
1

A Hybrid Algorithm for the University Course Timetabling Problem

Aldy Gunawan
†
, Ng Kien Ming and Poh Kim Leng

Department of Industrial and Systems Engineering, National University of

Singapore

10 Kent Ridge Crescent, Singapore 119260

aldygunawan@nus.edu.sg isenkm@nus.edu.sg isepohkl@nus.edu.sg

Abstract In this paper, we introduce a new mathematical programming model

that combines teacher assignment and course scheduling problems

simultaneously. Due to the limitation of a mathematical programming approach to

solve large problem instances, we propose a hybrid algorithm that combines two

well known metaheuristics, Simulated Annealing (SA) and Tabu Search (TS). In

the proposed algorithm, useful features of each metaheuristic are exploited to

obtain better solutions. Several randomly generated problem instances are used to

evaluate the performance of the proposed algorithm. The computational results

illustrate the ability of the hybrid algorithm to provide good quality solutions to

the problem instances within reasonable computation time.

Key Words: Timetabling problem; hybrid algorithm; Simulated Annealing; Tabu

Search

1. INTRODUCTION

The timetabling problem is an important and practical problem that is faced

by many schools and universities. This problem has been the subject of extensive

research efforts due to its wide applicability. It includes a wide range of

scheduling problems: course and examination timetabling problems (Carter and

Laporte 1998). The course timetabling problem can be further decomposed into

five different sub-problems: teacher assignment, class-teacher timetabling, course

scheduling, student scheduling and classroom assignment. Two significant

developments that stirred the interest in this problem are (Johnson 1993):

• Changes in the courses offered, facility requirements, number of students and

teachers involved.

• Development in the computing facilities in the education institutions.

However, many research papers that tackle this problem only focus on one of the

sub-problems. For example, it is often assumed that the teacher assignment

problem has been solved earlier before solving the course scheduling problem, as

in the works of Al-Yakoob and Sherali (2006, 2007).

In this paper, we introduce a problem that is a combination of teacher

assignment and course scheduling problems at the university level, and we call it

the Teacher Assignment-Course Scheduling problem (TACS problem). We also

formulate a mathematical programming model that considers both problems

simultaneously. The problem characteristics that we address have arisen in the

context of a university in Indonesia. Although timetabling problems can vary

extensively in different universities depending on their specific requirements and

conditions, a number of commonly encountered requirements would be

considered in the model.

†
 Corresponding author

2

A variety of algorithms has already been proposed to solve timetabling

problems, including graph colouring algorithms (Burke et al. 1998), integer

programming approaches (Al-Yakoob and Sherali 2006, 2007; Daskalaki et al.

2004), and heuristics (Aubin and Ferland 1989; Caramia et al. 2001). Over the last

few years, metaheuristics have proven to be highly useful for approximately

solving timetabling problems in practice. Simulated Annealing (Abramson 1991;

Elmohamed et al. 1998; Bai et al. 2006) and Tabu Search (Burke et al. 2003;

Costa 1994; Valdes et al. 2002; White et al.2007) are examples of metaheuristics

applied to the timetabling problem.

Various combinations of algorithms or metaheuristics have also been

reported in the literature for solving difficult optimization problems. This recent

area of research has become more important and viable due to increasing

computational power. Instead of applying only a single metaheuristic, researchers

attempt to exploit and combine the advantages of various individual

metaheuristics (Raidl 2006). For instance, it may be desirable to have a memory

element in the Simulated Annealing approach by incorporating the Tabu Search

algorithm. These combinations of metaheuristics are commonly referred to as

hybrid metaheuristics.

Several different classifications of hybrid metaheuristics are presented by

Blum et al. (2005), Puchinger and Raidl (2005) and Talbi (2002). There are also

several research works describing applications of hybrid metaheuristics in the

timetabling problems, including course and examination timetabling problems. An

example is the hybrid multi-objective evolutionary algorithm proposed by Côté et

al. (2005) to tackle the uncapacitated examination proximity problem. Local

search operators, such as the simplified variable neighborhood descent, were

implemented in order to improve the proximity cost. A method based on the Tabu

Search and the Variable Neighborhood Search for solving a teacher/class

timetabling problem was proposed by Kochetov et al. (2006). Computational

results for randomly generated test instances show high efficiency in the proposed

approach.

Some of the latest papers that apply the idea of hybrid algorithms in the

university course timetabling problem are as follows: Chiarandini et al. (2006)

tackled the problem by means of an algorithm based mainly on a framework

consisting of the successive application of construction heuristics, variable

neighborhood descent and Simulated Annealing. Rahoual and Saad (2007) applied

a hybrid of two metaheuristics, Genetic Algorithm and Tabu Search, to the

timetabling problem of the University of Science and Technology Houari

Boumediene (USTHB). We also consider a hybrid of two metaheuristics to solve

the TACS problem in this paper.

2. PROBLEM DESCRIPTION

The TACS problem considered in this paper is an extension of the basic

model presented in Gunawan et al. (2006). The basic model only considers the

following situations: each course can only be taught by one teacher and conducted

only once a week. On the other hand, the TACS problem considers several

different situations, such as:

• Some courses are divided into a number of sections due to capacity constraints

and the number of students registered.

