Resource Assignment in High School Timetabling

Jeffrey H. Kingston

the date of receipt and acceptance should be inserted later

Abstract This paper explores one aspect of the high school timetabling problem,
namely the assignment of resources, such as teachers and rooms, to meetings after
times are assigned. Several algorithms, with run times of just a few seconds, are
presented and tested on real-world data. The best of these is currently in operation
within KTS, a free, public web site for high school timetabling created by the author.
A large bipartite matching model, called the global tixel matching, is used to preserve
optimality of one key measure of quality as resource assignment proceeds.

1 Introduction

High school timetabling is an NP-complete problem with an extensive literature [5].
Some recent contributions may be accessed via the PATAT conference series [2,3].
This paper explores one aspect of the problem, namely the assignment of resources,
typically teachers and rooms, to meetings after their times are assigned. A detailed
specification appears in Sect. 2. The prior problem, of assigning times to meetings,
has been treated by this author previously [12,13].

At the centre of this paper lies the global tixel matching, a large bipartite match-
ing model which provides a valuable check on the implications of one assignment
(Sect. 3). Similar models were used by Mulvey [14] when assigning rooms, and
Cooper and Kingston [7], whose model included workload limits. This paper extends
this earlier work with a more complete model of workload limits, and optimizations
(Sect. 4) which open the way for run times of just a few seconds, fast enough for use
in timetabling web servers such as this author’s KTS system [11,12]. Several such
algorithms, all currently implemented in KTS, are presented (Sect. 5) and tested on
six instances taken from Australian high schools (Sect. 6).

Jeffrey H. Kingston

School of Information Technologies

The University of Sydney, NSW 2006, Australia
http://www.it.usyd.edu.au/~ jeff
E-mail: jeff@it.usyd.edu.au

2 Specification

The KTS specification of the high school timetabling problem will be used here.
Time is modelled as a sequence of intervals of equal length, called the cycle, some
of which are adjacent in time while others are separated by breaks. Resources come
in sets called resource groups, of which there are usually three, namely Students,
Teachers, and Rooms. Resources from the Students group are always preassigned, so
only teachers and rooms need assignment.

Resources may have workload limits, which limit the number of times that a re-
source may attend meetings on any day, or over the whole cycle. KTS offers hard
limits (which may never be exceeded) and soft limits (which may be exceeded with
a penalty), set individually for each resource on any subsets of the times of the cycle.
Resources may also be unavailable at nominated times.

There may be any number of meetings, each demanding any number of times and
resources of various fypes (a Science laboratory, an English teacher, and so on), either
preassigned or left for the solver to choose. The resources assigned to a meeting meet
together during all of its times, so are unavailable for other meetings at those times.

The assigned times of a meeting fall naturally into time blocks: sets of adja-
cent times not spanning a break. For example, denoting the first time on Mondays
by Monl, etc., the set of times {Monl,Mon2,Wed5,Wed6,Fri4} consists of three
blocks, {Monl,Mon2}, {Wed5,Wed6}, and {Fri4}, unless a break intervenes.

When assigning rooms, it is desirable to assign the same room throughout any one
time block, since it is disruptive for the students to change rooms part-way through
the block, but there is no requirement for the same room to be used for all the blocks
of one meeting. When assigning teachers it is desirable for the same teacher to be
assigned for all the times of one meeting.

Accordingly, a resource slot is defined to be a place in a meeting to be occupied
(preferably) by a single resource. For example, a meeting in which student group 74
studies Science at the five times given above would have one slot preassigned student
group resource 7A, one slot requiring a teacher qualified to teach Science, and three
slots requiring a Science laboratory, one for each time block.

The usual case, where one resource is assigned to the entire slot, is called a satis-
factory assignment. All other cases are unsatisfactory assignments, classified by KTS
into three kinds: split assignments, in which the slot is shared between two resources
(one covering some of its times, the other covering the rest); incomplete assignments,
where at most one resource is assigned to the slot, but for less than all of its times,
leaving the rest uncovered; and dreadful assignments, where the slot is split between
three or more resources, or incomplete and split between two or more resources. This
terminology is a little unfair to split assignments, which although undesirable are
common in manually generated timetables.

The high school resource assignment problem is to assign the resources of one
resource group to as many resource slots as possible, after all times are assigned.
The hard constraints are that resource slots must receive resources of the appropriate
types, preassignments must be respected, clashes must be avoided, and hard work-
load limits and unavailabilities obeyed. KTS never violates these constraints, prefer-
ring instead to leave some resource slots incompletely assigned. The soft constraints,

in order of decreasing importance, are that the number of dreadful assignments, in-
complete assignments, split assignments, and soft workload limit overloads should
be minimized. In accordance with the philosophy of KTS, in this paper good but not
necessarily optimal solutions are sought that can be found in a few seconds.

The problem has two main variants, room assignment and teacher assignment,
whose sole difference is that room slots contain fewer times, and these times always
form a single block. This makes room assignment easy in practice, although formally
it is exactly list colouring of interval graphs, which is NP-complete even when the
cycle contains just two times [4].

