
Curriculum Based Course Timetabling:

Optimal Solutions to the Udine Benchmark Instances

Gerald Lach∗ Marco E. Lübbecke∗

February 27, 2008
Revised July 2, 2008

Abstract

We present an integer programming approach to the university course timetabling
problem, in which weekly lectures have to be scheduled and assigned to rooms. Students’
curricula impose restrictions as to which courses may not be scheduled in parallel. Besides
some hard constraints (no two courses in the same room at the same time, etc.), there are
several soft constraints in practice which give a convenient structure to timetables; these
should be met as well as possible.

We report on solving benchmark instances from two International Timetabling Com-
petitions which are based on real data from the university of Udine. The first set is solved
to proven optimality; for the second set we give solutions which on average compete well
with or beat the previously best known solutions. Our algorithm is not an overall winner,
but it is very robust in the sense that it deterministically gives satisfactory lower and up-
per bounds in reasonable computation time without particular tuning. For slightly larger
instances from the literature our approach shows significant potential as it considerably
beats previous benchmarks. We further present solutions of proven quality to a few much
larger instances with more elaborate hard constraints.

Keywords: Integer Programming; Decomposition; Timetabling

1 Introduction

Curriculum based course timetabling is to assign weekly lectures to time periods and rooms in
such a way that a number of obvious hard constraints are fulfilled: A teacher can only teach
one course at a time, a lecture room cannot host two courses simultaneously, courses of the
same curriculum must not be scheduled in parallel, etc. If this is impossible, the number of
violations is to be minimized. Furthermore, several soft constraints should best possibly met;
these typically give desired structural properties like coherent daily time slots for lectures
of the same curriculum, etc. This problem, also known as university course timetabling,
received much attention in the operations research literature, see the surveys [6, 18], not
least due to the fact that practical data is available for benchmarking, in particular instances
from the university of Udine [12, 13] used in ITC2002, the first International Timetabling

∗Technische Universität Berlin, Institut für Mathematik, MA 5-1, Straße des 17. Juni 136, 10623 Berlin,
Germany, Email: {lach, m.luebbecke}@math.tu-berlin.de.

1

Competition. In ITC2007, the second issue of the competition (www.cs.qub.ac.uk/itc2007),
more benchmarks from Udine were provided [11], together with extended problem definitions,
in particular for the soft constraints.

In this paper, we report for the first time on solving the four original (2002) Udine instances
to proven optimality (which is also, but certainly not only due to the fact that they became
rather easy for modern integer programming solvers), and give solutions which do not violate
any hard constraint to the 2007 instances. Here it turns out that we are able to very well
compete with, and often beat the strongest known, tailored solution methods which are based
on heuristics. We furthermore provide solutions to instances derived from practical data from
Berlin’s Technical University which feature slightly more elaborate hard constraints.

We approach the problem (which is NP-hard) via integer programming, as has been proposed
before, see e.g., [3, 4, 5, 7, 8, 9, 17, 19]. However, instead of directly solving a natural formu-
lation based on three-indexed variables for the course/time/room assignment, we decompose
the problem in two stages. In a first step, we only match time periods and lectures; these
pairs are then feasibly assigned to rooms in a second step. This decomposition is exact with
respect to hard constraints, that is, no solutions are lost. This can be achieved by implicitly
taking care about feasibility for room assignments already in the first stage. Overall, this
approach results in easier integer programs, and thus larger instances to be solved.

University Course Timetabling

Each course consists of several lectures, each day consists of several time slots. A (day, time
slot) pair is called a period. A curriculum is a set of courses no two of which may be scheduled
in parallel. Every lecture has to be scheduled to a period in a room which provides enough
seats to host the lecture (in our Berlin instances, each room must also provide the requested
features like beamer, PC, blackboard, location, etc.). No two courses by the same teacher or
which appear in the same curriculum may be scheduled at the same period; no two courses
may take place at the same period in the same room. All these constraints are considered
hard. We defer the subtleties of soft constraints to our discussion on how to formulate them
in our integer programs.

In a companion paper [14] we developed the theoretical background for our decomposition
which considered hard constraints only. Here, we report on how to make it useful in practice,
in particular, we state how to incorporate a variety of soft constraints.

2 The Hard Constraint Solver Framework

Our focus is on keeping all hard constraints (resp. as many as possible); thus, the core of our
model is built around this goal. Soft constraints are added as needed; see Section 3.

Denote by C the set of courses, by R the set of rooms, and by P the set of periods. For each
course c ∈ C we know its eligible periods P (c) ⊆ P, eligible rooms R(c) ⊆ R, and that ℓ(c)
lectures have to be scheduled; that is, we have to provide ℓ(c) different periods for course
c. As an example objective function (we use in Berlin) we formulate teachers’ preferences
prio(c, p) for course/period combinations; the smaller the number, the higher the priority.

Time conflicts of any kind are represented via a conflict graph Gconf = (Vconf , Econf): A

2

vertex (c, p) represents an eligible combination of course c and period p. Two nodes (c1, p1)
and (c2, p2) are adjacent iff it is forbidden that c1 is scheduled at p1 and c2 is scheduled
at p2 (typically, p1 = p2). This stable set characteristic of the problem motivated several
researchers to relate timetabling to graph coloring, see e.g., [3], and references therein.

