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Abstract In this paper, we introduce a new mathematical programming model 

that combines teacher assignment and course scheduling problems 

simultaneously. Due to the limitation of a mathematical programming approach to 

solve large problem instances, we propose a hybrid algorithm that combines two 

well known metaheuristics, Simulated Annealing (SA) and Tabu Search (TS). In 

the proposed algorithm, useful features of each metaheuristic are exploited to 

obtain better solutions. Several randomly generated problem instances are used to 

evaluate the performance of the proposed algorithm. The computational results 

illustrate the ability of the hybrid algorithm to provide good quality solutions to 

the problem instances within reasonable computation time. 
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1. INTRODUCTION 
 

The timetabling problem is an important and practical problem that is faced 

by many schools and universities. This problem has been the subject of extensive 

research efforts due to its wide applicability. It includes a wide range of 

scheduling problems: course and examination timetabling problems (Carter and 

Laporte 1998). The course timetabling problem can be further decomposed into 

five different sub-problems: teacher assignment, class-teacher timetabling, course 

scheduling, student scheduling and classroom assignment.  Two significant 

developments that stirred the interest in this problem are (Johnson 1993): 

• Changes in the courses offered, facility requirements, number of students and 

teachers involved. 

• Development in the computing facilities in the education institutions. 

However, many research papers that tackle this problem only focus on one of the 

sub-problems. For example, it is often assumed that the teacher assignment 

problem has been solved earlier before solving the course scheduling problem, as 

in the works of Al-Yakoob and Sherali (2006, 2007). 

In this paper, we introduce a problem that is a combination of teacher 

assignment and course scheduling problems at the university level, and we call it 

the Teacher Assignment-Course Scheduling problem (TACS problem). We also 

formulate a mathematical programming model that considers both problems 

simultaneously. The problem characteristics that we address have arisen in the 

context of a university in Indonesia. Although timetabling problems can vary 

extensively in different universities depending on their specific requirements and 

conditions, a number of commonly encountered requirements would be 

considered in the model.  
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A variety of algorithms has already been proposed to solve timetabling 

problems, including graph colouring algorithms (Burke et al. 1998), integer 

programming approaches (Al-Yakoob and Sherali 2006, 2007; Daskalaki et al. 

2004), and heuristics (Aubin and Ferland 1989; Caramia et al. 2001). Over the last 

few years, metaheuristics have proven to be highly useful for approximately 

solving timetabling problems in practice. Simulated Annealing (Abramson 1991; 

Elmohamed et al. 1998; Bai et al. 2006) and Tabu Search (Burke et al. 2003; 

Costa 1994; Valdes et al. 2002; White et al.2007) are examples of metaheuristics 

applied to the timetabling problem. 

Various combinations of algorithms or metaheuristics have also been 

reported in the literature for solving difficult optimization problems. This recent 

area of research has become more important and viable due to increasing 

computational power. Instead of applying only a single metaheuristic, researchers 

attempt to exploit and combine the advantages of various individual 

metaheuristics (Raidl 2006). For instance, it may be desirable to have a memory 

element in the Simulated Annealing approach by incorporating the Tabu Search 

algorithm. These combinations of metaheuristics are commonly referred to as 

hybrid metaheuristics.   

Several different classifications of hybrid metaheuristics are presented by 

Blum et al. (2005), Puchinger and Raidl (2005) and Talbi (2002). There are also 

several research works describing applications of hybrid metaheuristics in the 

timetabling problems, including course and examination timetabling problems. An 

example is the hybrid multi-objective evolutionary algorithm proposed by Côté et 

al. (2005) to tackle the uncapacitated examination proximity problem. Local 

search operators, such as the simplified variable neighborhood descent, were 

implemented in order to improve the proximity cost. A method based on the Tabu 

Search and the Variable Neighborhood Search for solving a teacher/class 

timetabling problem was proposed by Kochetov et al. (2006). Computational 

results for randomly generated test instances show high efficiency in the proposed 

approach. 

Some of the latest papers that apply the idea of hybrid algorithms in the 

university course timetabling problem are as follows: Chiarandini et al. (2006) 

tackled the problem by means of an algorithm based mainly on a framework 

consisting of the successive application of construction heuristics, variable 

neighborhood descent and Simulated Annealing. Rahoual and Saad (2007) applied 

a hybrid of two metaheuristics, Genetic Algorithm and Tabu Search, to the 

timetabling problem of the University of Science and Technology Houari 

Boumediene (USTHB). We also consider a hybrid of two metaheuristics to solve 

the TACS problem in this paper.    