KTS offers a few other features. It is assumed that these are used relatively infre-
quently, so can be handled simply. A resource slot may have preferred resources, to
be used if possible. One resource may be declared to follow another, meaning that it
should be assigned to every meeting containing that other resource, wherever a suit-
able slot for it exists. For example, a teacher may have a ‘home room’ that follows
the teacher in this way. And a slot may be marked unsplittable, meaning that a split
assignment is not acceptable there.

Teachers are usually partitioned into faculties, such as English, Mathematics, and
so on. Most teacher slots also have a faculty (the main exception being Sport, which
can be taught by any teacher). A slot with a faculty may accept teachers from other
faculties, but teachers from its own faculty are slightly preferred.

The resource assignment problem in high schools resembles staff rostering prob-
lems, which also assign resources after times are fixed. However, staff rostering prob-
lems typically have complex constraints on the overall timetable of each resource,
such as that a nurse not work more than two night shifts per week, or that each leg
of a bus driver’s schedule end at the place where the next leg begins. In contrast, the
corresponding constraints in high schools are much simpler, as we have seen.

European high school problems [8,9] often have teacher utilizations of 50% or
less; that is, teachers typically attend meetings for at most half of the times of the
cycle. This naturally leads to a requirement that teachers’ timetables be compact:
have few gaps within each day. This author’s experience is based on Australian high
schools, where teacher utilizations are typically 75%. Compactness is not a require-
ment in these schools, and it will not be considered here.

3 The global tixel matching

A timetabling problem is a kind of market, in which resources are demanded by
meetings and supplied to them. The unit of supply is one resource at one time, which
will be called a supply tixel. The term ‘tixel” has been coined by the author by analogy
with the ‘pixel’, one unit of a graphical display.

Each meeting demands a certain number of tixels of certain types. For example,
a typical meeting called 7A-English, in which student group 7A studies English for 6
times per cycle, demands 18 tixels: six tixels of student group resource 74, six tixels
of teachers qualified to teach English, and six of ordinary classrooms. This meeting
is said to contain 18 demand tixels.

Each demand tixel in each meeting requires a supply tixel to be assigned to it.
Each supply tixel can only be assigned to one demand tixel, since to assign it to two
is to introduce a timetable clash, which is not permitted. This immediately implies
that underlying the problem is an unweighted maximum bipartite matching, which
will be called the global tixel matching: each demand tixel is a node, each supply
tixel is a node, and an edge joins demand tixel d to supply tixel s whenever s is
suitable for assignment to d. For example, a tixel demanding student group resource
7A would be connected to the supply tixels for resource 7A (one supply tixel for each
time in the cycle). A tixel demanding an English teacher would be connected to each
supply tixel of each teacher qualified to teach English.

When an assignment is made to a meeting, the sets of edges connected to its
demand tixels (their domains) shrink. For example, the six tixels demanding resource
7A in meeting 7A-English are initially connected to all the supply tixels for 7A (one
for each time of the cycle), but after time assignment each becomes associated with a
particular time, and is connected to just one supply tixel, the one for 7A at that time.

The number of unassignable tixels in this graph (that is, the number of demand
tixels not touched by a maximum matching) is a lower bound on the number of
unassignable demand tixels in any solution, given the decisions already made. KTS
uses the matching to diagnose supply problems (shortages of laboratories, etc.) be-
fore solving begins. However, this paper is concerned with its use during resource
assignment, after all times are assigned, the basic idea being to allow only assign-
ments that do not cause the number of unassignable tixels to increase. The matching
itself provides an assignment which is optimal with respect to the number of tixels
assigned; but this is not useable directly, because it has many split assignments.

Teachers typically have workload limits which form an important constraint.
These may be modelled by introducing additional demand tixels, as follows.

Suppose that resource r is unavailable at time z. This could be modelled by delet-
ing the supply tixel representing r at . However, it turns out to be more convenient to
introduce another kind of demand tixel, the unavailability demand tixel, linked in the
matching graph only to the supply tixel representing r at ¢. This prevents this supply
tixel from being assigned elsewhere.

More generally, a resource may have a hard workload limit on some subset of the
set of times of the cycle. For example, suppose that there are 8 times on Friday, but
that resource r is allowed to be occupied for only 7 of those times. This is modelled by
introducing another type of demand tixel, the workload demand tixel. In this example
there would be one workload demand tixel linked to all of »’s Friday supply tixels.
Satisfaction of this demand ensures that r remains free for at least one time on Friday.

A resource may have limits on several subsets. For example, it might be limited to
7 times on each day. Resource unavailability adds more subsets: to say that resource
r is unavailable at time 7 is equivalent to imposing a workload limit of 0 on the set of
times {¢}, so the unavailability demand tixel is a kind of workload demand tixel.

It is necessary to consider the relationships between these subsets. For example,
if one of the Friday times is an unavailable time, then a workload limit of 7 on Friday
times is satisfied automatically. In general, it is possible to model a collection of
workload limits for various subsets of the set of times, provided that these subsets

satisfy the subset tree condition: each pair of subsets is either disjoint, or else one is
a subset of the other.