• Each course can be taught by more than one teacher.

3

• Time periods are considered on a day-hour basis and courses can be conducted

at any time period in order to increase teaching flexibility.

The details of the TACS problem can be described as follows: a number of

courses and course sections have to be allocated to teachers based on the teachers’

course preferences. These allocations would be further scheduled into time

periods based on the teachers’ time preferences (see Figure 1 for illustration).

Although each university has its unique timetabling requirements, the

following description summarizes some common requirements that are related to

both teacher assignment and course scheduling problems. These requirements

would be considered in the proposed mathematical programming model and

treated as hard constraints that cannot be violated.

 Teachers Courses/Sections Time periods

Figure 1 The TACS problem

It is required that each teacher teaches at least one course and cannot teach

more than a certain number of courses. This requirement will minimize the

amount of teaching preparations in terms of the number of courses assigned.

Teachers will not be assigned courses that they are unable to teach. For each

course, the number of teachers who can teach it is limited within certain bounds,

which depend on the number of sections offered for each course. Courses with

few number of sections compared with those with more number of sections would

have fewer teachers to teach. Each course section is strictly taught by only one

teacher. All these requirements mentioned here correspond to the teacher

assignment problem.

The following describes the requirements of another sub-problem, the

course scheduling problem. No teacher can be asked to teach in more than one

course section at any time period. All the course sections taught by a teacher have

to be spread evenly throughout a week in order to avoid unbalanced teaching load.

For each course, only one section can be conducted in every time period. This

requirement further ensures that students will have more opportunities to select

courses.

The number of course sections taught cannot exceed the number of

classrooms available during each time period. Each course section also requires a

certain number of time periods to be scheduled consecutively. Only one section

can be conducted each day so that all sections can be spread evenly throughout the

week, except when the number of sections for a particular course is more than the

number of days in a week. Finally, all courses and their planned sections must

appear in the timetable.

Teacher 1

Teacher 2

Teacher 3

:
:

:

Teacher i

Course 1 Section 1
Course 1 Section 2

Course 2 Section 1

:

:

:

Course j Section k

 Day 1 Day 2 Day 3 Day 4 Day 5

Period 1

Period 2

Period 3

Period 4

Period 5

Period 6

Period 7

Period 8

4

3. THE PROPOSED MATHEMATICAL PROGRAMMING MODEL

Let I, J, and K denote the set of teachers, courses, and course sections,

respectively. Every teacher Ii∈ will teach certain course sections based on their

course preference list Ji, where JJ i ⊆ . We also define Kj to be the set of sections

of course j. It is required that each teacher i teaches not more than Ni courses.

The timetable is in the form of a weekly schedule. A week is further

partitioned into a set of days (L) and time periods (M). In this paper, each time

period m is assumed to be of the same duration. Each section k of course j

(jKk ∈) has to be scheduled into time periods based on the number of time

periods required, Hj. Each time period Mm∈ on day Ll ∈ has a maximum

number of classrooms available, Clm. For simplicity, we assume that Clm is a

constant, i.e., Clm = C for all l and all m, where C is a positive integer. Other

required data parameters are listed below:

PCij value given by teacher i on the preference of being assigned to teach

course j (JjIi ∈∈ ,)

PTilm value given by teacher i on the preference of being assigned to teach in

day l and time period m (MmLlIi ∈∈∈ ,,)

LTj minimum number of teachers who could teach course j (Jj ∈)

UTj maximum number of teachers who could teach course j (Jj ∈)

Sj number of sections of course j (Jj ∈)

The decision variables needed in the model are defined next:

Xijklm = 1 if teacher i teaches course j section k on day l and at time period m; 0

otherwise (MmLlKkJjIi j ∈∈∈∈∈ ,,,,)

Yijkl = 1 if teacher i teaches course j section k on day l; 0 otherwise

 (LlKkJjIi j ∈∈∈∈ ,,,)

Uijklm = 1 if teacher i teaches course j section k on day l and starts at time period

m; 0 otherwise (MmLlKkJjIi j ∈∈∈∈∈ ,,,,)

Pij = 1 if teacher i teaches course j; 0 otherwise (JjIi ∈∈ ,)

Li = number of course sections taught by teacher i (Ii∈)

We also let Vi denote the number of course sections taught by teacher i (Ii∈) per

day, obtained after rounding upwards to the nearest integer.

