
1

A Multi-Staged Algorithmic Process for the

Solution of the Examination Timetabling

Problem

Christos Gogos
1,2
, Panayiotis Alefragis

1,3
, Efthymios Housos

1
.

1
University Of Patras-Greece. Dept. of Electrical and Computer Engineering.

2
Technological Educational Institute of Epirus. Dept. of Finance and Auditing

(Preveza. L. Ioanninon 210).

3
Technological Educational Institute of Mesolonghi. Dept. of Telecommunication

Systems and Networks (Varia, Nafpaktos).

{cgogos|alefrag|housos@ece.upatras.gr}

Abstract. We present an approach for the examination timetabling problem as defined in the

second International Timetabling Competition (http://www.cs.qub.ac.uk/itc2007). The solution

approach can be considered as an implementation of the GRASP (Greedy Randomized Adaptive

Search Procedure) method with the combination of several other metaheuristics. Three stages are

employed. The first stage is responsible for the construction of a relatively high quality feasible

solution while the second stage improves it using simulated annealing local search. The final stage

uses mathematical programming and analyzes each examination period in isolation proposing

movements of exams to other rooms resulting in further improvement of the solution quality. The

procedure produces feasible solutions for each dataset provided under the runtime limit imposed

by the competition’s rules. Results are presented and analyzed.

Keywords: GRASP, simulated annealing, Kempe chains, integer programming.

1. Introduction

The initial goal of the research effort undertaken was to address the problem of examination

timetabling for universities and attempt to bridge the gap between research and practice

(McCollum, 2007). Examination timetabling has been an active area of research during the last

decade and a number of solution approaches originating from various disciplines have been

proposed. Analytical surveys for the examination timetabling problem can be found in (Schaerf,

1999) and in (Qu et al., 2006). A critical point that differentiates these approaches stems from

individual problems definition, as each institutional examination timetabling problem is usually

unique due to rules, regulations and quality factors incorporated. For example, the possibility to

schedule more than one exam in the same room might be indifferent in one case while being of

most importance in another. As a consequence, an effort started to formulate the examination

timetabling problem in a general yet able to specialize way so as to be able to capture most of the

aspects of the problem that most universities have to confront several times each year (Burke et al.,

1996). It must also be noted that solution quality is measured in different ways depending on how

2

each institution views what a desired examination timetable is. Solution quality can usually be

interpreted as timetables which have sufficiently long periods between exams for each student.

It was fortunate that during our involvement with the problem, the second International

Timetabling Competition (ITC07) was in progress and included a special track about examination

timetabling (ETT) in universities. The objective of this track was to address university

examination problems that included constraints which usually commence in real life. This fact

provided valuable test data and insight in our approach. We believe that the problem model, as

described in ITC07, is mature enough to capture most of the requirements typically encountered in

reality. Our general objective was to produce an optimization platform that could be used for

further research on timetabling problems. Due to the requirements of the competition, we also had

to produce high quality feasible solutions in a strictly defined time frame.

2. Problem Description

As the description of the problem is published by the competition organizers, in this section a brief

presentation is included for the sake of complicity. The interested reader should further consult the

extensive description presented in (McCollum et al., 2007). The Examination Timetabling

Problem (ETP) assigns exams to a specific set of time periods and examination rooms while

satisfying a set of feasibility and quality constraints aiming to the maximization of the overall

productivity and usability of the schedule. A key point in the examination timetabling problem

formulation is whether a fixed or variable examination length can be produced as a solution. In our

case, the examination period is scheduled for a fixed number of time periods that could span from

several days to a few weeks. Each exam has a known enrolled set of students and has to be

scheduled in one of the feasible periods while respecting constraints concerning student conflicts,

capacity of individual rooms, period and exam length and sequencing and assignment constraints.

In our problem, no penalized relaxation of the above constraints was allowed. Only solutions that

satisfy hard constraints are compared according to soft constraints. The considered soft constraints

could be divided according to the affected entity. The first soft constraint group considers the

exam schedule of each individual student. These constraints take into consideration the existence

of two immediately consecutive exams or two exams in the same day for the same student and the

distance among every two examinations also for the same student. The second soft constraint

group covers global constraints concerning the structure of the required solution and includes

constraint about mixed duration of examinations within individual periods, constraints about large

examinations appearing later in the timetable and constraints about the use of penalized periods

and rooms. Users are able to assign penalty weights for each soft constraint and the set of all these

weights is called the Institutional Model Index (IMI). The objective value used in the solution

process is the weighted sum of the soft constraint violations. This objective function might

produce low quality solutions for a number of students but it appears to be a reasonable method for

the comparison of various algorithmic processes.