For example, suppose the cycle has five days of eight times each, and that resource
r has workload limits requiring it to be occupied for at most 30 times altogether, at
most 7 times on any one day, and to be unavailable at times Fri6, Fri7, and Fri8.
These limits form a tree:

[7 Mon| |7 Tue| |7 Wed] |7 Thu] [7 Fri]

[0 Fri6 | [0 Fri7| [0 Fri8]

A postorder traversal of this tree may be used to deduce that workload (including
unavailability) demand tixels for r are needed for one Mon time, one Tue time, one
Wed time, one T hu time, one Fri6 time, one Fri7 time, one Fri8 time, and 3 arbi-
trary times. Each node contributes a number of tixels equal to the size of its subset
minus the size of its workload limit minus the number of tixels contributed by its
descendants, or none if this number is negative.

When the subsets do not satisfy the subset tree condition, an exact model using
tixels seems not to be possible. An example would be if, in addition to the above
limits, there were limits on the number of morning and afternoon times. Of course,
assignments which violate such limits can always be prevented, simply by checking
them, but their omission from the matching could give an unduly optimistic assess-
ment of the state of resource assignment. Fortunately, such overlapping limits do not
seem to occur in practice.

To support Australian practice, KTS allows a resource slot to attract a smaller
workload than its associated number of times. Such slots are said to have a special
workload. They are treated as unsplittable, since it is not clear how to divide a special
workload between two resources. Like overlapping resource limits, special workloads
cause inexactness in the global tixel matching. The details of how KTS handles this
problem are not of general interest and have been omitted from this paper.

4 Optimizations

Even after time assignment has reduced the domains of most demand tixels, the global
tixel matching remains large and potentially very slow. This section introduces op-
timizations which significantly reduce its cost. Familiarity with the theory of un-
weighted bipartite matchings, including the augmenting path method [1], is assumed.

Although the global tixel matching is essential for finding subtle problems with
proposed resource assignments, it is a clumsy tool for finding obvious ones, such as
clashes and hard workload limit overloads. Accordingly, each resource holds an array
of integers, one for each time of the cycle and one for each subset of the times subject
to a workload limit, whose value is the number of times from the subset during which

the resource is currently attending meetings. The first step in evaluating a proposed
assignment of a resource to a slot is to increase these totals by amounts determined
by the times associated with the slot. If any exceed a hard limit, the assignment may
be abandoned without touching the global tixel matching. This test also checks any
hard limits not reflected in the matching because they did not satisfy the subset tree
condition (Sect. 3), and calculates soft workload limit overload penalties.

The global tixel matching module stores the demand and supply nodes, plus a
current matching, which is always valid (that is, its edges lie in the domains and
have no common endpoints) but not necessarily maximal. A list of all the currently
unassigned demand nodes is kept separately from the main list of all demand nodes.
A record is kept of whether or not the current matching is known to be up to date
(that is, maximal).

The operation of changing the domain of a demand node is easily implemented
efficiently. First, change the domain; then, if the node is currently assigned to a sup-
ply node that is not present in the new domain, deassign the node and add it to the
currently unassigned demand node list. Finally, mark the matching as not up to date.
An up to date matching must be marked not up to date even if the node remained
assigned, since its new domain could permit it to match with a different supply node
which opens the way for some other, currently unmatched demand node to match
with its current supply node.

The matching may be brought up to date at any time, by doing nothing if it is
already up to date, and otherwise attempting an augment out of each element of the
unassigned demand node list, removing those elements which assign, then marking
the matching as up to date. For example, whenever an enquiry is received asking how
many unassigned nodes there are, the matching is first brought up to date, then the
number of unassigned nodes is returned.

This arrangement already offers some optimization: it amortizes the cost of bring-
ing the matching up to date over all domain change operations since the last time it
was brought up to date. However, the time taken could be on the order of the total
number of unassigned demand nodes multiplied by the size of the graph. In realistic
cases one would expect a reasonable balance between supply and demand, and hence
few unassigned demand nodes, but this cannot be guaranteed. So the following three
optimizations attempt to mitigate this unfortunate dependence on the total number of
unassigned demand nodes.

The first optimization introduces a variable called ulower. It is always defined and
contains a lower bound on the number of unassignable nodes in the current state. Its
initial value is 0, always a valid lower bound. Whenever the matching is brought up
to date, ulower is set to the number of unassigned nodes at the end of the operation.

Since the current matching is always valid, the number of nodes on the unassigned
demand node list is always an upper bound on the number of unassignable nodes in
the current state. When ulower equals this number, the matching must be up to date.

Each domain change operation supplies a parameter which indicates whether the
new domain is known to the caller to be a subset of the old domain, or known to be
a superset, or not known to be either. If the new domain is not a subset of the old
domain, then the change might allow one more node to match than previously, so
ulower is decreased by one (unless already 0). If the new domain is a subset of the

old domain, then the change cannot allow any more nodes to match than previously,
so ulower is not changed. If the new domain is a superset of the old, then there is no
need to check whether any current assignment lies in the new domain: it must.