A mathematical programming model for the TACS problem can then be

formulated as follows:

[TACS]

Maximize ∑∑ ∑∑∑∑∑
∈ ∈ ∈ ∈ ∈ ∈ ∈

+
Ii Jj Ii Jj Kk Ll Mm

ijklmilmijij

j

XPTPPC (1)

subject to:

∑∑
∈ ∈

≤
Ii Kk

ijklm

j

X 1 (MmLlJj ∈∈∈ ,,) (2)

= ∑∑

∈ ∈
j

Kk Ll

ijklij SYP
j

 (JjIi ∈∈ ,) (3)
*

*
 a denotes the smallest integer greater than or equal to a

5

∑
∈

≤≤
Jj

iij NP1 (Ii∈) (4)

∑
∈

≤≤
Ii

jijj UTPLT (Jj ∈) (5)

jijkl

Mm

ijklm HYX =∑
∈

 (LlKkJjIi j ∈∈∈∈ ,,,) (6)

∑∑
∈ ∈

≤
Ii Kk

ijkl

j

Y 1 (LlJj ∈∈ ,) (7)

∑∑
∈ ∈

≤
Jj Kk

ijklm

j

X 1 (MmLlIi ∈∈∈ ,,) (8)

∑∑ ∑
∈ ∈ ∈

≤
Ii Jj Kk

ijklm

j

CX (MmLl ∈∈ ,) (9)

∑∑∑
∈ ∈ ∈

=
Ii Kk Ll

jijkl

j

SY (Jj ∈) (10)

∑∑
∈ ∈

=
Ii Ll

ijklY 1 (jKkJj ∈∈ ,) (11)

0=ijklmX (LlKkJjIi ji ∈∈∉∈ ,,,) (12)

∑∑∑
∈ ∈ ∈

=
Jj Kk Ll

iijkl

j

LY (Ii∈) (13)

=

L

L
V i

i (Ii∈) (14)

∑∑
∈ ∈

≤
Jj Kk

iijkl

j

VY (LlIi ∈∈ ,) (15)

()
∑

−

=
+ ≥

1

0

)(

jH

t

ijklmjtmijkl UHX ({ }1,...,1,,,, +−∈∈∈∈∈ jj HMmLlKkJjIi) (16)

()
∑∑ ∑
∈ ∈

+−

=
=

Ii Ll

HM

m

ijklm

j

U

1

1

1 (jKkJj ∈∈ ,) (17)

∑∑∑
∈ ∈ ∈

=
Ii Ll Mm

jijklm HX (jKkJj ∈∈ ,) (18)

0=ijklmU ({ }MHMmLlKkJjIi jj ,...,2,,,, +−∈∈∈∈∈) (19)

0=ijklmU ({ }1,...,1,,,, +−∈∈∈∉∈ jji HMmLlKkJjIi) (20)

{ }10,X ijklm ∈ (MmLlKkJjIi j ∈∈∈∈∈ ,,,,) (21)

{ }10,Yijkl ∈ (LlKkJjIi j ∈∈∈∈ ,,,) (22)

{ }1,0∈ijklmU (MmLlKkJjIi j ∈∈∈∈∈ ,,,,) (23)

{ }1,0∈ijP (Jj,Ii ∈∈) (24)

+∈ZLi (Ii∈) (25)

+∈ZVi (Ii∈) (26)

Equation (1) represents the objective function to be maximized, which

consists of the sum of two terms: the first term refers to the total preference value

of assigning courses to teachers, while the second term refers to the total

preference value of assigning days and time periods to teachers to teach.

Equation (2) ensures that at most one section can be taught in every time

period for a particular course j. Equation (3) ensures that the variable Pij takes the

value of 1 when teacher i teaches at least one section of course j; otherwise, it

6

would be 0. Equation (4) restricts the number of courses that can be taught by a

teacher. In this model, it is assumed that each teacher has to teach at least one

course. Equation (5) restricts for each course the number of teachers who could

teach it.

The relationship between variables Yijkl and Xijklm is shown by equation (6). If

teacher i teaches course j section k during Hj time periods on day l, the value of

Yijkl is equal to 1. Equation (7) ensures that for any course j, at most one section

can be conducted each day. Equation (8) ensures that each teacher can only be

assigned at most one course section at any time period. Equation (9) prevents the

total number of course sections conducted per time period from exceeding the

number of classrooms available, C. Equation (10) states that all sections for each

course must be scheduled in the timetable. Equation (11) ensures that each course

section can only be taught by one teacher, while equation (12) ensures that

teachers will not be assigned courses that they are unable to teach.

Equation (13) calculates the number of course sections taught by each

teacher and equation (14) determines the number of course sections taught per day

for each teacher, rounded upwards. Equation (15) helps to spread evenly all the

course sections taught by each teacher throughout a week.

Equation (16) expresses the requirement that each course section has to be

scheduled and taught by a teacher in Hj time periods consecutively. If the start of

section k of course j taught by teacher i is assigned to time period m1 of day l, i.e.,

the variable
1ijklmU takes the value of 1, then the following (Hj – 1) time periods

should be assigned to the same course section. Equation (17) ensures that there is

only one starting time period for each course section, and equation (18) further

ensures that the number of time periods allocated to each course section meets its

requirement.

Additional constraints (19) and (20) for variables Uijklm are introduced to

ensure that a course section could not be started in certain time periods if the

remaining time periods are less than the number of time periods required, and also

that teachers will not be assigned certain time periods for courses that they are

unable to teach.