  

2. PROBLEM DESCRIPTION  
 

The TACS problem considered in this paper is an extension of the basic 

model presented in Gunawan et al. (2006). The basic model only considers the 

following situations: each course can only be taught by one teacher and conducted 

only once a week. On the other hand, the TACS problem considers several 

different situations, such as: 

• Some courses are divided into a number of sections due to capacity constraints 

and the number of students registered.  

• Each course can be taught by more than one teacher.  
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• Time periods are considered on a day-hour basis and courses can be conducted 

at any time period in order to increase teaching flexibility.  

The details of the TACS problem can be described as follows: a number of 

courses and course sections have to be allocated to teachers based on the teachers’ 

course preferences. These allocations would be further scheduled into time 

periods based on the teachers’ time preferences (see Figure 1 for illustration). 

Although each university has its unique timetabling requirements, the 

following description summarizes some common requirements that are related to 

both teacher assignment and course scheduling problems. These requirements 

would be considered in the proposed mathematical programming model and 

treated as hard constraints that cannot be violated. 

 

 

       Teachers               Courses/Sections            Time periods 

 

 

 

 

 

 

 

 

   

  

 

Figure 1 The TACS problem 

 

It is required that each teacher teaches at least one course and cannot teach 

more than a certain number of courses. This requirement will minimize the 

amount of teaching preparations in terms of the number of courses assigned. 

Teachers will not be assigned courses that they are unable to teach. For each 

course, the number of teachers who can teach it is limited within certain bounds, 

which depend on the number of sections offered for each course. Courses with 

few number of sections compared with those with more number of sections would 

have fewer teachers to teach. Each course section is strictly taught by only one 

teacher. All these requirements mentioned here correspond to the teacher 

assignment problem.  

The following describes the requirements of another sub-problem, the 

course scheduling problem. No teacher can be asked to teach in more than one 

course section at any time period. All the course sections taught by a teacher have 

to be spread evenly throughout a week in order to avoid unbalanced teaching load. 

For each course, only one section can be conducted in every time period. This 

requirement further ensures that students will have more opportunities to select 

courses.  

The number of course sections taught cannot exceed the number of 

classrooms available during each time period. Each course section also requires a 

certain number of time periods to be scheduled consecutively. Only one section 

can be conducted each day so that all sections can be spread evenly throughout the 

week, except when the number of sections for a particular course is more than the 

number of days in a week. Finally, all courses and their planned sections must 

appear in the timetable. 
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3. THE PROPOSED MATHEMATICAL PROGRAMMING MODEL 
 

Let I, J, and K denote the set of teachers, courses, and course sections, 

respectively. Every teacher Ii∈  will teach certain course sections based on their 

course preference list Ji, where JJ i ⊆ . We also define Kj to be the set of sections 

of course j. It is required that each teacher i teaches not more than Ni courses.    

The timetable is in the form of a weekly schedule. A week is further 

partitioned into a set of days (L) and time periods (M). In this paper, each time 

period m is assumed to be of the same duration. Each section k of course j 

( jKk ∈ ) has to be scheduled into time periods based on the number of time 

periods required, Hj. Each time period Mm∈  on day Ll ∈  has a maximum 

number of classrooms available, Clm. For simplicity, we assume that Clm is a 

constant, i.e., Clm = C for all l and all m, where C is a positive integer. Other 

required data parameters are listed below: 

PCij  value given by teacher i on the preference of being assigned to teach 

course j ( JjIi ∈∈ , )  

PTilm value given by teacher i on the preference of being assigned to teach in 

day l and time period m ( MmLlIi ∈∈∈ ,, ) 

LTj minimum number of teachers who could teach course j ( Jj ∈ ) 

UTj maximum number of teachers who could teach course j ( Jj ∈ ) 

Sj number of sections of course j ( Jj ∈ ) 

The decision variables needed in the model are defined next: 

Xijklm = 1 if teacher i teaches course j section k on day l and at time period m; 0   

otherwise ( MmLlKkJjIi j ∈∈∈∈∈ ,,,, ) 

Yijkl = 1 if teacher i teaches course j section k on day l; 0 otherwise  

 ( LlKkJjIi j ∈∈∈∈ ,,, ) 

Uijklm = 1 if teacher i teaches course j section k on day l and starts at time period 

m; 0 otherwise ( MmLlKkJjIi j ∈∈∈∈∈ ,,,, ) 

Pij = 1 if teacher i teaches course j; 0 otherwise ( JjIi ∈∈ , ) 

Li = number of course sections taught by teacher i ( Ii∈ ) 

We also let Vi denote the number of course sections taught by teacher i ( Ii∈ ) per 

day, obtained after rounding upwards to the nearest integer.  