3

3. Solution Process

The chosen approach for tackling the ETP problem can be regarded as a variation of the GRASP

metaheuristic. GRASP (Feo and Resende, 1995) is an iterative process in which each iteration

consists of two phases: construction and local search. The construction phase builds a feasible

solution whose neighborhood is investigated until a local minimum is found using a local search

phase. A recent treatment of GRASP can be found in (Resende and Ribeiro, 2003). GRASP, with

several improvements, has been successfully used in order to tackle the examination timetabling

problem by (Casey and Thompson, 2003). In our approach, GRASP functions as the overall

procedure that incorporates tabu search (Glover and Laguna, 1997), multiple ordering criteria

(Burke and Newall, 2004) and simulated annealing (Dowsland, 1993). In addition, during the final

optimization stage, an Integer Programming formulation that uses Branch and Bound as the

solution mechanism is also used for a number of individual subproblems. In our approach the

solution process is initiated using a pre-processing step followed by a sequence of optimization

stages. The complete problem model is used at all stages due to the tight feasibility constraints of

the problem. The construction phase is repeated a number of times and the best feasible solution

achieved is recorded. Then, starting from this solution a local search phase tries to locate a better

solution. By using simulated annealing moves to inferior solutions are admissible under certain

conditions making possible the escape of local optima. After the local search phase, the algorithm

orders the periods of the examination session by the amount of penalty regarding the use of certain

rooms that should have been avoided plus the penalty that derives from the scheduling of exams

with different lengths in the same room. Periods with higher penalties are handled with higher

priority and an Integer Program is formulated and solved with the mathematical solver package

GLPK (http://www.gnu.org/software/glpk/). Each one of the phases will be presented in detail in

the following.

3.1 Pre-processing Step

The scheduling difficulty for an exam is a function of its enrollments, student conflicts,

educational importance and other custom criteria. Exams with increased scheduling difficulty must

be analyzed first because their late entry into the scheduling process would most likely increase the

backtracking needs. The ordering of exams based on such difficulty criteria prior to their

assignment to timeslots is a common technique and has been used by (Carter et al., 1996), (Burke

and Petrovic, 2002), (Burke and Newall, 2004) and others. Our pre-processing procedure involves

the creation of five ordered lists. The first list contains the exams sorted by their student size and

the second list ranks the exams based on their conflict weight which is calculated as the sum of the

nonempty intersections of all pairs of exams. The third list contains for each exam the number of

all other exams that must take place in the same period. The list which follows contains for every

exam a weight which is based on the sequence constraints that must be satisfied by the solution.

Finally, the fifth list holds only the exams that have room constraints in order to be given certain

4

priority by the scheduling process. The lists are constructed at the beginning of the process and

remain available thereafter. Whenever an exam is assigned to a timeslot, its presence in the lists is

ignored.

3.2 First Stage – Achieving Feasibility

A feasible solution is constructed by adding to the schedule all the exams sequentially. The

algorithm examines in a round robin manner each one of the five lists discussed in the previous

section and at each step selects one of the exams from the currently active list. This is done by

organizing a tournament among items of the active list which become what is known in the

GRASP terminology as the Restricted Candidate List (RCL). More specifically RCL is

constructed by selecting the N top items of the currently active list where N is a runtime parameter

that in our experiments assumed the value of 10. The tournament approach is used in order to give

advantage to exams that are highly ranked. More specifically, a linear bias is used that assigns a

value of 1/ri for each element of the list where ri denotes the rank of element i. Consequently, the

probability of each one of the first N elements of active list is given by

1

()
1

i

k RCL k

r
prob i

r∈

=
∑

If one of the last three lists has no exams that are unassigned, then turn is passed to the next list.

The above method of selecting exams occurs only when no high priority exams are present. High

priority exams might be exams that have been removed from the program as a result of another

exam assignment or exams that are of coincidence type with already assigned exams.