Instead of using binary variables which represent whether course c is scheduled at period p in
room r, we reduce the problem in three dimensions to a problem in two dimensions, implicitly
taking care of room conflicts. To this end, we represent eligible combinations of courses and
rooms as undirected bipartite graphs Gp = (Cp∪Rp, Ep), one for every period p ∈ P. Courses
which may be scheduled at p are given in set Cp, and Rp denotes the set of all eligible rooms
for all courses in Cp. A course c and a room r are adjacent iff r is eligible for c. For ease of
exposition let G = (C ∪R, E) be the graph consisting of all components Gp, p ∈ P.

For a subset U ⊆ C of vertices, denote by Γ(U) := {i ∈ R | j ∈ U, (i, j) ∈ E} the neighborhood
of U . Hall’s stable marriage theorem [15] states that a bipartite graph G = (C ∪ R, E) has a
matching of all vertices in C into R if and only if |Γ(U)| ≥ |U | for all U ⊆ C. Enforcing this
condition, we are able to schedule courses in such a way that rooms can be assigned later.

We call this the first stage of the decomposition. The resulting integer program obviously has
an exponential number of constraints (3), and we give details in [14] on how to cope with this
(and why in practice there are not too many of them).

min
∑

(c,p)∈Vconf

prio(c, p) · xc,p (1)

s.t.
∑

p∈P (c)

xc,p = ℓ(c) ∀c ∈ C (2)

∑

c∈U

xc,p ≤ |Γ(U)| ∀U ⊆ C, p ∈ P (3)

xc1,p1
+ xc2,p2

≤ 1 ∀((c1, p1), (c2, p2)) ∈ Econf (4)

xc,p ∈ {0, 1} ∀(c, p) ∈ Vconf (5)

Once this program is solved, the second stage of the decomposition merely consists of solv-
ing a sequence of minimum weight bipartite perfect matching problems in polynomial time,
one for each period. Clearly, this decomposition approach is exact, that is, in principle it
deterministically finds optimal solutions, provided one allows enough running time.

3 Integrating Soft Constraints

Besides mandatory constraints there is a wealth of possibilities for constraints which cannot
be kept in general, but best possibly fulfilling them gives desired structures to timetables. For
these soft constraints, we stick to the definitions from ITC2007, see again [11]. Four types
are mentioned (and defined below): RoomCapacity (RC), MinimumWorkingDays (MWD),
CurriculumCompactness (CC), and RoomStability (RS). The first three can easily be included
in the first stage of the decomposition. On the other hand, the RS constraints need to go in
the second stage, and are ignored in the first. As a consequence, we theoretically may miss
a globally optimal solution, even when both stages are optimally solved. However, in that

3

case, solution quality would not significantly decrease since the RS constraints are the least
important soft constraints. Penalties for violations are taken from [11].

3.1 RoomCapacity Constraints

A room should provide as many seats as requested by each assigned course. A penalty occurs
for each missing seat. This constraint is a hard constraint in our original (Berlin) framework;
here, however, we treat is as soft. One might expect to handle room capacity in the second
stage of the decomposition, but a modification of Hall’s conditions (3) already does the job.

Let p be an arbitrary but fixed period. Hall’s conditions (3) are replaced by the following set
of constraints. We first require the number of courses that can take place at p to be at most
the number of available rooms:

∑

c∈C

xc,p ≤ |R| . (6)

This avoids conflicts in the assignment of rooms. Next, we introduce constraints that take
the different room capacities and demands of the courses into account. Denote by S be the
different room capacities. Let C≥s denote all courses with demand larger than s; and R≥s

denotes rooms with capacity more than s seats. For each s ∈ S, except the smallest, and for
all c ∈ C≥s there is a binary variable ys,c,p. We add

xc,p − ys,c,p ≥ 0 ∀s ∈ S, c ∈ C≥s (7)
∑

c∈C≥s

xc,p − ys,c,p ≤ |R≥s| . (8)

Variable ys,c,p is set to one if course c takes place in a room of capacity smaller than s. By
constraint (8) we ensure that this does not happen for more courses than we have rooms
of appropriate capacity; otherwise, we incur a penalty which is considered in the objective
function. Variable ys,c,p receives the coefficient objs,c,p which reflects the difference between
the demand of course c and s. We add to the objective function (1)

∑

c∈C≥s

objs,c,p · ys,c,p . (9)

3.2 MinimumWorkingDay Constraints

For each course c we specify a minimum number mnd(c) of days, among which its lectures
should be distributed. This constraint goes into the first decomposition stage. We introduce
a binary variable zc,d for every course c and every eligible day d for this course. Now we add

∑

p∈d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D . (10)

So, zc,d can be set to one only if course c takes place at some period of day d. Furthermore,
we introduce another integer variable wc and the following constraint:

4

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C (11)

Obviously, variable wc may take value zero only if course c takes place on more than mnd(c)−1
days. According to the penalty system introduced in [11] we add to the objective function (1)

∑

c∈C

5 · wc . (12)

3.3 CurriculumCompactness Constraints

For every curriculum, the corresponding courses should take place consecutively over a day.
We will see that, even though easily incorporated in the first stage, these soft constraints have
a negative influence on solution times. For every period p ∈ P and every curriculum cu ∈ CU
we introduce a binary variable rp,cu and the following constraint:

∑

c∈cu

xc,p − rcu,p = 0 ∀cu ∈ CU , p ∈ P (13)

Variable rcu,p assumes value one if some course of curriculum cu takes place at period p, and
zero otherwise. Note that constraints (13) imply the stable set conditions (4). Again with
the help of binary indicator variables vcu,p we model curriculum compactness:

−rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 (14)

If period p is the last of the day the term rcu,p+1 is omitted, and if p is the first period of the
day the term rcu,p−1 is omitted. Obviously, vcu,p has to be set to one if the curriculum cu has
an isolated lecture at period p. Consequently, the following term is added to the objective (1):

∑

cu∈CU ,p∈P

2 · vcu,p (15)

3.4 RoomStability Constraints

Room stability encourages all lectures of a course to take place in the same room. In contrast
to the previous soft constraints, we currently see no way to respect this already in the first
stage. As a consequence, the perfect matching structure of the second stage is destroyed, in
particular integrality of solutions is lost, and we have to resort to integer programming. The
negative impact on running times is significant.