A mathematical programming model for the TACS problem can then be 

formulated as follows: 

 

[TACS] 

Maximize ∑∑ ∑∑∑∑∑
∈ ∈ ∈ ∈ ∈ ∈ ∈

+
Ii Jj Ii Jj Kk Ll Mm

ijklmilmijij

j

XPTPPC  (1) 

subject to: 

∑∑
∈ ∈

≤
Ii Kk

ijklm

j

X 1   ( MmLlJj ∈∈∈ ,, )  (2) 












= ∑∑

∈ ∈
j

Kk Ll

ijklij SYP
j

 ( JjIi ∈∈ , ) (3)
*
 

                                                
*
  a  denotes the smallest integer greater than or equal to a 
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∑
∈

≤≤
Jj

iij NP1   ( Ii∈ ) (4) 

∑
∈

≤≤
Ii

jijj UTPLT   ( Jj ∈ ) (5) 

jijkl

Mm

ijklm HYX =∑
∈

  ( LlKkJjIi j ∈∈∈∈ ,,, ) (6) 

∑∑
∈ ∈

≤
Ii Kk

ijkl

j

Y 1  ( LlJj ∈∈ , ) (7) 

∑∑
∈ ∈

≤
Jj Kk

ijklm

j

X 1   ( MmLlIi ∈∈∈ ,, ) (8) 

∑∑ ∑
∈ ∈ ∈

≤
Ii Jj Kk

ijklm

j

CX   ( MmLl ∈∈ , ) (9) 

∑∑∑
∈ ∈ ∈

=
Ii Kk Ll

jijkl

j

SY   ( Jj ∈ ) (10) 

∑∑
∈ ∈

=
Ii Ll

ijklY 1  ( jKkJj ∈∈ , ) (11) 

0=ijklmX   ( LlKkJjIi ji ∈∈∉∈ ,,, ) (12) 

∑∑∑
∈ ∈ ∈

=
Jj Kk Ll

iijkl

j

LY   ( Ii∈ ) (13) 












=

L

L
V i

i   ( Ii∈ ) (14) 

∑∑
∈ ∈

≤
Jj Kk

iijkl

j

VY   ( LlIi ∈∈ , ) (15) 

( )
∑

−

=
+ ≥

1

0

)(

jH

t

ijklmjtmijkl UHX  ( { }1,...,1,,,, +−∈∈∈∈∈ jj HMmLlKkJjIi ) (16) 

( )
∑∑ ∑
∈ ∈

+−

=
=

Ii Ll

HM

m

ijklm

j

U

1

1

1  ( jKkJj ∈∈ , ) (17) 

∑∑∑
∈ ∈ ∈

=
Ii Ll Mm

jijklm HX   ( jKkJj ∈∈ , ) (18) 

0=ijklmU  ( { }MHMmLlKkJjIi jj ,...,2,,,, +−∈∈∈∈∈ ) (19) 

0=ijklmU  ( { }1,...,1,,,, +−∈∈∈∉∈ jji HMmLlKkJjIi ) (20) 

{ }10,X ijklm ∈  ( MmLlKkJjIi j ∈∈∈∈∈ ,,,, ) (21) 

{ }10,Yijkl ∈   ( LlKkJjIi j ∈∈∈∈ ,,, ) (22) 

{ }1,0∈ijklmU   ( MmLlKkJjIi j ∈∈∈∈∈ ,,,, ) (23) 

{ }1,0∈ijP   ( Jj,Ii ∈∈ ) (24) 

+∈ZLi   ( Ii∈ ) (25) 

+∈ZVi   ( Ii∈ ) (26) 

 

Equation (1) represents the objective function to be maximized, which 

consists of the sum of two terms: the first term refers to the total preference value 

of assigning courses to teachers, while the second term refers to the total 

preference value of assigning days and time periods to teachers to teach.  