Finally, constraints (21), (22), (23) and (24) impose the 0-1 restrictions for

the decision variables Xijkl, Yijkl, Uijklm and Pij, while constraints (25) and (26)

represent the nonnegative integer value requirement for the Li and Vi variables.

Even though equations (3) and (14) are nonlinear, they can be rewritten as a

linear []STAC ′ model by introducing additional constraints (27) and (28) as

follows:

()
jij

Kk Ll

ijklijj SPYPεS
j

≤≤−+ ∑∑
∈ ∈

1 (JjIi ∈∈ ,) (27)

() iii VLLVεL ≤≤−+ 1 (Ii∈) (28)

Here, ε is a small positive number such that { }{ }LS j
j

1,1minmin<ε . Thus, the

entire model can also be represented as follows:

[TACS']:

Maximize Objective function (1)

subject to:

 Constraints (2), (4) – (13), (15) – (28)

7

4. THE HYBRID ALGORITHM

Despite the linearity of the []STAC ′ model, there is difficulty in obtaining

solutions to larger instances due to the presence of integer variables. As such, a

hybrid algorithm is proposed which comprises of three main components or

phases: (1) pre-processing phase, (2) finding an initial feasible solution

(construction phase), and (3) modifying the initial solution (improvement phase).

The purpose of the first phase is to construct two additional sets, jI and iLM ,

where { }j

||I

jj

j j
,...,i,iiI 21= is the set of teachers who are willing to teach course j and

sorted in non-increasing order of the PCij value, and

() () (){ }||||21
,...,

MLiiiiii

i m,lm,l,m,lLM
×= is the set of time periods of teacher i

which are sorted in non-increasing order of the PTilm value.

The second phase focuses on building an initial feasible solution. We divide

the TACS problem into two interrelated sub-problems: teacher assignment and

course scheduling problems. The first sub-problem can be formulated as another

mathematical programming model presented below with the following decision

variables:

ijkX ′ = 1 if teacher i teaches course j section k; 0 otherwise (jKkJjIi ∈∈∈ ,,)

ijP′ = 1 if teacher i teaches course j; 0 otherwise. (JjIi ∈∈ ,)

[TA]:

Maximize ∑∑
∈ ∈

′
Ii Jj

ijijPPC (29)

subject to:

′=′ ∑

∈
j

Kk

ijkij SXP
j

 (JjIi ∈∈ ,) (30)

∑
∈

≤′≤
Jj

iij NP1 (Ii∈) (31)

∑
∈

≤′≤
Ii

jijj UTPLT (Jj ∈) (32)

0=′
ijkX (ji KkJjIi ∈∉∈ ,,) (33)

∑
∈

=′
Ii

ijkX 1 (jKkJj ∈∈ ,) (34)

{ }1,0∈′
ijkX (jKkJjIi ∈∈∈ ,,) (35)

{ }1,0∈′
ijP (JjIi ∈∈ ,) (36)

In the [TA] model, the objective function (29) only involves the course

preference function. Equation (30) ensures that when teacher i teaches at least one

section of course j, the value of Pij would be 1, meaning that teacher i teaches

course j. Equation (31) limits the number of courses taught by each teacher.

Equation (32) restricts for each course the number of teachers who could teach it.

Equation (33) ensures that teachers will not be assigned courses that they are

unable to teach. Equation (34) assumes that each course section can only be taught

by one teacher. Finally, constraints (35) and (36) represent the integrality

constraints for the decision variables ijkX ′ and ijP′ . The optimal solution of [TA]

8

model is denoted as initial_ta. Note that equation (30) is nonlinear and it can also

be linearized by the following equation with sufficiently small but positive ε:

() ijj

Kk

ijkijj PSXPεS
j

′≤′≤−′+ ∑
∈

1 ()JjI,i ∈∈ (37)

The second phase continues with solving the second sub-problem, the course

scheduling problem. To build an initial feasible solution to this sub-problem, we

propose a simple greedy heuristic which is similar to the heuristic in Gunawan et

al. (2007a). A feasible initial solution, initial_cs, is first constructed by satisfying

as much course and time period preferences as possible. For each course j, a

teacher with the highest course preference is selected from the list Ij. This course j

is then scheduled to day l and time period m with the highest time period

preference by taking list LMi into consideration.

In the third phase, the improvement phase, we provide a framework

involving the hybridization of Simulated Annealing (SA) and Tabu Search to

develop and improve the quality of the solution. The proposed hybrid algorithm is

mainly based on Simulated Annealing (Kirkpatrick 1983). The main difference of

the standard SA and the proposed SA lies in the additional elements or strategies

introduced. Several Tabu Search features, such as tabu length, tabu list and the

intensification strategy are embedded in the algorithm for further improvement

(Glover 1989).

The phase is started by applying two operations, the re-allocation of teachers

to courses and course sections, followed by rescheduling these changes into days

and time periods. The first operation is started by randomly choosing course j that

is currently taught by teacher i1, followed by finding another new teacher

()jIiii ∈≠ 212 without violating the maximum load
2i

N . Two possible moves will

be taken into consideration as shown in Figure 2.

