing phases), were used. Note that no fine tuning of these

values was conducted.

Table 4 summarises the final results achieved by this algorithm after performing

51 runs (from different random seeds) on each instance. Because timetable quality is

ranked according to a pair of values (see Section 2), results are summarised using the

best, worst, and median, and lower and upper quartiles (we have used fifty-one runs

here so that these statistics can be calculated without the need for interpolation, which

would be inappropriate). We can see that the algorithm has achieved feasibility for all

instances at least once. Feasibility has also been achieved in all runs with eight of the

sixteen instances. For instance-8 a perfect solution has also been found in one run.

Following on from observations made in previous sections, once again instances 1, 2, 9,

and 10 prove to be the hardest problems to solve, with feasibility being found in just

45%, 22%, 2%, and 2% of runs respectively. Note that the algorithm is able to find

feasibility in > 95% of runs with all remaining instances, however.

3 The value n was used to allow the setting to scale with instance size.

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02 0.025

re
du

ct
io

n
in

 s
of

t c
os

t (
pr

op
or

tio
n)

proportion of proposed moves not causing a hard constraint violation

n = 400
n = 200

(#10)

(#2)

(#9) (#1)

(#6)
(#14)

(#5)

(#13)

(#12) (#4)

(#3)

(#11)(#8)

(#7)
(#15)

(#16)

Proportion of proposed moves accepted

R
e

d
u

c
ti
o

n
 i
n

 S
o

ft
 C

o
s
t

Fig. 3 Scatter diagram showing the relationship between the proportion of accepted neigh-
bourhood moves in Stage 3, and the resultant reduction in the Soft Cost (expressed as a
proportion). Each point in the graph is averaged across all runs with a particular instance
where a distance to feasibility of zero was achieved.

Earlier, in Section 3.3 it was suggested that when considering instances in which

a large proportion of neighbourhood moves were being rejected, movements in the

search space would be more restricted, possibly making improvements to the candidate

solution more difficult to achieve. At this point, a relevant question to now ask is

whether the same feature also applies when performing optimisation according to the

Soft Cost. To investigate this, in trials where a distance to feasibility of zero was

achieved, we recorded the proportion of all moves that were accepted during Stage 3,

together with the proportion by which the Soft Cost was ultimately reduced.4

The statistics collected here are displayed in fig. 3 where a weak positive, though

statistically significant, correlation between the two variables can be observed (a cor-

relation of r = 0.504, using a two-tailed test at the 5% level). Curiously, one particular

group of smaller instances – namely instances 7, 8, 15 and 16, which all have n = 200

and s = 500 – seems to go against this trend, with the algorithm experiencing a low

proportion of accepted moves and yet still achieving large reductions in the Soft Cost.

Also, if we only consider the eight instances for which n = 400, then the correlation

rises to a significant r = 0.8, though with the n = 200 instances, there seems to be no

observable correlation (with r = 0.03). From these admittedly limited results, we pro-

pose that there is some causation between the restrictiveness of the search space and

the improvements in cost that are achievable, though there are certainly other factors

that will have an effect here, such as the shape of the cost landscape, the amount of

time that is allocated to this stage, and the amount of computation that is required

for each application of the evaluation function.

4 We remember that for Stage 3 a move is “accepted” if the alteration to the timetable does
not cause a violation of any of the hard constraints.

14

5 Conclusions

In this paper, a three stage metaheuristic-based algorithm has been presented for the

post enrolment-based course timetabling problem used in track-2 of the Second Interna-

tional Timetabling Competition. Crucially this algorithm is time-dependent, meaning

that it is able to alter the intensity of the search conducted in accordance with the

amount of available run time granted.

We performed a comparison between this algorithm and the five official finalists

of the competition by performing ten runs on all available instances, including the

ten “hidden” instances, which are not currently in the public domain. Incorporating

these results into the ranking process used for choosing the competition winner reveals

that our algorithm comes in 6th place with a rank-average of 39.5.5 For reference, the

resultant rank-averages of the five finalists (with these results included) are, in order,

1st place = 14.8; 2nd = 28.0; 3rd = 31.7; 4th = 33.5; and 5th = 35.5. Full results and

further details of these experiments are detailed in Appendix A.