When bringing a matching up to date, if augments reduce the number of unas-
signed nodes to ulower, the operation may terminate early: ulower is a lower limit
on the number of unassignable nodes, and that limit has been reached, so there is no
point in trying any more augments. As a further heuristic, augmentation is tried first
at those nodes which entered the unassigned list most recently. These are more likely
to match than nodes that have been lurking in the list for a long time; those may well
be permanently unassignable.

The second optimization uses operations called MarkBegin and MarkEnd. These
always occur in matching pairs, possibly nested. MarkBegin brings the matching up
to date and returns the number of unmatched nodes. This value is stored by the caller
and passed to the matching MarkEnd operation, which informs the module that all
domain changes since the corresponding MarkBegin have been undone. MarkEnd
sets ulower to this value (if it was the number of unassignable nodes when the cor-
responding MarkBegin ended, then since the graph has returned to that state, it must
be the ideal lower bound now), then brings the matching up to date.

As the prime example of these optimizations in action, consider testing whether
a resource may be assigned to a slot without increasing the number of unassignable
nodes. The operation begins with MarkBegin, followed by one domain reduction
operation for each demand node of the slot, to a domain containing just the resource
in question. Then comes a test of the number of unassignable nodes, followed by
restoration of the initial domains, and MarkEnd.

The call to MarkBegin brings the matching up to date and sets ulower to the
number of unassignable nodes. The domain reduction operations will not change
ulower, but they will usually add their nodes to the unassigned list. The test of the
number of unassignable nodes will bring the matching up to date again. It will try
to augment the newly added nodes first, and if all of them succeed it will terminate
early, not touching any older unassigned nodes. Bringing the matching up to date at
the end will require no augments at all, since the restored domains include the current
assignments. The implementation is less efficient when not all domain changes are
reductions (special workloads, whose detailed handling is beyond the scope of this
paper, cause this), or when the test fails. Simple failures due to clashes and hard
workload overloads have already been filtered out by the array of integers described
at the start of this section, however, so most tests should succeed.

A typical run was carried out (BGHS98 using the room assignment and resource
packing teacher assignment algorithms of Sect. 5) and various measurements were
made which show that these optimizations are useful. For example, only 2.2% of
teacher domain changes were neither to a subset nor a superset, and 71.0% of teacher
graph updates were terminated by the lower bound either before, or at the same time
as, the unassigned nodes list was exhausted, and hence would cost the same even if
the number of long-term residents of the unmatched demand nodes list were larger.

The third optimization improves the running time of sequences of unsuccess-
ful augments. The augment operation requires a Boolean visited flag in each sup-
ply node, indicating whether the current augment has previously visited the node, in

which case it will not revisit it, avoiding cycles in the search. It is standard practice
to implement this flag by an integer visit _num variable, initialized to zero, rather than
a Boolean; a node is visited if this number is equal to the visit number of the cur-
rent augment. Before each augment, this current visit number is increased by one,
re-initializing all the nodes to unvisited for free.

Consider two augment operations not separated by any domain change operation,
and suppose that the first operation is unsuccessful. Then there is no need to increase
the visit number before starting the second operation, because nodes visited by the
first operation are known not to lead to unmatched supply nodes, hence there is no
need to search through them again. This optimization is applied during the sequence
of augment operations required to bring the matching up to date: the visit number
increment is omitted before those operations which have an unsuccessful predecessor.
This reduces the maximum cost from the number of augments times the graph size to
the number of successful augments (plus one) times the graph size.

5 Resource assignment algorithms

This section presents one room assignment algorithm and three teacher assignment
algorithms. All four algorithms utilize the techniques of Sect. 4.

At several points in the algorithms there is a need to sort a collection of slots so
that the more difficult ones to assign come before the less difficult. The definition of
‘more difficult’ is the same in all cases; it is to apply the following rules in order until
a decision is reached: unpslittable slots are more difficult than splittable ones; wider
slots (i.e. with more times) are more difficult than narrower ones; slots with preferred
resources are more difficult than slots without; slots with fewer preferred resources
are more difficult than slots with more; slots with fewer qualified resources are more
difficult than slots with more; slots from wider meetings are more difficult than slots
from narrower ones; and slots whose first time comes earlier in the cycle are more
difficult than slots whose first time comes later. This last rule encourages a sweep
through the cycle in the last resort.

Another common need is to evaluate the cost of assigning a given resource to a
given slot, and again a uniform rule is followed. Only assignments of resources of
the right type that do not cause clashes or hard workload overloads are permitted;
these are called acceptable assignments. The quality of the current state of resource
assignment is described by a cost vector (¢, ¢z,¢3,c4,¢5,¢6), and a best assignment
is one which produces a lexicographically minimum value of this vector. The first
component, ¢y, is the number of unassignable tixels in the global tixel matching. The
second, ¢, is the number of currently unassigned tixels. The third, c3, is the number
of assignments split between two or more resources, with assignments split between
three or more resources weighted more heavily. The fourth, c4, is the number of soft
workload overloads. The fifth, cs, is the sum over all assigned slots of a number which
is low when the resource assigned is from the same faculty as the slot, or if the slot
has no faculty it is low for resources from lightly loaded faculties. The sixth, cg, is the
sum over all resources with workload limits of the square of the resource’s current
workload. The last two components encourage even sharing of workload.