Figure 2 Two possible moves

We choose either teacher i2 to be added to the list of teachers who teach

course j and take over some of the course sections that are currently taught by

teacher i1 (first possible move), or teacher i2 will fully replace teacher i1 on course

j (second possible move). However, if the number of teachers who teach the

selected course reaches the maximum number of teachers allowed (UTj), we can

only select the last alternative. Once this operation is completed, the change of

objective function ∆ will then be evaluated by Algorithm 1 (Figure 3).

Course 1

i2

 Section 1 Section 2 Section 3

i2 i2 i1 i2 i2

i1

2nd move 1st move

i1 i1

9

Algorithm 1:
ACCEPT-REJECT SA ()

(1) Calculate the new solution, new_sol

(2) Calculate the change of the objective function, ∆ := new_sol – current_sol

(3) If ∆ > 0

(4) Update the current solution, current_sol

(5) If current_sol is better than best_sol

(6) Update the best solution, best _sol = current_sol

(7) Update tabu list

(8) else
(9) Choose a random number r1 uniformly from [0,1]
(10) Check whether the new solution is taboo

(11) If nT/er
∆−<1 and the new solution is not taboo

(12) Accept the new solution, new_sol

(13) Update the current solution, current_sol

(14) Update tabu list

(15) else
(16) Return to the current solution, current_sol
(17) Update tabu list

Figure 3 Evaluation process of SA

As described earlier, several features from Tabu Search are incorporated to

further evaluate the modification. The new allocation would be accepted if it can

provide a better allocation than the previous one. This admissible move can be

either a non-tabu or a tabu move which passes the aspiration level criterion.

In the standard Simulated Annealing algorithm, a deteriorating move would

be evaluated by using a probabilistic acceptance criterion:

nT

n eTP
∆−

=∆),/Acceptance(, (38)

where Tn is the temperature at iteration n. In an effort to avoid excessive or

unnecessary moves which will deteriorate the objective function value especially

during high temperatures, we add an additional evaluation step after the

probabilistic acceptance calculation. When a move belongs to the tabu list for a

given iteration, it is not allowed to be accepted, i.e., only a non-tabu move can be

accepted. Finally, the tabu list is updated. The tabu list in the first operation is

denoted as tabu1, which contains pairs of teacher i and course j visited in the

last length1 iterations.

 The improvement phase is then continued to the second operation. Let
2i

K

be the set of sections of course j taken over by teacher i2. Suppose the teacher

reallocation is accepted. We check whether it is possible to allocate teacher i2 to

the previous day and time periods scheduled for teacher i1 to teach course j section

k, where
2i

Kk ∈ . Otherwise, a new set of days and time periods without constraint

violation has to be found. We also introduce another tabu list for this operation

(tabu2), which contains a list of {teacher i, course j, section k, day l, and starting

time period m} visited in the last length2 iterations. However if the first

operation is rejected, the second operation is still conducted by choosing section k

of course j randomly, where jKk ∈ . This course section will then be allocated to

other time periods. The operation is also continued by evaluating the objective

function value and checking the tabu list, tabu3. In this operation, the tabu list

10

only contains a list of {course j, day l, and starting time period m}, which is

forbidden in the last length3 iterations.

An intensification strategy is also applied in the proposed algorithm. This

strategy focuses the search once again starting from the best solution obtained if

we cannot improve the solution obtained so far within a certain number of

iterations (limit). Finally, the entire algorithm will be terminated if the total

number of iterations of the outer loop reaches the preset maximum number of

iterations, max_count.

The details of the proposed algorithm are presented in Figure 4.

Figure 4 Flowchart of the proposed algorithm

No

Yes

No

Yes

Start

Construct Ij and LMi

Solve [TA] model

jKk,Jj ∈∈∀ , allocate course j

section k to time periods

Obtain the objective function value and the initial

solution, initial_sol

Initialize the parameters

Set the best and current solutions, best_sol =
current_sol= initial_sol

Is n less than the

maximum number of

iterations, max_count?

Set the total number of iterations, n = 0

Set neighbor = 0

Is neighbor less than
neighbor_moves?

Apply the first operation

Apply Algorithm 1

Apply the second operation

Apply Algorithm 1

neighbor = neighbor + 1

Update Tn

Apply the

intensification strategy

if within a certain

number of iterations,

limit, there is no

improvement

n = n + 1

Report best_sol

Finish

11

5. COMPUTATIONAL RESULTS

 Computational experiments to evaluate the performance of the proposed

algorithm were performed on two different groups of randomly generated data

sets with distinct characteristics. Tables I and II summarize the characteristics of

each data set. The main difference between these two groups lies in the number of

teachers |I| and number of courses |J|. The algorithm was implemented using C++

on a 2.6GHz Intel Pentium 4 with 512 MB of RAM under the Microsoft Windows

XP Operating System. The optimal solutions of [TACS'] and [TA] models were

obtained by using ILOG OPL Studio 4.2 with the same operating system.