As will be seen in Section 3.6 the IP Formulation of the second stage still resembles the
standard matching formulation on bipartite graphs. We introduce binary variables uc,pvr,p

which assume value one iff course c takes place in room r at period p. Furthermore, we add
binary variables yc,r for each course c and each eligible room r, which are included via

∑

p∈P

uc,pvr,p − |P| · yc,r ≤ 0 . (16)

5

Variable yc,r must assume value one, if course c takes place in room r at least once. The
second stage objective function reads

∑

c∈C,r∈R

yc,r . (17)

Clearly, if (17) is minimized over all feasible course/room assignments, the RS constraint
is fulfilled best possibly according to the underlying bipartite graph. But as we will see,
the bipartite graph depends on the solution of the first decomposition stage. It is therefore
possible (and it happens) that the obtained solution is not a globally optimal one.

3.5 IP Formulation for the First Stage

The introduction of soft constraints resulted in a significantly altered model as compared
to (1)–(5), not only visibly but also in terms of combinatorial structures. It turns out that
this has a negative impact on computation times. The only constraint we did not yet take
care of is that no two courses by the same teacher may be scheduled in parallel. Denote by
T the set of teachers, and by C(t) the courses given by teacher t ∈ T .

min
∑

p∈P,s∈S,c∈C≥s

objs,c,p · ys,c,p +
∑

c∈C

5 · wc +
∑

cu∈CU ,p∈P

2 · rcu,p

subject to
∑

p∈P

xc,p = |P (c)| ∀c ∈ C

∑

c∈C

xc,p ≤ |R| ∀p ∈ P

xc,p − ys,c,p ≥ 0 ∀s ∈ S, c ∈ C≥s, p ∈ P
∑

c∈C≥s

xc,p − ys,c,p ≤ |R≥s| ∀s ∈ S, p ∈ P

∑

p⊂d

xc,p − zc,d ≥ 0 ∀c ∈ C, d ∈ D

∑

d∈D

zc,d + wc ≥ mnd(c) ∀c ∈ C

∑

c∈cu

xc,p − rcu,p = 0 ∀cu ∈ CU , p ∈ P

−rcu,p−1 + rcu,p − rcu,p+1 − vcu,p ≤ 0 ∀cu ∈ CU , p ∈ P
∑

c∈C(t)

xc,p ≤ 1 ∀t ∈ T , p ∈ P

xc,p ∈ {0, 1}
ys,c,p ∈ {0, 1}
zc,d ∈ {0, 1}
wc ∈ Z+

vcu,p ∈ {0, 1}

3.6 IP Formulation for the Second Stage

Originally, the second stage was to solve a minimum cost perfect matching problem for each
period. The situation is more involved in light of the soft constraints. Let G = (U ∪ V,E) be

6

a bipartite graph with node set U ∪ V defined according to the values x∗
c,p of variables xc,p

obtained in the first stage. Let cap(r) denote the capacity of room r and dem(c) denote the
seat demand of course c. Given a solution x∗ the graph G is defined as follows:

U = {uc,p : x∗
c,p = 1}

V = {vr,p : r ∈ R, p ∈ P}

E =

{

ux,pvr,p if ys,c,p = 0 and dem(c) ≤ cap(r)

ux,pvr,p if ys,c,p = 1, dem(c) > cap(r), cap(r) = max{cap(r̂) : cap(r̂) < dem(c)}

We denote for x ∈ U ∪ V by δ(x) = {e ∈ E : ∃y ∈ U ∪ V, e = xy ∨ e = yx} the cut of x in G.
Then, the integer program for the second stage reads as

min
∑

c∈C,r∈R

yc,r

subject to
∑

p∈P

uc,pvr,p − |P| · yc,r ≤ 0 ∀c ∈ C, r ∈ R (18)

∑

uc,pvr,p∈δ(uc,p)

uc,pvr,p = 1 ∀uc,p ∈ U (19)

∑

uc,pvr,p∈δ(vr,p)

uc,pvr,p ≤ 1 ∀vr,p ∈ V (20)

uc,pvc,p ∈ {0, 1}

yc,r ∈ {0, 1}

The constraints consist of two different parts. The RS constraints are given in (18), cf. (16).
Constraints (19) and (20) are from the standard formulation of a (one-sided perfect) matching
in a bipartite graph. The next constraint

∑

uc,pvr,p∈δ(uc,p)

uc,pvr,p = 1 (21)

ensures that each course gets one room assigned in a period when it takes place. Further,
constraint (22) imposes that no room is occupied more than once at the same time.

∑

uc,pvr,p∈δ(vr,p)

uc,pvr,p ≤ 1 (22)

4 Extensions

In [11] several more constraints are mentioned which are relevant in practice, but do not appear
in the ITC2007 competition’s problem definition for the purpose of a cleaner presentation.
The authors state that “if in the future this formulation will prove to be inappropriate (e.g.,
too simple), some features could be reintroduced for future research.” In this section we

7

demonstrate how to incorporate all of them into our model; some experience is given in
Section 5.