Equation (2) ensures that at most one section can be taught in every time 

period for a particular course j. Equation (3) ensures that the variable Pij takes the 

value of 1 when teacher i teaches at least one section of course j; otherwise, it 
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would be 0. Equation (4) restricts the number of courses that can be taught by a 

teacher. In this model, it is assumed that each teacher has to teach at least one 

course. Equation (5) restricts for each course the number of teachers who could 

teach it. 

The relationship between variables Yijkl and Xijklm is shown by equation (6). If 

teacher i teaches course j section k during Hj time periods on day l, the value of 

Yijkl is equal to 1. Equation (7) ensures that for any course j, at most one section 

can be conducted each day. Equation (8) ensures that each teacher can only be 

assigned at most one course section at any time period. Equation (9) prevents the 

total number of course sections conducted per time period from exceeding the 

number of classrooms available, C. Equation (10) states that all sections for each 

course must be scheduled in the timetable. Equation (11) ensures that each course 

section can only be taught by one teacher, while equation (12) ensures that 

teachers will not be assigned courses that they are unable to teach. 

Equation (13) calculates the number of course sections taught by each 

teacher and equation (14) determines the number of course sections taught per day 

for each teacher, rounded upwards. Equation (15) helps to spread evenly all the 

course sections taught by each teacher throughout a week.  

Equation (16) expresses the requirement that each course section has to be 

scheduled and taught by a teacher in Hj time periods consecutively. If the start of 

section k of course j taught by teacher i is assigned to time period m1 of day l, i.e., 

the variable 
1ijklmU  takes the value of 1, then the following (Hj – 1) time periods 

should be assigned to the same course section. Equation (17) ensures that there is 

only one starting time period for each course section, and equation (18) further 

ensures that the number of time periods allocated to each course section meets its 

requirement. 

Additional constraints (19) and (20) for variables Uijklm are introduced to 

ensure that a course section could not be started in certain time periods if the 

remaining time periods are less than the number of time periods required, and also 

that teachers will not be assigned certain time periods for courses that they are 

unable to teach. 

Finally, constraints (21), (22), (23) and (24) impose the 0-1 restrictions for 

the decision variables Xijkl, Yijkl, Uijklm and Pij, while constraints (25) and (26) 

represent the nonnegative integer value requirement for the Li and Vi variables. 

Even though equations (3) and (14) are nonlinear, they can be rewritten as a 

linear [ ]STAC ′  model by introducing additional constraints (27) and (28) as 

follows: 

( )
jij

Kk Ll

ijklijj SPYPεS
j

≤≤−+ ∑∑
∈ ∈

1  ( JjIi ∈∈ , )  (27) 

( ) iii VLLVεL ≤≤−+ 1  ( Ii∈ )  (28) 

Here, ε  is a small positive number such that { }{ }LS j
j

1,1minmin<ε . Thus, the 

entire model can also be represented as follows: 

[TACS']: 

Maximize Objective function (1) 

subject to: 

  Constraints (2), (4) – (13), (15) – (28) 
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4. THE HYBRID ALGORITHM 
 

Despite the linearity of the [ ]STAC ′  model, there is difficulty in obtaining 

solutions to larger instances due to the presence of integer variables. As such, a 

hybrid algorithm is proposed which comprises of three main components or 

phases: (1) pre-processing phase, (2) finding an initial feasible solution 

(construction phase), and (3) modifying the initial solution (improvement phase). 

The purpose of the first phase is to construct two additional sets, jI and iLM , 

where { }j

||I

jj

j j
,...,i,iiI 21=  is the set of teachers who are willing to teach course j and 

sorted in non-increasing order of the PCij value, and 

( ) ( ) ( ){ }||||21
,...,

MLiiiiii

i m,lm,l,m,lLM
×=  is the set of time periods of teacher i 

which are sorted in non-increasing order of the PTilm value. 