Next a period and a room have to be assigned to the selected exam. This is done by examining for

every valid period the room with the seat number that fits the exam best (leaves the smallest

number of free seats in the same room). The penalty of the partial solution is computed and the

first period with the minimum cost is preferred so as to schedule the exam in. If scheduling an

exam in a period result in zero increment of penalty, then this period is selected without further

investigation of the remaining periods. The construction process generates a feasible solution and

its objective value is recorded. Then the construction phase is repeated considering another period

as the start of the schedule. If during the new construction the objective value becomes worse than

the recorded best solution, then the current construction process is dropped altogether and a new

construction starts from scratch.

While assigning each exam in the schedule it is possible to that there will not be any more valid

periods. If this is the case, then a backtrack method is executed and the selected exam is scheduled

in a period and room while other exams that are now invalid are moved back to the list of

unscheduled exams. An extra field (removals) is added in each exam recording the number of

exams that the current exam forced to move in previous steps of the construction phase. This

information is exploited in subsequent steps so that exams that have a history of major disruptions

in the construction phase become relatively fixed in the schedule. So the backtracking procedure

works by locating the period and room that will be used to schedule the new exam. For each

5

period a list is constructed using the scheduled exams that will have to be removed due to conflicts

and room seats restrictions. Then a corresponding value is computed that is the summation of all

its exams “removals” field value. The period that the selected exam will be put is selected

stochastically among the list items with the smallest corresponding “removals” value. In order to

avoid cycles of adding and then in subsequent steps removing the same exam a tabu list is

implemented rendering each newly added exam unmovable for a number of successive iterations.

On the other hand, removed exams are given high priority in order to return shortly to the

schedule.

The backtracking mechanism proved to be successful and fast in finding feasible solutions for all

eight of the provided datasets in ITC07. Information about the datasets examined and the solution

achieved can be seen in Table 1. Details of all of these parameters can be found in (McCollum and

McMullan, 2007). Conflict density is an important metric calculated from the input data in order to

characterize the density level of the problem graph. The conflict density shows the percentage of

conflicts among the exams. Two exams are considered to be in conflict if their enrollments share

common students.

ITC07-DATASETS

 Exams Students Periods Rooms

Two In

A Row

Penalty

Two In

A Day

Penalty

Period

Spread

Penalty

No Mixed

Durations

Penalty

Number

Of

Largest

Exams

Number

Of Last

Periods

To

Avoid

Frontload

Penalty

Conflict

Density

Dataset 1 607 7891 54 7 7 5 5 10 100 30 5 5,05%

Dataset 2 870 12743 40 49 15 5 1 25 250 30 5 1,17%

Dataset 3 934 16439 36 48 15 10 4 20 200 20 10 2,62%

Dataset 4 273 5045 21 1 9 5 2 10 50 10 5 15,00%

Dataset 5 1018 9253 42 3 40 15 5 0 250 30 10 0,87%

Dataset 6 242 7909 16 8 20 5 20 25 25 30 15 6,16%

Dataset 7 1096 14676 80 15 25 5 10 15 250 30 10 1,93%

Dataset 8 598 7718 80 8 150 0 15 25 250 30 5 4,55%

Table 1

3.3 Second stage – local search

Starting from a feasible solution provided by the previous stage, a local search phase follows. The

neighborhood structure is defined by randomly selecting a pair of periods and moving certain

exams from one period to the other. Kempe chains are used in order to select the appropriate

exams (Thompson and Dowsland, 1996). Kempe chains are a by-product of the effort towards

solving the infamous “four color problem”. The vertices of a graph are grouped in sets according

to the color that has been assigned to them. The goal is to produce new feasible solutions by

moving vertices between sets. Such a movement might result in an infeasible solution because

nodes of the same color must not be connected directly. By using Kempe chains we can move

across feasible solutions only. This is done by selecting two sets and constructing a number of

chains consisted of vertices belonging to either of the sets which are disconnected between each

other. If a vertex of a chain is moved from one set to the other then all other vertices of the same

chain must also move to the other set in order to maintain feasibility for the solution.

6

In our algorithm a graph is constructed with vertices and edges corresponding to exams and

conflicts between exams respectively. Each period can be regarded as a color and the purpose is to

colorize the graph so as not to have directly connected vertices with the same color. Since we

already have a feasible solution we also have a proper coloring of the underlying graph. So Kempe

chains can be used in order to produce new feasible solutions according to conflicts between

exams. Each solution produced in this way is further checked regarding other constraints like room

capacities and in case it is valid its cost is computed. If the cost is better than the best cost found so

far then it is accepted as the new best solution. Even if the cost is not better, there is a possibility of

accepting this solution as the next solution of the local search phase. This happens according to the

Simulated Annealing local search scheme that accepts inferior solutions that are close to the best

solution with a probability that degrades while the process continues. Finally the best solution

encountered is the result of the local search stage.