One issue with this algorithm is that for Stages 2 and 3, in order to ensure that

the constraints satisfied in previous stages are not re-violated, the proposed neighbour-

hood operators are restricted so that moves causing such violations are automatically

rejected. In Stage 3, for example, this means that the algorithm only searches in the

space of feasible solutions. However, in this case, by using a restricted neighbourhood

operator, there is no guarantee that all feasible solutions will communicate with one

another. In other words, the feasible-only search space may, in effect, be split into a

number of disjoint subspaces, with areas of non-feasibility – that cannot be traversed

using the current neighbourhood operator – occupying the space in-between. A prac-

tical implication of this is that even if the algorithm is granted infinite computation

time, there will be no guarantee of finding an optimal (i.e. perfect) solution, despite

the fact that these problem instances are all known to feature at least one. A future

avenue of research might therefore be to look at how such non-feasible spaces can be

traversed – or at least circumnavigated – using, for example, other types of neigh-

bourhood operators (such as the Kempe-chain operator, proposed by Thompson and

Dowsland (1998)) or by using some sort of macro-perturbation scheme to help “jump”

across large areas of the search space (used, among others, by Di Gaspero and Schaerf

(2006)).

References

Abramson, D., Krishnamoorthy, H., Dang, H., 1996. Simulated annealing cooling sched-

ules for the school timetabling problem. Asia-Pacific Journal of Operational Research

16, 1–22.

Brelaz, D., 1979. New methods to color the vertices of a graph. Commun. ACM 22 (4),

251–256.

Di Gaspero, L., McCollum, B., Schaerf, A., August 2007. The second international

timetabling competition (itc-2007): Curriculum-based course timetabling (track 3).

Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School of Comput-

ing, Queens University, Belfast.

5 Refer to the ITC2007 website for full listings of the other algorithms’ results and for details
of this ranking process

15

Di Gaspero, L., Schaerf, A., 2006. Neighborhood portfolio approach for local search

applied to timetabling problems. Journal of Mathematical Modeling and Algorithms

5 (1), 65–89.

Kirkpatrick, S., Gelatt, C., Vecchi, M., 1983. Optimization by simulated annealing.

Science 4598, 671–680.

Kostuch, P., 2005. The university course timetabling problem with a 3-phase approach.

In: Burke, E., Trick, M. (Eds.), Practice and Theory of Automated Timetabling

(PATAT) V. Vol. 3616. Springer-Verlag, Berlin, pp. 109–125.

Lewis, R., 2006. Metaheuristics for university course timetabling. Ph.D. thesis, School

of Computing, Napier University, Edinburgh.

Lewis, R., Paechter, B., McCollum, B., August 2007. Post enrolment based course

timetabling: A description of the problem model used for track two of the second

international timetabling competition. Cardiff Working Papers in Accounting and

Finance A2007-3, Cardiff Business School, Cardiff University, ISSN: 1750-6658.

McCollum, B., McMullan, P., Burke, E., Parkes, A., Qu, R., September 2007.

The second international timetabling competition: Examination track. Tech. Rep.

QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, School of Computing, Queens Univer-

sity, Belfast.

Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Knowles, J., Manfrin,

M., Mastrolilli, M., Paquete, L., Paechter, B., Sttzle, T., 2002. A comparison of

the performance of different metaheuristics on the timetabling problem. In: Burke,

E., De Causmaecker, P. (Eds.), Practice and Theory of Automated Timetabling

(PATAT) IV. Vol. 2740. Springer-Verlag, Berlin, pp. 329–351.

Socha, K., Samples, M., 2003. Ant algorithms for the university course timetabling

problem with regard to the state-of-the-art. In: Evolutionary Computation in Com-

binatorial Optimization (EvoCOP 2003). Vol. 2611. Springer-Verlag, Berlin, pp. 334–

345.

Thompson, J., Dowsland, K., 1998. A robust simulated annealing based examination

timetabling system. Computers and Operations Research 25 (7/8), 637–648.

van Laarhoven, P., Aarts, E., 1987. Simulated Annealing: Theory and Applications.

Kluwer Academic Publishers, Reidel, The Netherlands.

A Comparison with Competition Results

Table 5 shows the results achieved by our algorithm within the specified time limit in a random
sample of ten runs on each problem instance (including the eight hidden instances, labelled
comp-2007-2-17 to 24). Note that the algorithm was executed “blindly” on the hidden instances
– that is, all refinements were made to our implementation before performing runs on the
hidden instances. This is consistent with the process used for officially ranking the finalists of
the competition.

16

Table 5 Results used in the comparison with the competition entries. For each instance,
results are ordered from best (1) to worst (10).