The second phase focuses on building an initial feasible solution. We divide 

the TACS problem into two interrelated sub-problems: teacher assignment and 

course scheduling problems. The first sub-problem can be formulated as another 

mathematical programming model presented below with the following decision 

variables: 

ijkX ′  = 1 if teacher i teaches course j section k; 0 otherwise ( jKkJjIi ∈∈∈ ,, ) 

ijP′  = 1 if teacher i teaches course j; 0 otherwise. ( JjIi ∈∈ , ) 

 

[TA]: 

Maximize ∑∑
∈ ∈

′
Ii Jj

ijijPPC   (29) 

subject to: 












′=′ ∑

∈
j

Kk

ijkij SXP
j

 ( JjIi ∈∈ , ) (30) 

∑
∈

≤′≤
Jj

iij NP1  ( Ii∈ ) (31) 

∑
∈

≤′≤
Ii

jijj UTPLT  ( Jj ∈ ) (32) 

0=′
ijkX  ( ji KkJjIi ∈∉∈ ,, ) (33) 

∑
∈

=′
Ii

ijkX 1 ( jKkJj ∈∈ , ) (34) 

{ }1,0∈′
ijkX  ( jKkJjIi ∈∈∈ ,, ) (35) 

{ }1,0∈′
ijP  ( JjIi ∈∈ , ) (36) 

 

In the [TA] model, the objective function (29) only involves the course 

preference function. Equation (30) ensures that when teacher i teaches at least one 

section of course j, the value of Pij would be 1, meaning that teacher i teaches 

course j. Equation (31) limits the number of courses taught by each teacher. 

Equation (32) restricts for each course the number of teachers who could teach it. 

Equation (33) ensures that teachers will not be assigned courses that they are 

unable to teach. Equation (34) assumes that each course section can only be taught 

by one teacher. Finally, constraints (35) and (36) represent the integrality 

constraints for the decision variables ijkX ′ and ijP′ . The optimal solution of [TA] 
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model is denoted as initial_ta. Note that equation (30) is nonlinear and it can also 

be linearized by the following equation with sufficiently small but positive ε: 
 

( ) ijj

Kk

ijkijj PSXPεS
j

′≤′≤−′+ ∑
∈

1   ( )JjI,i ∈∈  (37) 

The second phase continues with solving the second sub-problem, the course 

scheduling problem. To build an initial feasible solution to this sub-problem, we 

propose a simple greedy heuristic which is similar to the heuristic in Gunawan et 

al. (2007a). A feasible initial solution, initial_cs, is first constructed by satisfying 

as much course and time period preferences as possible. For each course j, a 

teacher with the highest course preference is selected from the list Ij. This course j 

is then scheduled to day l and time period m with the highest time period 

preference by taking list LMi into consideration.  

In the third phase, the improvement phase, we provide a framework 

involving the hybridization of Simulated Annealing (SA) and Tabu Search to 

develop and improve the quality of the solution. The proposed hybrid algorithm is 

mainly based on Simulated Annealing (Kirkpatrick 1983). The main difference of 

the standard SA and the proposed SA lies in the additional elements or strategies 

introduced. Several Tabu Search features, such as tabu length, tabu list and the 

intensification strategy are embedded in the algorithm for further improvement 

(Glover 1989). 

The phase is started by applying two operations, the re-allocation of teachers 

to courses and course sections, followed by rescheduling these changes into days 

and time periods. The first operation is started by randomly choosing course j that 

is currently taught by teacher i1, followed by finding another new teacher 

( )jIiii ∈≠ 212  without violating the maximum load
2i

N . Two possible moves will 

be taken into consideration as shown in Figure 2.  

 

 
 

Figure 2 Two possible moves 

 

We choose either teacher i2 to be added to the list of teachers who teach 

course j and take over some of the course sections that are currently taught by 

teacher i1 (first possible move), or teacher i2 will fully replace teacher i1 on course 

j (second possible move). However, if the number of teachers who teach the 

selected course reaches the maximum number of teachers allowed (UTj), we can 

only select the last alternative. Once this operation is completed, the change of 

objective function ∆ will then be evaluated by Algorithm 1 (Figure 3). 
 