It is an advantage of our decomposition approach that several constraints, in particular those
relating to rooms, are easily dealt with, some are even automatically satisfied. Conditions
depending on the curriculum can be modeled via the rcu,p variables but require new constraints
in the decomposition’s first stage IP formulation from Subsection 3.5.

4.1 Lunch Break for Students

For each curriculum cu and a day d let p1, p2 be the periods around noon. Then we add the
following constraint:

rcu,p1
+ rcu,p2

− lcu,d ≤ 1 (23)

If curriculum cu cannot have a lunch break, because courses are scheduled around noon on
day d, the binary variable lcu,d has to be set to one. This is penalized in the objective function
with two units per violation.

4.2 Specific Patterns in Curriculum Compactness

This soft constraint is only sloppily defined in [11], but individually penalizing specific patterns
of non-contiguous lectures of courses in a curriculum can be done by encoding them similarly
to the pattern in constraint (14).

4.3 Curriculum Dependent Maximum Student Dayload

The maximal number dload of courses a student should take in a given curriculum cu per day
d can be softly limited in the same way as we encourage lunch breaks. Let p1, . . . , pk be the
periods of day d, then we add a constraint

k
∑

i=1

rcu,pi
− dlcu,d ≤ dload (24)

The integer variable dlcu,d assumes a strictly positive value if the maximum dayload is ex-
ceeded. Every violation is penalized with four units.

4.4 Consecutiveness of Lectures

Some lectures have to be (or must no be) scheduled in consecutive periods. Two parts of
the formulation need to be changed. The stable set conditions (4) based on the conflict
graph can be adapted straight forwardly. It is more complicated, yet doable, to adjust Hall’s
conditions (3), but the discussion is too involved for the scope of this paper.

8

4.5 Room Unavailability

If a room is not available at some period p, this room simply does not appear in the correspond-
ing bipartite graph Gp, and is omitted in the Hall’s conditions (3) or equivalent constraints
for this period.

4.6 Appropriate Room Sizes

A lecture should not take place in a too large room. This requirement is symmetric to the
room capacity constraints, and is modeled in an analogous way. Again, let S be the set of
different room capacities. For all except the largest s ∈ S we introduce further constraints.
By C≤s we denote all courses with demand smaller than s, and by R≤s denote the rooms with
capacity smaller than s. Given s ∈ S, for all c ∈ C≤s we introduce a binary variable ts,c,p
with meaning symmetric to variables ys,c,p in Subsection 3.1. We add constraints

xc,p − ts,c,p ≥ 0 ∀s ∈ S c ∈ C≤s (25)
∑

c∈C≤s

xc,p − ts,c,p ≤ |R≤s| (26)

A penalty reflecting the difference between s and the seat demand of course c is incurred for
using ts,c,p.

4.7 Complex Weights for Soft Constraint Violations

By our use of binary indicator variables for each individual violation of a soft constraint (that
is, for each single curriculum, day, period, or room) we may give individual penalties, in
particular depending on the number of students which take a given course.

4.8 Teacher Preferences

Teachers may express priorities reflecting when they prefer (not) to teach. This is the original
objective function used e.g., at TU Berlin; we formulated this objective in Section 2.

5 Computational Study

We report on three different sets of experiments. In the first (Subsection 5.1), we deal with
“the Udine instances,” both from ITC2002 and ITC2007. The second set (Subsection 5.2) con-
tains somewhat larger instances from a recent paper by Cesco, Di Gaspero, and Schaerf [10].
For both sets we consider both, the “basic” formulation [13] (without RS constraints), and
the “extended” formulation [11] with all four types of soft constraints. The final (smallest)
set (Subsection 5.3) contains much larger instances with only hard constraints. This last set
reflects the timetabling situation at the Technical University of Berlin. All experiments were
run on a 3.4GHz Linux PC with 1GB memory; unless specified otherwise, we solved integer

9

programs with CPLEX 11.0.1. The reported optimality gaps were computed relative to the
upper bound, i.e., as (upper bound − lower bound / upper bound).

The curriculum-based course timetabling web site http://tabu.diegm.uniud.it/ctt/ is
most helpful in making results comparable. First of all, they offer a solution validator which
we used, of course, to validate our results (solution files can be requested from the authors by
email). From the same web site one can download a program to benchmark machine speed.
In our computations, one CPU time unit corresponds to the time allowed for one run in the
ITC2007 competition: This should be around 400 seconds on a reasonable PC. For ITC2007,
the program of every finalist was run 10 times, each time with a different random seed.
Thus, it took 10 CPU time units to achieve their respective best solutions. Sometimes, the
competition winner Tomáš Müller [16] did not achieve the overall best result for an instance.
Since we also compare ourselves against these overall best solutions of all of the five finalists,
we say that it took 5·10 CPU time units to obtain these solutions. When we compare ourselves
to the best solutions by the university of Udine’s Scheduling and Timetabling Group (SaTT)
we assumed they used 40 CPU time units since they started 40 runs to obtain their best
results. Since in contrast our approach is entirely deterministic, it is fair to allow ourselves a
solution time equivalent to what is used in total in the respective runs of these various groups.

There are several (similar) tables, and if you are in a rush, the most important conclusions
can be drawn from Tables 2, 5, 7, and 9.