Table I

CHARACTERISTICS OF GROUP I DATA SETS

Data set
Number of

teachers

Number

of courses

Number

of sections

Number

of days

Number of
time periods

per day

Maximum
load per

teacher

Number of
classrooms

available

5×5_1 5 5 2 5 4 1 4

5×5_2 5 5 2 5 4 2 4
10×10_1 10 10 2 5 8 1 4

10×10_2 10 10 2 5 8 2 4

15×15_1 15 15 2 5 8 1 6

15×15_2 15 15 2 5 8 2 6

20×20_1 20 20 2 5 8 1 8

20×20_2 20 20 2 5 8 2 8

Table II

CHARACTERISTICS OF GROUP II DATA SETS

Data set

Number

of

teachers

Number

of

courses

Minimum

number of

sections

Maximum

number of

sections

Number
of days

Number of

time periods

per day

Maximum

load per

teacher

Number of

classrooms

available

10×20_1 10 20 2 3 5 8 4 10

10×20_2 10 20 2 4 5 8 4 10

20×30_1 20 30 2 3 5 8 3 15

20×30_2 20 30 2 4 5 8 3 15

20×40_1 20 40 2 3 5 8 4 15

20×40_2 20 40 2 4 5 8 4 15
30×60_1 30 60 2 3 5 8 4 20

30×60_2 30 60 2 4 5 8 4 20

The values of the parameters used in the computational study are

summarized in Table III. These values are determined experimentally to ensure a

compromise between computation time and solution quality.

The [TACS'] model was initially solved by ILOG OPL Studio 4.2.

Unfortunately, the optimal solution for data sets 20×40_1, 20×40_2, 30×60_1 and

30×60_2 could not be computed within the time limit of 24 hours. Thus, we only

report the best known solutions that could be obtained within 24 hours for those

data sets. These numerical results indicate that the computing time required to

find an optimal solution to the problem becomes prohibitively large when the

problem size increases.

For each data set, the proposed algorithm was executed 20 times with

different random seeds. Table IV summarizes the overall results that include the

average objective function value obtained, the best objective function value

obtained and the average CPU time required to obtain the solution (in seconds).

The results obtained were compared with the best known/optimal solutions

generated by ILOG OPL Studio 4.2 and those of earlier work (Gunawan et al.

2007b), which only applied the idea of Simulated Annealing (Algorithm SA1).

12

Table III

PARAMETER SETTINGS FOR HYBRID ALGORITHM
Parameter Value

Number of iterations, max_count |I||L||M|

Initial temperature, T0 10,000

Number of neighborhood moves at each temperature Tn,
neighbor_moves

|I||L||M|

Cooling factor α 0.95

Number of non-improvement iterations prior to

intensification, limit
0.05|I||L||M|

Length of tabu1, length1 0.25|I| for Group I data sets

0.5|I| for Group II data sets

Length of tabu2, length2 |L| for Group I data sets

2|L| for Group II data sets

Length of tabu3, length3 |L| for Group I data sets

2|L| for Group II data sets

Table IV

COMPUTATIONAL RESULTS OF PROPOSED HYBRID ALGORITHM AND

OTHER SOLUTION APPROACHES
Solution obtained by

commercial software
Algorithm SA1 Hybrid Algorithm

Data set

Objective

function

value

CPU

time

(seconds)

Average

objective

function

value

Best

objective

function

value

Average

CPU

time

(seconds)

Average

objective

function

value

Best

objective

function

value

Average

CPU

time

(seconds)

5×5_1 980 1.82 930 930 0.09 980 980 0.77

5×5_2 1,210 2.25 1,130 1,130 0.08 1,210 1,210 0.71

10×10_1 2,200 22.15 2,020 2,020 1.59 2,200 2,200 5.91

10×10_2 2,780 19.70 2,560 2,560 1.48 2,777.5 2,780 4.39

15×15_1 3,270 200.32 3,140 3,140 5.30 3,270 3,270 18.18

15×15_2 4,150 189.92 3,850 3,850 4.91 4,141 4,150 18.78

20×20_1 4,540 172.26 4,420 4,420 10.94 4,540 4,540 30.63

20×20_2 5,660 663.78 5,460 5,460 10.98 5,574.5 5,610 30.30

10×20_1 7,800 647.54 6,913 6,940 3.79 7,429.5 7,490 6.47

10×20_2 7,660 1,114.60 6,598 6,670 3.98 7,186 7,360 6.81

20×30_1 11,140 9,265.63 9,621 9,680 6.72 10,718.5 10,920 37.73

20×30_2 12,880 55,032.5 11,132 11,370 10.96 12,254.5 12,390 29.79

20×40_1 13,210a - b 11,680.5 11,940 13.45 12,704 12,920 128.36

20×40_2 16,190a - b 14,136 14,200 19.86 14,957.5 15,120 101.42

30×60_1 21,890
a
 -

 b
 19,250 19,300 52.01 20,806.5 20,910 379.60

30×60_2 24,480
a
 -

 b
 20,643 20,930 78.98 22,793.5 23,180 394.47

a
 The best known solution obtained within 24 hours

b CPU time = 24 hours

Based on the average objective function value, we observe that the hybrid

algorithm is able to obtain better results than those obtained by Algorithm SA1. In

order to compare the obtained results to the optimal solutions, we also show the

best known solution for each data set. The hybrid algorithm is able to obtain the

optimal solution for most of Group I data sets.