 

 

Course 1 

i2 

    Section 1  Section 2  Section 3   

i2 i2 i1 i2 i2 

i1 

2nd move 1st move 

i1 i1 
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Algorithm 1:  
ACCEPT-REJECT SA ( ) 

(1) Calculate the new solution, new_sol 

(2) Calculate the change of the objective function, ∆ := new_sol – current_sol  

(3) If  ∆ > 0 

(4)  Update the current solution, current_sol 

(5)  If current_sol is better than best_sol 

(6)   Update the best solution, best _sol = current_sol 

(7)  Update tabu list 

(8) else 
(9)  Choose a random number r1 uniformly from [0,1] 
(10) Check whether the new solution is taboo 

(11) If nT/er
∆−<1  and the new solution is not taboo 

(12)  Accept the new solution, new_sol 

(13)  Update the current solution, current_sol 

(14)  Update tabu list 

(15) else 
(16)  Return to the current solution, current_sol 
(17)  Update tabu list 

 

Figure 3 Evaluation process of SA 

 

As described earlier, several features from Tabu Search are incorporated to 

further evaluate the modification. The new allocation would be accepted if it can 

provide a better allocation than the previous one. This admissible move can be 

either a non-tabu or a tabu move which passes the aspiration level criterion. 

In the standard Simulated Annealing algorithm, a deteriorating move would 

be evaluated by using a probabilistic acceptance criterion: 

nT

n eTP
∆−

=∆ ),/Acceptance( , (38) 

where Tn is the temperature at iteration n. In an effort to avoid excessive or 

unnecessary moves which will deteriorate the objective function value especially 

during high temperatures, we add an additional evaluation step after the 

probabilistic acceptance calculation. When a move belongs to the tabu list for a 

given iteration, it is not allowed to be accepted, i.e., only a non-tabu move can be 

accepted. Finally, the tabu list is updated. The tabu list in the first operation is 

denoted as tabu1, which contains pairs of teacher i and course j visited in the 

last length1 iterations.  

 The improvement phase is then continued to the second operation. Let 
2i

K  

be the set of sections of course j taken over by teacher i2. Suppose the teacher 

reallocation is accepted. We check whether it is possible to allocate teacher i2 to 

the previous day and time periods scheduled for teacher i1 to teach course j section 

k, where 
2i

Kk ∈ . Otherwise, a new set of days and time periods without constraint 

violation has to be found. We also introduce another tabu list for this operation 

(tabu2), which contains a list of {teacher i, course j, section k, day l, and starting 

time period m} visited in the last length2 iterations. However if the first 

operation is rejected, the second operation is still conducted by choosing section k 

of course j randomly, where jKk ∈ . This course section will then be allocated to 

other time periods. The operation is also continued by evaluating the objective 

function value and checking the tabu list, tabu3. In this operation, the tabu list 
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only contains a list of {course j, day l, and starting time period m}, which is 

forbidden in the last length3 iterations.  

An intensification strategy is also applied in the proposed algorithm. This 

strategy focuses the search once again starting from the best solution obtained if 

we cannot improve the solution obtained so far within a certain number of 

iterations (limit). Finally, the entire algorithm will be terminated if the total 

number of iterations of the outer loop reaches the preset maximum number of 

iterations, max_count. 

The details of the proposed algorithm are presented in Figure 4. 

 

 
Figure 4 Flowchart of the proposed algorithm 
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5. COMPUTATIONAL RESULTS 
 

 Computational experiments to evaluate the performance of the proposed 

algorithm were performed on two different groups of randomly generated data 

sets with distinct characteristics. Tables I and II summarize the characteristics of 

each data set. The main difference between these two groups lies in the number of 

teachers |I| and number of courses |J|.  The algorithm was implemented using C++ 

on a 2.6GHz Intel Pentium 4 with 512 MB of RAM under the Microsoft Windows 

XP Operating System. The optimal solutions of [TACS'] and [TA] models were 

obtained by using ILOG OPL Studio 4.2 with the same operating system. 

 

Table I  

CHARACTERISTICS OF GROUP I DATA SETS  

Data set 
Number of 

teachers 

Number 

of courses 

Number 

of sections 

Number 

of days 

Number of 
time periods 

per day 

Maximum 
load per 

teacher 

Number of 
classrooms 

available 

5×5_1 5 5 2 5 4 1 4 

5×5_2 5 5 2 5 4 2 4 
10×10_1 10 10 2 5 8 1 4 

10×10_2 10 10 2 5 8 2 4 

15×15_1 15 15 2 5 8 1 6 

15×15_2 15 15 2 5 8 2 6 

20×20_1 20 20 2 5 8 1 8 

20×20_2 20 20 2 5 8 2 8 

 