5.1 The Udine Benchmark Instances

5.1.1 Benchmarks from ITC2002

In Table 1 we list for the first time proven optimal solutions for all the four ITC2002 instances,
in particular test4 was unsolved. These instances do not feature RS constraints.

basic formulation [13] without CC constraint

instance obj CPU sec. obj CPU sec.

test1 212 15.40 200 0.14
test2 8 6.31 0 0.08
test3 35 82.33 5 0.11
test4 27 1607.30 0 0.17

Table 1: Optimal solutions values for the ITC2002 Udine problem instances (basic formula-
tion [13]). We list instance names, our objective function values (soft constraint penalties),
and the CPU time needed for computations. On the right the we see the results when the
CC constraints are omitted.

For all except the last instance, running times are quite short. Taking into account that
no previous approach has produced optimal results for all four instances, this is remarkable
and demonstrates the usefulness of our approach. Among all soft constraints, curriculum
compactness (CC) appears to destroy the combinatorial structure of the timetabling problem
the most. An impressive proof for this is given in Table 1 where these constraints are dropped.

10

The Role of the Solver It should be mentioned that the last years have seen great im-
provements in integer programming solvers, so one might suspect that our ability to solve
test1–4 is mainly due to this fact; however, with the several years old CPLEX9 we are able
to produce optimal solutions to the first three instances within computation times comparable
to those in Table 1, and a very good solution for test4 (value 29) in about an hour. However,
actually proving this quality is not possible with CPLEX9, since the lower bound does not
improve at all (the zero-half cuts of later CPLEXes do help a lot in this respect).

In order to check the necessity of a commercial solver in the first place we tested the non com-
mercial, open source solvers SCIP[1] (scip.zib.de) and CBC (www.coin-or.org/Cbc/) to
solve our integer programs. These could not match the good running times of the commercial
solver CPLEX. The use of a commercial solver (and thus, the possible lack of reproducibility
of results on any machine) is, in fact, the reason why we did not submit our results to the
ITC2007 competition.

5.1.2 Benchmarks from ITC2007

The second International Timetabling Competition, ITC2007, extended the definition of soft
constraints by adding room stability (RS). Seven instances (comp01–07) were provided at the
outset of the competition, seven more (comp08–14) followed closer to the deadline (and seven
more after the deadline, but these are not yet available to us). Table 2 lists our results. As
one can see we are always (except twice) better than the average run of the ITC2007 winner,
and we are very competitive with the respective best results obtained by all the five finalists.
Results obtained in Table 2 are with CPLEX’ zero-half cuts turned on. In Table 3 we list
statistics separately for the two stages of the decomposition for various overall time bounds.
These results were obtained with CPLEX11 default parameter settings.

basic formulation [13] extended formulation [11]
ITC2007

Instance SaTT us winner ⊘ winner best finalists best SaTT us
comp01 4 4 5.0 5 5 5 13
comp02 35 31 61.3 51 50 75 43
comp03 52 42 94.8 84 71 93 76
comp04 21 18 42.8 37 35 45 38
comp05 244 253 343.5 330 309 326 314
comp06 27 16 56.8 48 48 62 41
comp07 13 3 33.9 20 20 38 19
comp08 24 20 46.5 41 40 50 43
comp09 61 59 113.1 109 105 119 102
comp10 10 8 21.3 16 16 27 14
comp11 0 0 0.0 0 0 0 0

comp12 268 316 351.6 333 333 358 405
comp13 38 33 73.9 66 66 77 68
comp14 30 29 61.8 59 57 59 54

CPU time units 40 10 1 10 50 40 10

Table 2: We compare ourselves against the university of Udine’s Scheduling and Timetabling
Group (SaTT), against the objective of the ITC2007 winner, averaged over all his 10 runs,
against his respective best run, and against the overall best run of all the five finalists.

11

(a) Overall time limit: 1 CPU time unit

stage 1 (time limit: 300 sec.) stage 2 (time limit: 80 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12
comp02 273 0.00 100.00 120 430 <50 16 20 147 2 239
comp03 191 0.00 100.00 261 468 <10 3 60 143 10 194
comp04 36 21.90 39.15 264 358 <5 8 40 144 10 44
comp05 956 91.83 90.39 290 1241 <90 9 <1 16 <1 965
comp06 346 7.00 97.98 280 541 <100 49 80 180 3 395
comp07 448 0.00 100.00 290 525 <190 68 80 225 3 525
comp08 39 29.20 25.11 190 344 <4 39 70 173 4 78
comp09 113 36.89 67.35 290 444 <2 2 80 160 2 115
comp10 194 2.00 98.97 200 425 <110 41 60 207 2 235
comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7
comp12 1119 28.08 97.49 290 1119 290 3 4 77 <1 1122
comp13 75 32.17 57.11 270 492 <3 23 80 161 2 98
comp14 110 39.50 71.79 290 449 <20 3 80 141 1 113

(b) Overall time limit: 10 CPU time units

stage 1 (time limit: 3300 sec.) stage 2 (time limit: 500 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12
comp02 93 8.00 91.40 ∼ 3000 430 <120 0 208 138 2 93
comp03 84 0.00 100.00 3140 468 <40 2 300 132 10 86
comp04 35 27.43 21.61 2960 358 <5 5 330 145 10 41
comp05 463 24.30 95.26 2800 1241 <430 5 <1 13 <1 468
comp06 66 10.00 84.85 ∼ 3000 541 <300 13 300 181 3 79
comp07 8 2.00 75.00 ∼ 2000 525 <360 20 413 234 3 28
comp08 37 34.00 8.11 2990 344 <10 11 200 177 4 48
comp09 106 41.00 60.79 3280 444 <2 0 439 169 2 106
comp10 4 4.00 0.00 2385 425 <220 40 130 207 2 44
comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7
comp12 657 31.28 95.24 ∼ 2500 1119 290 0 4 81 <1 657
comp13 61 38.60 36.72 ∼ 1930 492 <3 6 300 155 3 67
comp14 51 41.00 18.66 ∼ 1500 449 <20 3 284 146 1 54