From the average CPU times, we observe that the computation time taken by

algorithm SA1 is smaller than the computation time taken by the hybrid algorithm

in all tests. This is due to the difference in the improvement phases of both

algorithms, with the evaluation process running twice in the improvement phase

of the hybrid algorithm. Nevertheless, better results on the objective function

values are obtained.

13

Table V compares the objective function value obtained between Algorithm

SA1 and the proposed hybrid algorithm. The comparison is done by calculating

the deviation of the best and the average objective function values of the proposed

algorithms from the best known/optimal value, denoted as Φ1 and Φ2:

 −×=
solutionmalknown/optibest

algorithmofvaluefunctionobjectiveaveragesolutionmalknown/optibest
1001Φ

 −×=
solutionmalknown/optibest

algorithmofvaluefunctionobjectivebestsolutionmalknown/optibest
1002Φ

Table V

COMPARISON OF DEVIATIONS FOR ALGORITHM SA1 AND THE

HYBRID ALGORITHM
Algorithm SA1 Hybrid Algorithm

Data set

Φ1

(A)
Φ2

(B)
Φ1

(C)
Φ2

(D)

(A) – (C)

(B) – (D)

5×5_1 5.10 5.10 0.00 0.00 5.10 5.10

5×5_2 6.61 6.61 0.00 0.00 6.61 6.61

10×10_1 8.18 8.18 0.00 0.00 8.18 8.18

10×10_2 7.91 7.91 0.09 0.00 7.82 7.91

15×15_1 3.98 3.98 0.00 0.00 3.98 3.98

15×15_2 7.23 7.23 0.22 0.00 7.01 7.23

20×20_1 2.64 2.64 0.00 0.00 2.64 2.64
20×20_2 3.53 3.53 1.51 0.88 2.02 2.65

10×20_1 11.37 11.03 4.75 3.97 6.62 7.05

10×20_2 13.86 12.92 6.19 3.92 7.68 9.01
20×30_1 13.64 13.11 3.78 1.97 9.85 11.13

20×30_2 13.57 11.72 4.86 3.80 8.72 7.92

20×40_1 11.58 9.61 3.83 2.20 7.75 7.42

20×40_2 12.69 12.29 7.61 6.61 5.07 5.68

30×60_1 12.06 11.83 4.95 4.48 7.11 7.35

30×60_2 15.67 14.50 6.89 5.31 8.78 9.19

The proposed hybrid algorithm provides better results in terms of the quality

of the solution as indicated by Φ1 and Φ2. We observe that the proposed hybrid

algorithm yields good solutions with the values of Φ1 and Φ2 not exceeding

7.61% and 6.61% respectively. The hybrid algorithm outperforms SA1 in terms of

the objective function values obtained. The values of Φ1 and Φ2 are reduced by up

to 9.85% and 11.13% respectively.

6. CONCLUSIONS

The main motivation for this work is to consider two interrelated sub-

problems, teacher assignment and course scheduling problems simultaneously. A

new mathematical programming model for the associated timetabling problem has

been proposed. In this work, we proposed a hybrid algorithm that incorporates

Simulated Annealing and Tabu Search algorithms for solving the problem.

Computational experiments show that the proposed algorithm is able to produce

good quality solutions within reasonable computation time when compared to

previous research work.

A possible future research area is to develop other methods that might solve

the problem more efficiently. For example, the Tabu Search framework was

designed with only short term memory and it might be useful to implement other

14

strategies, including long term memory and diversification strategy. Another

future research area is to incorporate additional requirements that might be

required by other universities and then solve the resulting problem using the

hybrid algorithm. It is also possible to consider extending the hybrid algorithm to

solve other types of timetabling problems.