Instance (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

comp-2007-2-1 0 (1496) 0 (1525) 0 (1585) 0 (1612) 0 (1705) 25 (1579) 32 (1693) 32 (1770) 58 (1707) 76 (1634)
comp-2007-2-2 0 (1770) 0 (1927) 0 (1995) 18 (1900) 28 (2045) 31 (2163) 53 (1821) 56 (1727) 78 (2139) 114 (1986)
comp-2007-2-3 0 (416) 0 (435) 0 (455) 0 (457) 0 (466) 0 (491) 0 (523) 0 (523) 0 (553) 0 (635)
comp-2007-2-4 0 (455) 0 (541) 0 (543) 0 (575) 0 (588) 0 (612) 0 (623) 0 (639) 0 (691) 0 (761)
comp-2007-2-5 0 (22) 0 (82) 0 (114) 0 (189) 0 (245) 0 (252) 0 (283) 0 (482) 0 (540) 0 (541)
comp-2007-2-6 0 (409) 0 (453) 0 (528) 0 (592) 0 (605) 0 (652) 0 (705) 0 (719) 0 (749) 0 (873)
comp-2007-2-7 0 (108) 0 (303) 0 (304) 0 (381) 0 (384) 0 (445) 0 (450) 0 (498) 0 (605) 0 (657)
comp-2007-2-8 0 (101) 0 (122) 0 (172) 0 (186) 0 (187) 0 (187) 0 (230) 0 (243) 0 (283) 0 (366)
comp-2007-2-9 43 (1810) 56 (1868) 59 (1829) 59 (1938) 102 (1907) 116 (2162) 129 (1813) 138 (1960) 175 (1764) 187 (1782)
comp-2007-2-10 57 (2065) 79 (2445) 80 (2233) 95 (2336) 101 (2150) 125 (2174) 158 (2334) 162 (2404) 172 (2469) 273 (1841)
comp-2007-2-11 0 (344) 0 (411) 0 (419) 0 (428) 0 (433) 0 (501) 0 (522) 0 (582) 0 (606) 0 (657)
comp-2007-2-12 0 (504) 0 (629) 0 (653) 0 (725) 0 (727) 0 (728) 0 (741) 0 (765) 0 (950) 125 (710)
comp-2007-2-13 0 (428) 0 (504) 0 (526) 0 (588) 0 (607) 0 (628) 0 (631) 0 (647) 0 (674) 19 (766)
comp-2007-2-14 0 (394) 0 (470) 0 (558) 0 (609) 0 (619) 0 (633) 0 (667) 0 (762) 0 (795) 0 (796)
comp-2007-2-15 0 (271) 0 (281) 0 (299) 0 (300) 0 (301) 0 (334) 0 (344) 0 (374) 0 (389) 0 (415)
comp-2007-2-16 0 (138) 0 (194) 0 (196) 0 (200) 0 (210) 0 (219) 0 (220) 0 (221) 0 (223) 0 (229)
comp-2007-2-17 0 (0) 0 (1) 0 (10) 0 (22) 0 (39) 0 (47) 0 (51) 0 (54) 0 (77) 0 (101)
comp-2007-2-18 0 (28) 0 (47) 0 (90) 0 (197) 0 (224) 0 (225) 0 (274) 0 (285) 0 (359) 0 (421)
comp-2007-2-19 101 (2039) 133 (2020) 212 (1872) 227 (1902) 231 (2135) 275 (1741) 322 (2055) 356 (1746) 400 (1940) 493 (1860)
comp-2007-2-20 0 (735) 0 (761) 0 (847) 0 (853) 0 (865) 0 (865) 0 (869) 0 (892) 0 (953) 0 (978)
comp-2007-2-21 0 (361) 0 (395) 0 (501) 0 (501) 0 (505) 0 (510) 0 (527) 0 (534) 0 (546) 0 (590)
comp-2007-2-22 719 (1547) 800 (1679) 857 (1613) 1066 (1300) 1066 (1504) 1168 (1318) 1181 (1272) 1234 (1097) 1259 (1549) 1305 (1188)
comp-2007-2-23 207 (4402) 232 (3787) 247 (3756) 305 (4532) 330 (3687) 334 (4474) 375 (4353) 378 (3518) 827 (3683) 943 (3718)
comp-2007-2-24 0 (1003) 0 (1199) 0 (1200) 0 (1297) 25 (969) 64 (1066) 66 (1177) 94 (1349) 96 (1093) 169 (994)