Table II 

CHARACTERISTICS OF GROUP II DATA SETS 

Data set 

Number 

of 

teachers 

Number 

of 

courses 

Minimum 

number of 

sections 

Maximum 

number of 

sections 

Number 
of days 

Number of 

time periods 

per day 

Maximum 

load per 

teacher 

Number of 

classrooms 

available 

10×20_1 10 20 2 3 5 8 4 10 

10×20_2 10 20 2 4 5 8 4 10 

20×30_1 20 30 2 3 5 8 3 15 

20×30_2 20 30 2 4 5 8 3 15 

20×40_1 20 40 2 3 5 8 4 15 

20×40_2 20 40 2 4 5 8 4 15 
30×60_1 30 60 2 3 5 8 4 20 

30×60_2 30 60 2 4 5 8 4 20 

 

The values of the parameters used in the computational study are 

summarized in Table III. These values are determined experimentally to ensure a 

compromise between computation time and solution quality.  

The [TACS'] model was initially solved by ILOG OPL Studio 4.2. 

Unfortunately, the optimal solution for data sets 20×40_1, 20×40_2, 30×60_1 and 

30×60_2 could not be computed within the time limit of 24 hours. Thus, we only 

report the best known solutions that could be obtained within 24 hours for those 

data sets. These numerical results indicate that the computing time required to 

find an optimal solution to the problem becomes prohibitively large when the 

problem size increases.  

For each data set, the proposed algorithm was executed 20 times with 

different random seeds. Table IV summarizes the overall results that include the 

average objective function value obtained, the best objective function value 

obtained and the average CPU time required to obtain the solution (in seconds). 

The results obtained were compared with the best known/optimal solutions 

generated by ILOG OPL Studio 4.2 and those of earlier work (Gunawan et al. 

2007b), which only applied the idea of Simulated Annealing (Algorithm SA1). 
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Table III 

PARAMETER SETTINGS FOR HYBRID ALGORITHM 
Parameter Value 

Number of iterations, max_count |I||L||M| 

Initial temperature, T0 10,000 

Number of neighborhood moves at each temperature Tn, 
neighbor_moves 

|I||L||M| 

Cooling factor α 0.95 

Number of non-improvement iterations prior to 

intensification, limit 
0.05|I||L||M| 

Length of tabu1, length1 0.25|I| for Group I data sets 

0.5|I| for Group II data sets 

Length of tabu2, length2 |L| for Group I data sets 

2|L| for Group II data sets 

Length of tabu3, length3 |L| for Group I data sets 

2|L| for Group II data sets 

 

Table IV  

COMPUTATIONAL RESULTS OF PROPOSED HYBRID ALGORITHM AND 

OTHER SOLUTION APPROACHES 
Solution obtained by 

commercial software 
Algorithm SA1 Hybrid Algorithm 

 

 

Data set 

 

 

 

Objective 

function 

value 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

Average 

objective 

function 

value 

Best 

objective 

function 

value 

Average 

CPU 

time 

(seconds) 

5×5_1 980 1.82 930 930 0.09 980 980 0.77 

5×5_2 1,210 2.25 1,130 1,130 0.08 1,210 1,210 0.71 

10×10_1 2,200 22.15 2,020 2,020 1.59 2,200 2,200 5.91 

10×10_2 2,780 19.70 2,560 2,560 1.48 2,777.5 2,780 4.39 

15×15_1 3,270 200.32 3,140 3,140 5.30 3,270 3,270 18.18 

15×15_2 4,150 189.92 3,850 3,850 4.91 4,141 4,150 18.78 

20×20_1 4,540 172.26 4,420 4,420 10.94 4,540 4,540 30.63 

20×20_2 5,660 663.78 5,460 5,460 10.98 5,574.5 5,610 30.30 

10×20_1 7,800 647.54 6,913 6,940 3.79 7,429.5 7,490 6.47 

10×20_2 7,660 1,114.60 6,598 6,670 3.98 7,186 7,360 6.81 

20×30_1 11,140 9,265.63 9,621 9,680 6.72 10,718.5 10,920 37.73 

20×30_2 12,880 55,032.5 11,132 11,370 10.96 12,254.5 12,390 29.79 

20×40_1 13,210a - b 11,680.5 11,940 13.45 12,704 12,920 128.36 

20×40_2 16,190a - b 14,136 14,200 19.86 14,957.5 15,120 101.42 

30×60_1 21,890
a
 -

 b
 19,250 19,300 52.01 20,806.5 20,910 379.60 

30×60_2 24,480
a
 -

 b
 20,643 20,930 78.98 22,793.5 23,180 394.47 

a
 The best known solution obtained within 24 hours 

b CPU time = 24 hours 
 

Based on the average objective function value, we observe that the hybrid 

algorithm is able to obtain better results than those obtained by Algorithm SA1. In 

order to compare the obtained results to the optimal solutions, we also show the 

best known solution for each data set. The hybrid algorithm is able to obtain the 

optimal solution for most of Group I data sets.  