Except when assigning unsplittable slots, the algorithms only carry out assign-
ments which cause no increase in the first component (called strictly acceptable as-
signments); and they eventually assign as many tixels as are assignable according to
the global tixel matching. In other words, these algorithms are optimal in terms of the
number of tixels assigned, except near unsplittable slots.

As mentioned earlier, it is assumed that preferred and follows resources and un-
splittable slots occur relatively infrequently, so may be handled simply. These are
assigned in three initial phases which are the same for all four algorithms. Phase 1
assigns slots with preassigned resources, in order of decreasing difficulty as defined
above. If any fail to assign, owing to clashes or workload limits, the resulting gaps
remain unassigned and become defects in the solution. Phase 2 assigns slots with
preferred resources, again in decreasing difficulty order, choosing the best strictly
acceptable assignment for each slot. A failure here causes the slot to be treated as
though it had no preferred resources; it will be assigned later, along with the other
unsplittable or splittable slots as appropriate. Phase 3 assigns the unsplittable slots,
again in decreasing difficulty order, choosing the best acceptable assignment. Strict
acceptability is not enforced here, because a failure causes the slot to remain unas-
signed in the solution.

KTS requires the relation ‘resource group G, contains a resource that follows a
resource from resource group G|’ between resource groups to have no cycles. It topo-
logically sorts the resource groups by this relation, and assigns the resources of each
resource group in this order. (Typically, this just means that rooms are assigned after
teachers.) This allows follows requirements to be converted into preferred resources
and handled as such.

It remains to assign the bulk of the resource slots — the ordinary ones. This is
where the four algorithms differ.

Room assignment is an easy problem in practice, and a simple algorithm, called
Phase 4R, suffices. Assign the remaining unassigned slots one by one in decreasing
difficulty order, as follows. As explained earlier, each request for a room in a meeting
is broken into several room slots, one for each time block of the meeting. Although
these slots are not required to have the same room, for regularity it is good to en-
courage them to. So the first step is to check whether any other room slots from the
same room request have already been assigned. If so, take the resources assigned
to those slots and find the best strictly acceptable assignment from among them. If
there is such an assignment, use it; otherwise try again using the full set of qualified
resources. If there is still no strictly acceptable assignment and the slot has width
at least 2, break it into slots of width 1 and add them to the end of the list of slots
for assignment later during this phase; otherwise the slot remains unassigned. This is
essentially the same as an algorithm presented previously by this author [12].

Teacher assignment is more challenging than room assignment, because the slots
are typically wider and may contain several time blocks. The three teacher assignment
algorithms all have four more phases. In Phase 4, full-width (that is, satisfactory) as-
signments are made to most of the remaining unassigned slots. In Phase 5, alternating
paths of full-width deassignments and assignments are found which further increase
the number of full-width assignments. In Phase 6, split, incomplete, and dreadful
assignments are found for the remaining unassigned slots. Finally, Phase 7 tries to

10

improve these unsatisfactory assignments, and especially to reduce the number of
dreadful assignments. These phases will now be described in detail.

Phase 4, the full-width assignment of most of the remaining unassigned slots, is
the only phase in which the three teacher assignment algorithms differ. The three al-
ternative algorithms for Phase 4 are called the slot oriented, time sweep, and resource
packing algorithms.

The slot oriented algorithm assigns teacher slots one by one. Sets of indistin-
guishable slots (slots with identical assigned times, workload, and type of resource
required) are grouped together into slot sets. These occur quite frequently, since the
KTS time assignment algorithm tries to encourage this kind of regularity. For each
slot set, the algorithm keeps an approximate list of resources strictly acceptable to
the slots of that slot set. Every strictly acceptable resource is in the list, but some of
the resources may have become unacceptable recently, owing to complex and essen-
tially unpredictable interactions within the global tixel matching, without the slot set
becoming aware of this. A priority queue of slot sets is maintained, sorted so that
the slot sets with the smallest excess (approximate number of strictly acceptable re-
sources minus number of currently unassigned slots) are at the front of the queue,
and, among slots of equal excess, wider slots precede narrower ones.

At each step the algorithm dequeues the slot set at the front of the queue, and
tests each resource in its list for strict acceptability. If there are no strictly acceptable
resources, the unassigned slots of the slot set are set aside for later phases to work
on. If there is at least one strictly acceptable resource, the one which yields the best
assignment is chosen and the assignment is made. The chosen resource’s acceptability
to all slot sets it is currently listed in is re-tested; being less available now, it may
have become unacceptable to some of them. It is removed from any such slot sets,
and their priority and place in the priority queue are updated. Finally, the selected slot
set’s priority is re-calculated and it is reinserted, unless all its slots are now assigned.