It has to be mentioned that a number of Kempe chains are produced for every two selected periods.

Our algorithm starts by processing the longer chains first in an effort to disrupt more the current

solution. In case a better solution is found remaining Kempe chains of the periods under

consideration are not examined. A critical point for the success of the search method has to do

with the mechanism of selecting periods that will be used in order to search for Kempe chains.

Poor selection might result in cycles of non improving steps and in ignoring parts of the search

space that could have been useful otherwise. Our design of this part of the application proposes in

each step period pairs with relatively minor involvement in previous steps and also periods that in

the past resulted in successful moves. A memory structure is used in order to achieve this. The first

period of a pair is selected according to the relative success of previous moves examining all the

periods. After selecting the first part of a pair then all the other periods are examined according to

past successful moves for both the periods.

Another point of interest is that our use of the simulated annealing metaheuristic involves a

reheating scheme additional to the typically used cooling scheme. When a number of local search

steps is examined without producing a solution to replace the currently best one, parameter

temperature rises resulting in greater probability of acceptance of inferior solutions. Our

experiments showed that a starting temperature of 10 degrees Celsius, cooling and heating

schemes of geometric nature and a typical exponential function of accepting solutions with less

good objective function values produce relatively good results.

3.4 Third stage – improvements per period

The timetable produced when the local search phase has finished is further examined in a period

by period basis so as to discover and remedy situations that might result in further cost

improvements. Cost can be reduced by not using rooms with high penalty and avoiding putting in

the same room exams with mixed durations. The following Integer Programming model was

formulated. Let E be the set of exams, R the set of rooms and K the set of discrete exams

durations. Then si is the number of students enrolled in exam i, cj is the capacity of room j, pj is the

penalty of using room j, Pnmd is the penalty of having mixed exams durations in a room and dik is

a parameter having value 1 when exam i has duration equal to the k
th
 discrete duration from set K

7

and 0 otherwise. Let xij be a binary variable which is supposed to take value 1 when exam i is

scheduled in room j and 0 otherwise. Let yj be an integer variable that counts the number of exams

scheduled in room j and finally let zkj be a binary variable with value 1 when distinct duration k is

among the durations of the exams scheduled in room j.

Min

1 1

R K

j j kj

j k

p y z Pnmd
= =

 + 
 

∑ ∑

Subject to

1

E

i ij j

i

s x c
=

≤∑ j in 1..R

1

1
R

ij

j

x
=

=∑ i in 1..E

1

E

ij j

i

x y
=

=∑ j in 1..R

1

K

ik kj ij

k

d z x
=

≥∑ i in 1..E, j in 1..R

 xij ∈ {0,1}, zkj ∈ {0,1}, yj ∈ Z+

We solve the above model for each one of the periods using the open source mathematical solver

GLPK. GLPK employs a branch and bound algorithm with LP relaxations for solving IP problems.

A few parameters had to be tuned in order to get good results in a timely manner. So in our

problem branching occurs on the most fractional integer variables while the backtrack scheme

used is depth first search. Experimenting with the model we also find out that the solution process

is greatly accelerated by using what GLPK calls advanced MIP solver which is also a branch and

bound with the enhancements of presolving the MIP problem and generating cutting planes to

improve its LP relaxation. We have observed that due to small objective value variations in the

feasible solution space, GLPK tends to spend a significant amount of time without proving

optimality and so we decided to enforce a time limit criterion for each subproblem.

8

Our incentive for programming the third stage was that the solutions produced by the previous

stages were likely to be consisted of suboptimal assignments of exams to rooms revealed by

examining each period in isolation. Those suboptimal fragments of the timetable are easily located

by a human operator and their presence in a final solution might give the impression of a low

quality outcome for the whole process.

Unfortunately the time available for this stage is limited so periods are ordered according to the

value of their penalties resulting from rooms and mixed durations.

4. Experiments

Our experiments used the eight provided datasets from ITC07 which according to the organizers of

the competition represent a relatively real model of the examination timetable problem in terms of

data, constraints and evaluation. Four more datasets which are called ‘hidden’ will be released at a

time later to the writing of this paper. The variability of the provided datasets is significant not

only according to the size of the problems but also with respect to the IMI index.