(c) Overall time limit: 40 CPU time units

stage 1 (time limit: 13000 sec.) stage 2 (time limit: 2200 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
comp01 4 4.00 0.00 <5 4 <5 8 <1 8 <1 12
comp02 45 10.33 77.04 ∼ 11500 430 <120 1 2000 151 2 46
comp03 66 25.00 100.00 ∼ 12500 468 <40 0 432 127 10 66
comp04 35 27.43 21.61 2960 358 <5 3 1300 51 10 38
comp05 365 107.97 70.43 12700 1241 <430 3 <1 38 <1 368
comp06 37 10.00 72.97 7526 541 <300 14 2000 187 3 51
comp07 6 6.00 0.00 10000 525 <360 19 2000 221 3 25
comp08 37 37.00 0.00 500 344 <10 8 1200 178 4 44
comp09 99 45.89 53.65 12800 444 <2 0 500 165 2 99
comp10 4 4.00 0.00 2385 425 <220 12 2000 207 2 16
comp11 0 0.00 0.00 <1 0 <1 7 <1 7 <1 7
comp12 546 52.70 90.34 11000 1119 290 1 4 79 <1 548
comp13 61 40.81 33.72 ∼ 1930 492 <3 5 800 155 3 66
comp14 51 45.94 9.92 ∼ 1500 449 <20 2 900 146 1 53

Table 3: Computation times for ITC2007 (extended formulation [11]) listed separately for
the two decomposition stages (in seconds), for time limits of a total of 1, 10, and 40 CPU
time units in the different subtables (a)–(c) (detailed limits on the two stages are given in
the respective headings). We report (in that order) the instance name, the objective function
value (plus lower bound and optimality gap), and the time to reach that solution. As a
reference we also give the objective value of and the time to reach the first feasible integer
solution. Information on the second stage is similar. Computation times listed in this table
are rather coarsely reported and only serve as an indicator. CPLEX11 is used with default
parameter settings.

12

5.1.3 Lower Bounds

Meta heuristics are powerful to produce solutions to quite large timetabling instances. How-
ever, assessing the quality of these solutions is much harder. Recently, Burke et al. [2] proposed
a branch-and-cut algorithm to obtain lower bounds for the ITC 2007 instances. We note that
the time to solve our linear programming (LP) relaxation is much smaller since our formu-
lation contains much less variables, cf. Table 4. Further, the program presented in [2] is not
yet suited to produce feasible integer solutions; this is why Burke et al. resorted to heuristics
for this. We list the lower bounds obtained by our approach in Table 5.

Burke et al. [2] first stage IP second stage IP

Instance #vars #cons #vars #cons #nonz #vars #cons #nonz

comp01 6516 5500 4489 3843 16206 346 205 685
comp02 30128 26703 7872 7729 41117 3894 1525 9949
comp03 26941 24563 8184 8099 41161 3419 1379 8749
comp04 33698 30525 10637 10242 47212 4171 1600 10755
comp05 16259 12129 9688 9823 56111 457 278 1034
comp06 44168 40113 14810 14421 68821 5472 2056 13923
comp07 60745 55895 17220 16959 80669 7845 2709 19904

comp08 35735 32397 11426 11123 49723 5080 1785 13203
comp09 32391 29024 9113 8833 42276 4454 1651 11506
comp10 45996 42279 12428 12123 59549 6252 2285 15814
comp11 8733 6672 4385 4153 22122 243 159 617
comp12 27652 22117 10735 10705 64605 2208 1115 5307
comp13 35691 32353 11781 11412 51793 4706 1679 12200
comp14 33384 30057 9878 9678 48207 4140 1686 10407

DDS1 16209 15305 76215 14998 5119 39255
DDS2 3287 2201 20688 1669 952 3741
DDS3 2274 1291 10878 2048 1038 5336
DDS4 102384 99502 459895 19327 5951 50827
DDS5 19429 17440 82261 9266 3173 24619
DDS6 12845 12584 60641 5090 2006 12730
DDS7 5622 4701 37800 2023 713 4044

Table 4: Sizes of the formulation proposed by Burke et al. [2], and of our integer programs
after presolve: Numbers of variables, constrains, and non zero elements are listed. Our (time
consuming) first stage IP is about a factor of three (in each dimension) smaller than the
formulation proposed in [2].

5.1.4 Extensions

In Section 4 we discussed several extensions for soft constraints as proposed in [11]. Table 6
lists our results for the ITC2002 and the first seven ITC2007 instances, when the problem
definition is exemplarily extended by the Maximum Dayload and the Lunch Break constraints.
We did not include the other extended soft constraints in this study.