The time sweep algorithm sweeps through the times of the cycle in a particular
order likely to work well. (As part of time assignment, KTS partitions the cycle into
columns, which are sets of times that are preferred for assignment to meetings, and
so are likely to occur together in many meetings. The order used is defined by taking
each column in turn, and visiting its times in chronological order.) It mimics the
kinds of algorithms frequently used with interval graphs; Carter [6] used a similar
algorithm for room assignment in university course scheduling, but without the global
tixel matching. As each time ¢ is reached, a bipartite graph is constructed, with one
demand node for each unassigned slot containing #, and one supply node for each
resource available at . An edge joins a slot to a resource whenever the corresponding
assignment is strictly acceptable. The edge is weighted by an integer based on the
usual cost vector, minus the slot width (to favour wider slots). A maximum matching
of minimum weight is used to guide the assignment of resources to as many of these
slots as possible, the rest being set aside to receive split assignments later.

Each edge in the matching graph represents one strictly acceptable assignment,
but this does not guarantee that the set of assignments indicated by the maximum
matching will be strictly acceptable all together, because as each is made it alters the
global tixel matching. So the assignments are attempted widest slots first, and each
is re-tested for strict acceptability before it is applied. Any slots not touched by the

11

maximum matching, or whose assignment fails this test, are left until the assignments
indicated by the matching have all been tried. Then the best available strictly accept-
able assignment is made to each of these leftover slots, and those that fail to assign
are set aside for later phases to work on.

Finally, the resource packing algorithm takes each resource in turn and packs it:
makes as many strictly acceptable assignments as it can to it. The resources are stored
in a priority queue. At each step, that resource is dequeued and packed which has the
smallest total available workload: the sum, over all slot sets which are currently not
completely assigned and for which assignment of the resource is (approximately)
strictly acceptable, of the workload associated with one slot of the slot set. If this
number is low, the resource is in danger of being underutilized, which is the rationale
for giving it priority. Part-time teachers usually come first in this ordering, which
is desirable since they are notoriously difficult to utilize effectively. When the last
slot in a slot set is assigned, the slot set is deleted and all its acceptable resources
are informed, causing them to reduce their total available workloads and update their
priority queue positions accordingly.

Each resource is packed using a simple branch-and-bound tree search through
the list of acceptable slot sets, aiming first to maximize the workload assigned to
the resource, and second to minimize soft workload overloads. Several optimizations
are implemented. The slot sets are sorted by decreasing width. Whenever a slot set
is assigned, some previously acceptable slot sets may become unacceptable; these
are removed from the list. If the list cannot supply enough workload to surpass the
best solution found so far, the search backtracks. If the resource’s workload limit is
reached exactly without any soft workload overloads, the search ends early. As usual,
only strictly acceptable assignments are permitted.

A full search could take exponential time, so each subtree is forced back on a
simple first-fit heuristic after a fixed number L of nodes is visited. The value L = 100
was chosen for this paper and the public version of KTS, because preliminary exper-
iments showed that running time was approximately proportional to L (as expected),
but quality did not improve significantly as L was increased beyond this value.

Phase 5 of teacher assignment, identical for all three algorithms, tries to increase
the number of full-width assignments, and to reduce the cost vector generally, by
finding alternating paths of full-width deassignments and reassignments. Starting at
each slot in turn, if the slot is currently unassigned the algorithm takes each qualified
teacher in turn and tries to either assign that teacher directly, or else to identify a
single slot which, when deassigned from that teacher, would permit the unassigned
slot to be assigned to that teacher. If successful, it then continues trying to reassign the
deassigned slot, and so on, marking each slot as visited to ensure that the search does
not cycle. If the slot is currently assigned, the algorithm begins with the deassignment
of that teacher. All this is repeated until there is no further improvement.

This is the augmenting path method from unweighted bipartite matching and sim-
ilar algorithms, used in a context where the optimality guarantees that usually accom-
pany it are absent. A similar algorithm was used previously by this author [10], but
without the global tixel matching, and consequently its results were not then optimal
with respect to the number of tixels assigned. In this incarnation, only paths that de-
crease the cost vector (and consequently do not increase the number of unassignable

12

tixels) are applied. It has proved expedient, however, to follow all paths whose de-
assignments and assignments produce no clashes or hard workload overloads, and
only check the cost condition at the end of the path, since there are strictly acceptable
augmenting paths with initial segments which are not strictly acceptable.

Phase 6 finds split assignments for the unassigned slots, again in the same way
for all three algorithms. It is a small problem, as the results of Table 3 show, so
presumably it could be solved to optimality, using integer programming for example.
KTS uses a straightforward heuristic method of little interest. It continues to make
only strictly acceptable assignments (but now to fragments of slots), and it assigns
as many tixels as the global tixel matching permits, ensuring that, apart from the
usual problems caused by unsplittable slots, all three teacher assignment algorithms
are optimal with respect to the number of tixels assigned. It concludes with another
invocation of the alternating path method, now operating over the fragments of slots
introduced by this phase as well as the original full-width slots.