From the average CPU times, we observe that the computation time taken by 

algorithm SA1 is smaller than the computation time taken by the hybrid algorithm 

in all tests. This is due to the difference in the improvement phases of both 

algorithms, with the evaluation process running twice in the improvement phase 

of the hybrid algorithm. Nevertheless, better results on the objective function 

values are obtained. 



13 

Table V compares the objective function value obtained between Algorithm 

SA1 and the proposed hybrid algorithm. The comparison is done by calculating 

the deviation of the best and the average objective function values of the proposed 

algorithms from the best known/optimal value, denoted as Φ1 and Φ2: 








 −×=
solutionmalknown/optibest

algorithmofvaluefunctionobjectiveaveragesolutionmalknown/optibest
1001Φ  








 −×=
solutionmalknown/optibest

algorithmofvaluefunctionobjectivebestsolutionmalknown/optibest
1002Φ  

 

Table V  

COMPARISON OF DEVIATIONS FOR ALGORITHM SA1 AND THE 

HYBRID ALGORITHM 
Algorithm SA1 Hybrid Algorithm 

Data set 

 
Φ1 

(A) 
Φ2 

(B) 
Φ1 

(C) 
Φ2 

(D) 

 

(A) – (C) 

 

(B) – (D) 

5×5_1 5.10 5.10 0.00 0.00 5.10 5.10 

5×5_2 6.61 6.61 0.00 0.00 6.61 6.61 

10×10_1 8.18 8.18 0.00 0.00 8.18 8.18 

10×10_2 7.91 7.91 0.09 0.00 7.82 7.91 

15×15_1 3.98 3.98 0.00 0.00 3.98 3.98 

15×15_2 7.23 7.23 0.22 0.00 7.01 7.23 

20×20_1 2.64 2.64 0.00 0.00 2.64 2.64 
20×20_2 3.53 3.53 1.51 0.88 2.02 2.65 

10×20_1 11.37 11.03 4.75 3.97 6.62 7.05 

10×20_2 13.86 12.92 6.19 3.92 7.68 9.01 
20×30_1 13.64 13.11 3.78 1.97 9.85 11.13 

20×30_2 13.57 11.72 4.86 3.80 8.72 7.92 

20×40_1 11.58 9.61 3.83 2.20 7.75 7.42 

20×40_2 12.69 12.29 7.61 6.61 5.07 5.68 

30×60_1 12.06 11.83 4.95 4.48 7.11 7.35 

30×60_2 15.67 14.50 6.89 5.31 8.78 9.19 

 

The proposed hybrid algorithm provides better results in terms of the quality 

of the solution as indicated by Φ1 and Φ2. We observe that the proposed hybrid 

algorithm yields good solutions with the values of Φ1 and Φ2 not exceeding 

7.61% and 6.61% respectively. The hybrid algorithm outperforms SA1 in terms of 

the objective function values obtained. The values of Φ1 and Φ2 are reduced by up 

to 9.85% and 11.13% respectively. 

 

6. CONCLUSIONS 
 

The main motivation for this work is to consider two interrelated sub-

problems, teacher assignment and course scheduling problems simultaneously. A 

new mathematical programming model for the associated timetabling problem has 

been proposed. In this work, we proposed a hybrid algorithm that incorporates 

Simulated Annealing and Tabu Search algorithms for solving the problem. 

Computational experiments show that the proposed algorithm is able to produce 

good quality solutions within reasonable computation time when compared to 

previous research work. 

A possible future research area is to develop other methods that might solve 

the problem more efficiently. For example, the Tabu Search framework was 

designed with only short term memory and it might be useful to implement other 
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strategies, including long term memory and diversification strategy. Another 

future research area is to incorporate additional requirements that might be 

required by other universities and then solve the resulting problem using the 

hybrid algorithm.  It is also possible to consider extending the hybrid algorithm to 

solve other types of timetabling problems.   
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