13

root relaxation (sec.) LB (root) LB (after 30 min.)
Instance [2] us us us w/ cuts [2] us

comp01 3.58 0.09 4 4 5 4
comp02 54.90 0.68 0 0 6 8
comp03 49.97 0.59 0 1 43 23
comp04 41.00 0.12 0 11.5 2 26.27
comp05 84.64 1.97 17 92.45 183 100.9
comp06 73.17 0.88 6 7 6 7
comp07 192.35 1.47 0 0 0 0

comp08 43.25 0.61 0 1.16 2 33.2
comp09 48.23 0.51 0 18.2 0 39.84
comp10 105.03 1.00 0 2 0 3.91
comp11 7.69 0.13 0 0 0 0
comp12 134.76 2.92 3 30.25 5 31.29
comp13 37.34 0.67 0 20 0 37
comp14 55.86 0.72 0 39.5 0 41

Table 5: Lower bounds (LBs) obtained by Burke et al. [2] and with our approach (first stage)
for the extended formulation [11]. On the left one can see the computation times to solve the
LP relaxation, then the LBs in the root node with our plain formulation, and after adding
CPLEX’ zero-half cuts; finally, the LBs after half an hour computation time. Numbers are
taken from a first draft of [2]; updated results are not available to us.

instance obj lower bound gap status CPU sec.

test1 217 215 0.97% feasible 150
test2 59 59 0.00% optimal 26.23
test3 127 127 0.00% optimal 125
test4 48 45.47 5.25% feasible 3600

comp01 8 8 0.00% optimal 11.42
comp02 417 35.71 92.12% feasible 3600
comp03 202 59 70.07% feasible 3600
comp04 28 28 0.00% optimal 1183
comp05 418 120.73 71.12% feasible 3600
comp06 96 11.08 88.45% feasible 3600
comp07 407 3 99.26% feasible 3600

Table 6: Best solutions for the ITC2002 and the first seven ITC2007 problem instances, with
extensions as discussed in Sections 4 and 5.1.4. Bold face marks optimal solutions.

14

5.2 Instances with More Courses

A hint on the potential of our approach when applied to larger instances is given on data
recently introduced by Cesco, Di Gaspero, and Schaerf [10]. Some of them have a (slightly)
larger number of courses (DDS1 and DDS4), and our integer program performs significantly
better than what was previously known, see Table 7.

basic formulation [13] extended formulation [11]

Instance SaTT us SaTT us

DDS1 238 39 1024 132
DDS2 0 0 0 0

DDS3 0 0 0 0

DDS4 233 19 261 68
DDS5 0 0 0 0

DDS6 5 0 11 4
DDS7 0 0 0 0

CPU time units 40 10 40 10

Table 7: Slightly larger instances taken from [10]; our approach compared to the university
of Udine’s Scheduling and Timetabling Group (SaTT); bold face indicates optimal solutions.
Zero-half cuts are turned on in these computations.

5.3 Simulated Data from Technical University Berlin

As we have said, our original motivation was to keep hard constraints, if this is possible.
At the Technical University of Berlin, room capacities are considered hard, and a number of
features have to be provided by a room if requested by a course (internet access, PC/beamer,
blackboard, location, etc.). This gives a much larger number of different room types, but
in general fewer eligible rooms per course. All other soft constraints presented here are not
respected, as they are not relevant for this university. Since the used timetabling database
is in an incomplete and inconsistent state, we decided to develop a simulation tool which is
able to create large problem instances with near real-world character.

We present statistics of three representative instances of different sizes, cf. Table 9. The key
data (not listed here) of the large instance is almost identical to that of Technical University
of Berlin (which is a rather large university). We give running times for a preprocessing
step necessary to generate only the actually needed Hall conditions (3), and for the two
decomposition stages. These times are acceptable, even though for an interactive timetable
design, some tuning would be necessary.

15

(a) Overall time limit: 1 CPU time unit

stage 1 (time limit: 300 sec.) stage 2 (time limit: 80 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
DDS1 147 42.99 70.75 <240 237 <200 144 60 499 <5 291
DDS2 0 0.00 0.00 <1 60 <1 0 <5 47 <5 0
DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0
DDS4 675 15.00 97.78 300 1067 <300 376 40 484 <5 1051
DDS5 0 0.00 0.00 22 147 <2 42 70 298 <5 42
DDS6 159 0.00 0.00 280 460 <100 27 80 171 <5 186
DDS7 0 0.00 0.00 52 127 <3 4 80 110 <5 4

(b) Overall time limit: 10 CPU time units

stage 1 (time limit: 3300 sec.) stage 2 (time limit: 500 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
DDS1 48 48.00 0.00 2000 237 <200 55 800 499 <5 103
DDS2 0 0.00 0.00 <1 60 <1 0 < 5 47 <5 0
DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0
DDS4 17 15.00 11.76 700 1067 <300 95 500 484 <5 112
DDS5 0 0.00 0.00 22 147 <2 10 800 298 <5 10
DDS6 4 0.00 100.00 1000 460 <100 5 500 171 <5 9
DDS7 0 0.00 0.00 52 127 <3 0 309 110 <5 0

(c) Overall time limit: 40 CPU time units

stage 1 (time limit: 13000 sec.) stage 2 (time limit: 2200 sec.) total
Instance obj LB gap% time obj 1st time 1st obj time obj 1st time 1st obj
DDS1 48 48.00 0.00 2000 237 <200 35 1800 499 <5 83
DDS2 0 0.00 0.00 <1 60 <1 0 <5 47 <5 0
DDS3 0 0.00 0.00 <1 22 <1 0 60 78 <5 0
DDS4 17 15.00 11.76 700 106 <300 75 2000 484 <5 92
DDS5 0 0.00 0.00 22 147 <2 10 700 298 <5 10
DDS6 0 0.00 0.00 3000 460 <100 3 2000 171 <5 3
DDS7 0 0.00 0.00 52 127 <3 0 309 110 <5 0

Table 8: Solution statistics reported separately for the two decomposition stages for the
DDS1–7 instances, in the same way as we did in Table 3. Default parameter settings are used.

16

instance courses lectures rooms violations preproc. stage 1 stage 2

small 180 420 35 0 45 sec. 9 sec. 3 sec.
medium 950 2100 165 0 307 sec. 52 sec. 6 sec.
large 2100 4640 345 0 1235 sec. 5106 sec. 5 sec.