Finally, Phase 7 tries to improve the split assignments, using weighted bipartite
matching in the manner that has become known recently as very large neighbourhood
search. Take any set of times occupied by one resource within one split assignment.
(The method works for any subset of the times of the cycle, but the subsets chosen are
the only ones where there is any prospect of improvement.) Make one demand node
and one supply node for every resource in that resource’s resource group. The demand
node represents whatever that resource is doing at these times (it could be free, or
occupied with several meetings at different times), and the supply node represents the
resource. Join a demand node to a supply node whenever the corresponding resource
could do the duties of the demand node instead of whatever it is doing now, and
weight the edge by the cost of this in terms of its effect on soft workload overloads
and split assignments. Find a maximum matching of minimum weight and use it to
reallocate the work at these times. In practice, it was found to be not worthwhile to
include resources that attend two or more meetings during the times selected, since
the chance of any change to their assignments being beneficial is very small.

6 Results

The algorithms were tested on six instances from Australian high schools. A sum-
mary of these instances appears in Table 1. The instances, solutions, and statistics
presented here may be inspected via the Visitor account of the KTS web site [11].

The running time of the room assignment algorithm was never more than 1 sec-
ond, and resource packing was never more than 2 seconds. The other two algorithms
were similar except for one 4 second and one 7 second run.

In the instances tested, there are no unsplittable room slots, so the room assign-
ment algorithm is optimal with respect to the number of tixels assigned. Over all
instances tested, it produced exactly one split assignment.

Table 2 reports the number of teacher slots left unassigned by the three algorithms
after Phase 4. Table 3 shows this same number after Phase 5, and Table 4 shows
the final number of unsatisfactory teacher assignments (almost all of which are split
assignments). Compared with the author’s previous attempt [12], which was based on

13

Table 1 Statistical summary of the instances tested, showing their number of times, student groups, teach-
ers, rooms, and meetings.

Instance Times Students Teachers Rooms Meetings
BGHS93 40 23 53 46 155
BGHS95 40 27 52 48 147
BGHS98 40 30 56 45 152
SAHS96 60 20 43 36 131
TES98 30 11 33 20 95
TES99 30 13 37 26 86

Table 2 The number of unsatisfactory teacher assignments after Phase 4 of teacher assignment, shown as
absolute numbers and as percentages of the total number of teacher slots, for the three teacher assignment
algorithms. Instance SAHS96 has been omitted, because its teacher slots are all preassigned.

Instance

resource packing

slot oriented

time sweep

BGHS93
BGHS95
BGHS98
TES98
TES99

28 (6.2%)
28 (6.1%)
30 (6.8%)
11 (6.0%)
19 (10.8%)

24 (5.3%)
37 (8.0%)
34 (7.7%)
11 (6.0%)
19 (10.8%)

36 (8.0%)
42 (9.1%)
45 (10.2%)
13 (7.1%)
19 (10.8%)

Table 3 Unsatisfactory teacher assignments after Phase 5 of teacher assignment.

Instance resource packing slot oriented time sweep
BGHS93 19 (4.2%) 22 (4.9%) 21 (4.7%)
BGHS95 25 (5.4%) 24 (5.2%) 26 (5.6%)
BGHS98 21 (4.8%) 26 (5.9%) 26 (5.9%)
TES98 11 (6.0%) 11 (6.0%) 13 (7.1%)
TES99 19 (10.8%) 19 (10.8%) 19 (10.8%)

Table 4 Unsatisfactory teacher assignments after Phase 7 of teacher assignment.

Instance

resource packing

slot oriented

time sweep

BGHS93
BGHS95
BGHS98

TES98
TES99

25 (5.6%)
29 (6.3%)
30 (6.8%)
11 (6.0%)
19 (10.8%)

26 (5.8%)
30 (6.5%)
33 (7.5%)
11 (6.0%)
19 (10.8%)

30 (6.7%)
29 (6.3%)
35 (7.9%)
13 (7.1%)
19 (10.8%)

time assignments of similar quality to those used here, there is a small improvement
in the number of unsatisfactory assignments, a small improvement in run time, and a
major improvement in the fact that the present algorithms are optimal with respect to
the number of tixels assigned (except near unsplittable slots): the previous algorithm
offered no such guarantee, and in some instances left unassigned nine or ten tixels

more than optimal.

Phase 7 occasionally removes a split assignment altogether, but its principal pur-
pose is to reduce the number of dreadful assignments. Table 5 shows that it does

14

Table S The number of dreadful teacher assignments (split between three or more resources, or incomplete
and split between two or more resources), before and after Phase 7 (resource packing only).

Instance Before Phase 7 After Phase 7
BGHS93 7 (1.6%) 2 (0.4%)
BGHS95 6 (1.3%) 2 (0.4%)
BGHS98 6 (1.4%) 1 (0.2%)
TES98 2 (1.1%) 2 (1.1%)
TES99 0 (0.0%) 0 (0.0%)

Table 6 Soft workload limit overloads, shown as absolute numbers and as percentages of the total number
of soft workload limits (usually one per teacher per day).