REFERENCES

1. Abramson D (1991) Constructing school timetables using simulated

annealing: sequential and parallel algorithm. Management Science 37:98-113

2. Al-Yakoob SM, Sherali HD (2007) A mixed integer programming approach to

a class timetabling problem: a case study with gender policies and traffic

considerations. European Journal of Operational Research 180:1028-1044

3. Al-Yakoob SM, Sherali HD (2006) Mathematical programming models and

algorithms for a class-faculty assignment problem. European Journal of

Operational Research 173:488-507

4. Aubin J, Ferland JA (1989) A large scale timetabling problem. Computers and

Operations Research 16:67-77

5. Bai R, Burker EK, Kendall G, Collum BM (2006) A simulated annealing

hyper-heuristic for university course timetabling. In: Proc. International

Conference on the Practice and Theory of Automated Timetabling VI (30

August – 1 September 2006, Brno, Czech Republic):347350

6. Blum C, Roli A, Alba E (2005) An introduction to metaheuristic techniques.

In: Alba E (ed) Parallel metaheuristics, a new class of algorithms. Wiley,

Hoboken:3-42

7. Burke EK, Causemacker PD, Berghe VG (2004) Applications to timetabling.

In: Gross JL, Yellen J (ed) Handbook of graph theory. CRC Press, Boca

Raton:445-474

8. Burke EK, Kendall G, Soubeiga, EA (2003) Tabu-search hyperheuristic for

timetabling and rostering. Journal of Heuristics 9:451-470

9. Burke EK, Kingston JH, Pepper PA (1998) A standard data format for

timetabling instances. In: Burke EK, Carter M (ed) The Practice and Theory of

Automated Timetabling II (PATAT’97, Selected Papers). Lecture Notes in

Computer Science, Vol. 1408, Springer, Berlin:213-222

10. Caramia M, Olmo PD, Italiano GF (2001) New algorithms for examination

timetabling. In: Naher S, Wagner D (ed) Algorithm Engineering –

Proceedings of the 4th International Workshop, WAE 2000. Lecture Notes in

Computer Science, Vol. 1982, Springer, Berlin:230-241

11. Carter MW, Laporte G (1998) Recent developments in practical course

timetabling. In: Burke EK, Carter M (ed) The Practice and Theory of

Automated Timetabling II (PATAT’97, Selected Papers). Lecture Notes in

Computer Science, Vol. 1408, Springer, Berlin:3-19

12. Chiarandini M, Socha K, Birattari M, Doria OR (2006) An effective hybrid

approach for the university course timetabling problem. Journal of Scheduling

9:403-432

13. Costa D (1994) A tabu search algorithm for computing an operational

timetable. European Journal of Operational Research 76:98-110

14. Côté P, Wong T, Sabourin R (2005) A hybrid multi-objective evolutionary

algorithm for the uncapacitated exam proximity problem. In: Burke EK, Trick

M (ed) The Practice and Theory of Automated Timetabling V (PATAT’04,

15

Selected Papers). Lecture Notes in Computer Science, Vol. 3616, Springer,

Berlin:294-312

15. Daskalaki S, Birbas T, Housos E (2004) An integer programming formulation

for a case study in university timetabling. European Journal of Operations

Research 153:117-135

16. Elmohamed MAS, Coddington P, Fox G (1998) A comparison of annealing

techniques for academic course scheduling. In: Burke EK, Carter M (ed) The

Practice and Theory of Automated Timetabling II (PATAT’97, Selected

Papers). Lecture Notes in Computer Science, Vol. 1408, Springer, Berlin:92-

112

17. Glover F (1989) Tabu search – part I. ORSA Journal on Computing 1:190-206

18. Gunawan A, Ng KM, Poh KL (2006) A mathematical programming model for

a timetabling problem. In: Proc. International Conference on Scientific

Computing, USA

19. Gunawan A, Ng KM, Poh KL (2007a) An improvement heuristic for the

timetabling problem. International Journal Computational Science 1:162-178

20. Gunawan A, Ng KM, Poh KL (2007b) Solving the teacher assignment-course

scheduling problem by a hybrid Algorithm. International Journal of Computer,

Information and Systems Science and Engineering 1:136-141

21. Johnson D (1993) A database approach to course timetabling. The Journal of

the Operational Research Society 44:425-433

22. Kirkpatrick S, Gellatt CD, Vecchi MP (1983) Optimization by simulated

annealing. Science 220:671-680

23. Puchinger J, Raidl GR (2005) Combining metaheuristics and exact algorithms

in combinatorial optimization: a survey and classification. In: Mira J, Alvarez

J R (ed) Arfiticial Intelligence and Knowledge Engineering Applications: a

Bioinspired Approach. Lecture Notes in Computer Science, Vol. 3562,

Springer, Berlin:41-53

24. Rahoual M, Saad R (2007) Solving timetabling problems by hybridizing

genetic algorithms and tabu search. In: Burke EK, Rudová H (ed) The Practice

and Theory of Automated Timetabling VI (PATAT’06, Selected Papers).

Lecture Notes in Computer Science, Vol. 3867, Springer, Berlin:467-472

25. Raidl GR (2006) A unified view on hybrid metaheuristics. In: Almedia F,

Aguilera MJB, Blum C, Vega JMM, Pérez MP, Roli A, Sampels M (ed)

Hybrid Metaheuristics – Proceedings of the 3
rd

 International Workshop, HM

2006. Lecture Notes in Computer Science, Vol. 4030, Springer, Berlin:1-12

26. Talbi EG (2002) A taxonomy of hybrid metaheuristics. Journal of Heuristics 8

:541-565

27. Valdes RA, Crespo E, Tamarit JM (2002) Design and implementation of a

course scheduling system using tabu search. European Journal of Operational

Research 137:512-523

28. White CA, Nano E, Ngoc DHN, White GM (2007) An evaluation of certain

heuristic optimization algorithms in scheduling medical doctors and medical

students. In: Burke EK, Rudová H (ed) The Practice and Theory of Automated

Timetabling VI (PATAT’06, Selected Papers). Lecture Notes in Computer

Science, Vol. 3867, Springer, Berlin:320-328