Table 9: Statistics and results for the simulated instances according to Technical University
of Berlin’s course database

6 Perspectives

Integer programming has been used in university course timetabling, in our view, predomi-
nantly because of its enormous modeling power. Only recently, researchers started to exploit
the problem’s structure, as we did in this paper. We are encouraged by our good results to
further study the combinatorial structure hidden in soft constraints in order to exploit it in
our model in a similarly successful manner.

Our approach was meant to solve instances from Berlin’s technical university where all con-
straints are considered hard, see [14]. However, feedback on that approach motivated us to
evaluate its suitability for incorporating soft constraints, or to obtain lower bounds. We be-
lieve it is fair to say that our algorithm certainly is not best in all possible situations, however,
it competes quite well for several different purposes, as is demonstrated by our computational
study. This is even more true since we do not use any particular tuning to the instances or
situation (lower or upper bound). In that sense, the proposed approach may serve as a very
robust starting point for more ambitious goals in timetabling.

From a practical point of view, one is interested in warm-starting computations from previous
timetables in such a way, that small changes in the input result in small changes in the con-
structed timetable. This other kind of robustness could be considered already in constructing
the first timetable via the framework of robust optimization; however, this will require entirely
new research efforts and is beyond the scope of this paper.

References

[1] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin, 2007. http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

[2] Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and Hana Rudová. A branch-and-
cut procedure for the udine course timetabling problem. In E.K. Burke and M. Gendreau,
editors, Proceedings of the 7th International Conference on the Practice and Theory of
Automated Timetabling, PATAT 2008, Montréal, CA, 2008.

[3] E.K. Burke, J. Mareček, A.J. Parkes, and H. Rudová. On a clique-based in-
teger programming formulation of vertex colouring with applications in course
timetabling. Technical Report NOTTCS-TR-2007-10, The University of Nottingham,
2007. arXiv:0710.3603v2.

[4] E.K. Burke, J. Mareček, A.J. Parkes, and H. Rudová. Penalising patterns in timetables:
Strengthened integer programming formulations. In J. Kalcsics and S. Nickel, editors,
Operations Research Proceedings 2007, pages 409–414, Berlin, 2008. Springer.

17

[5] E.K. Burke, J. Mareček, A.J. Parkes, and H. Rudová. Uses and abuses of MIP in
course timetabling. Poster at the Workshop on Mixed Integer Programming, MIP2007,
Montréal, 2008. Available online at http://cs.nott.ac.uk/~jxm/timetabling/

mip2007-poster.pdf.

[6] E.K. Burke and S. Petrovic. Recent research directions in automated timetabling. Eu-
ropean J. Oper. Res., 140(2):266–280, 2002.

[7] M.W. Carter. A comprehensive course timetabling and student scheduling system at
the university of Waterloo. In E. Burke and W. Erben, editors, Proceedings of the 3th
International Conference on the Practice and Theory of Automated Timetabling, PATAT
2000, volume 2079 of Lect. Notes Comp. Science, pages 64–82, Berlin, 2001. Springer.

[8] S. Daskalaki and T. Birbas. Efficient solutions for a university timetabling problem
through integer programming. European J. Oper. Res., 127(1):106–120, January 2005.

[9] S. Daskalaki, T. Birbas, and E. Housos. An integer programming formulation for a case
study in university timetabling. European J. Oper. Res., 153:117–135, 2004.

[10] F. De Cesco, L. Di Gaspero, and A. Schaerf. Benchmarking curriculum-based course
timetabling: Formulations, data formats, instances, validation, and results. In E.K.
Burke and M. Gendreau, editors, Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling, PATAT 2008, Montréal, CA, 2008.

[11] L. Di Gaspero, B. McCollum, and A. Schaerf. The second international timetabling com-
petition (ITC-2007): Curriculum-based course timetabling (track 3). Technical report,
University of Udine, 2007.

[12] L. Di Gaspero and A. Schaerf. Multi neighborhood local search with application to the
course timetabling problem. In E. Burke and P. De Causmaecker, editors, Proceedings of
the 4th International Conference on the Practice and Theory of Automated Timetabling,
PATAT 2002, volume 2740 of Lect. Notes Comp. Science, pages 262–275, Berlin, 2003.
Springer.

[13] L. Gaspero and A. Schaerf. Neighborhood portfolio approach for local search applied to
timetabling problems. J. Math. Modelling and Algorithms, 5:65–89, 2006.

[14] G. Lach and M.E. Lübbecke. Optimal university course timetables and the partial
transversal polytope. In C.C. McGeoch, editor, Proceedings of the 7th Workshop on
Experimental Algorithms (WEA), volume 5038, pages 235–248, Berlin, 2008. Springer.

[15] L. Lovász and M.D. Plummer. Matching Theory. North-Holland, Amsterdam, 1986.

[16] T. Müller. ITC2007 solver description: A hybrid approach. In Proceedings of the 7th
International Conference on the Practice and Theory of Automated Timetabling, PATAT
2008, Montréal, CA, 2008.

[17] A. Qualizza and P. Serafini. A column generation scheme for faculty timetabling. In
E.K. Burke and M.A. Trick, editors, Proceedings of the 5th International Conference on
the Practice and Theory of Automated Timetabling, PATAT 2004, volume 3616 of Lect.
Notes Comp. Science, pages 161–173, Berlin, 2005. Springer.

18

[18] A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–
127, 1999.

[19] K. Schimmelpfeng and S. Helber. Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum, 29:783–803, 2007.

19