Instance resource packing slot oriented time sweep
BGHS93 17 (6.4%) 12 (4.5%) 17 (6.4%)
BGHS95 7 (2.7%) 13 (5.0%) 8 (3.1%)
BGHS98 13 (4.7%) 16 (5.7%) 15 (5.4%)
TES98 4 (2.4%) 2 (1.2%) 2 (1.2%)
TES99 9 (4.9%) 9 (4.9%) 9 (4.9%)

this quite effectively, but it typically replaces one dreadful assignment and one sat-
isfactory assignment by two split assignments, increasing the total number of split
assignments. Table 6 reports on soft workload limit overloads.

The numbers of dreadful assignments and soft workload limit overloads seem to
small enough to satisfy school management, but the acceptability of these numbers
of split assignments is not known. Detailed examination of the BGHS98 resource
packing solution shows that only two unsatisfactory assignments are due to the time
assignment failing to make enough qualified resources available at all times, but that
deeper problems with time assignment are causing others. In several faculties the re-
sults are provably optimal for the given time assignment. Disproportionately many
split assignments are concentrated in one faculty (the largest, combining English and
History, with 14 teachers), which has 13 split assignments, mainly owing to the pres-
ence of two part-time teachers and many irregular time assignments.

7 Conclusion

This paper has presented several algorithms for resource assignment in high school
timetabling. A key component of them all is an efficient implementation of the global
tixel matching. This provides an important guarantee of optimality with respect to
the number of tixels assigned, except near unsplittable slots, while supporting algo-
rithms with run times of just a few seconds. The room assignment algorithm, which
has been presented previously, gives virtually optimal results. The teacher assign-
ment algorithms also perform well, and resource packing especially appears to be
approaching a standard acceptable to high schools. It is used in the public release of
KTS current at the time of writing [11].

15

Examination of actual timetables shows that split assignments cluster around

heavily loaded faculties, part-time teachers, and meetings with irregular time assign-
ments. The first two problems are inherent features of the instances, but it might be
possible to improve the time assignments, which should reduce the number of split
assignments. To achieve resource assignments of very high quality, some time as-
signments may need to be redone. That is likely to be slow, requiring a local search
through the combined space of time and resource assignments, so the present work
will remain valuable for producing a number of split assignments low enough to per-
mit such methods to be applied to their repair.

References

10.

14.

Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice Hall (1993)

Edmund Burke and Michael Trick (eds.), Practice and Theory of Automated Timetabling V (Fifth
International Conference, PATAT2004, Pittsburgh, August 2004, Selected Papers). Springer Lecture
Notes in Computer Science 3616 (2005)

Edmund Burke and Hana Rudova (eds.), Practice and Theory of Automated Timetabling VI (Sixth In-
ternational Conference, PATAT2006, Brno, Czech Republic, August 2004, Selected Papers). Springer
Lecture Notes in Computer Science 3867 (2007)

M. W. Carter and C. A. Tovey, When is the classroom assignment problem hard? Operations Re-
search, 40, S28-S39 (1992)

M. W. Carter and Gilbert Laporte, Recent developments in practical course timetabling, Practice and
Theory of Automated Timetabling II (Second International Conference, PATAT’97, University of
Toronto, August 1997, Selected Papers), Springer Lecture Notes in Computer Science 1408, 3—19
(1998)

Michael W. Carter, A comprehensive course timetabling and student scheduling system at the Univer-
sity of Waterloo, Practice and Theory of Automated Timetabling III (Third International Conference,
PATAT2000, Konstanz, Germany, August 2000, Selected Papers), Springer Lecture Notes in Com-
puter Science 2079, 64-81 (2001)

Tim B. Cooper and Jeffrey H. Kingston, A program for constructing high school timetables, Proceed-
ings 1st International Conference on the Practice and Theory of Automated Timetabling, Edinburgh,
UK (1995)

Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar, A four-phase approach to a
timetabling problem in secondary schools, Proceedings 6th International Conference on the Practice
and Theory of Automated Timetabling (PATAT2006), Brno, Czech Republic, 423-425 (August 2006)

. Frank Jacobsen, Andreas Bortfeldt, and Hermann Gehring, Timetabling at German secondary

schools: tabu search versus constraint programming, Proceedings 6th International Conference on
the Practice and Theory of Automated Timetabling (PATAT2006), Brno, Czech Republic, 439442
(August 2006)

Jeffrey H. Kingston, A tiling algorithm for high school timetabling, Practice and Theory of Auto-
mated Timetabling V (Fifth International Conference, PATAT2004, Pittsburgh, PA, August 2004,
Selected Papers), Springer Lecture Notes in Computer Science 3616, 208-225 (2005)

. Jeffrey H. Kingston, The KTS high school timetabling web site (Version 1.6),

http://www.it.usyd.edu.au/"jeff (October, 2007)

Jeffrey H. Kingston, The KTS high school timetabling system, Practice and Theory of Automated
Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech Republic, August 2006,
Selected Papers), Springer Lecture Notes in Computer Science 3867 (2007)

Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Automated
Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech Republic, August 2006,
Selected Papers), Springer Lecture Notes in Computer Science 3867 (2007)

John M. Mulvey, A classroom/time assignment model, European Journal of Operational Research, 9,
64-70 (1982)