Among the datasets, dataset 4 is rather special because it has only one room rendering stage 3 of

our procedure useless and a much higher value of conflict density compared with the remaining

datasets. High conflict density value makes successful backtracking harder. In our initial

experiments the backtracking mechanism was implemented by examining all periods and choosing

the one that resulted in the fewer number of dislocating already scheduled exams. Unfortunately

when the above mechanism operated in dataset 4, it led to cycles of removing big exams of the

timetable and after a number of steps inserting the same exam again resulted in mass removals of

smaller exams. The above problem was not alleviated even with the presence of taboo lists.

Finally, the adoption of the backtracking mechanism described in 3.2 eliminated this problem.

The program ran on a simple workstation equipped with java runtime environment. In this

machine the benchmarking routine provided by the organizers of the competition showed that the

acceptable run time for our application had to be no more than 422 seconds. Our application

adhered to this limit and distributed time into the three stages giving 30% of the time to the first

stage, 50% to the second and the remaining 20% to the third. In special cases like dataset 4 where

stage 3 is obsolete its time was appended to stage 2.

4.1 Programming Issues

In order to achieve the limited available execution time a number of enhancements was

considered. Redundant data structures were designed and optimized versions of the functions that

compute the penalty incrementally were coded. A preprocess step creates for each exam extra data

that makes positioning exams and backtracking easier. For example if an after constraint exists for

exam E1 that links it with exam E2 and E1 has a coincidence constraint with E3 then the same

after exam constraint for E3 to E2 is added. Another example also about coincidence exams is the

following. If two or more exams with coincidence constraints between them have different

duration then the longest duration must be assumed for all the exams.

9

Our program is implemented in Java 5 despite the slowest runtime performance of Java compared

to compiled programming languages. We believe that this disadvantage is balanced by the ease of

programming complex algorithms and Java’s rich API especially regarding data structures.

4.2 Results

The results obtained using the approach of this paper can be seen in Table 2. The second and third

columns show the best and the average penalty that our implementation produced after a number

of runs respecting the same limit in execution time for each individual run. We can observer that

the best and average values are relatively close between them indicating robustness for the

approach.

 Five runs for each one of the eight datasets are presented in Table 3. For some of the datasets the

second and third stage of the algorithm fail to reduce the cost significantly. We believe that this

happens because the proposed search on a neighborhood structure which is based on Kempe

chains does not visualize all the problem constraints. The problem is that in some cases local

search moves are able to locate improved solutions without exam conflicts but other constraints

like room constraints, period constraints, etc failed to be satisfied because a more global view of

the problem is needed. As a result a significant percentage of intermediate solutions during the

local search process are invalid.

 Best Penalty Average Penalty

Dataset 1 5.814 5.914

Dataset 2 1.062 1.091

Dataset 3 14.179 14.336

Dataset 4 20.207 21.846

Dataset 5 3.986 4.167

Dataset 6 27.755 28.361

Dataset 7 6.885 7.010

Dataset 8 10.449 10.796

Table 2

10

Table 3

5. Conclusions - Future Work

In this paper we presented an algorithmic approach for the solution of the examination timetabling

problem as it was defined in the first track of ITC07. The solution process has been partitioned

into stages and a number of heuristics, metaheuristics and exact methods have been used. The

limited execution time was a critical factor that heavily affected our approach. The solutions

appear satisfactory but it is also clear that further improvements are possible. This is especially

true if the execution time limit is relaxed. We plan to experiment with fuzzy multiple ordering

(Asmuni, Burke and Garibaldi, 2005) during the construction phase because two or more ordering

criteria can be used simultaneously using a fuzzy expert system. The local search phase can also be

improved by using a variable neighborhood search schema (Hansen and Mladenovic, 2003) that

will enable the systematic change of the neighborhood using as an alternative neighborhood

structure the one resulting from single exam moves. We plan to capitalize on the experience

gained from our involvement with ITC07 by modifying our algorithm in order to solve the

examination problem for the colleges and universities in Greece. The main modeling extensions to

the ITC07 competition involve the existence of an availability schedule for the lecturers and the

various rooms and the uniformity of the duration of the exams.

References

Asmuni H., Burke E., Garibaldi J. and McCollum B. (2005). Fuzzy multiple heuristic orderings for

examination timetabling. PATAT 2005, LNCS 3616, pp 334-353. Springer-Verlag Berlin

Heidelberg.

Burke E.K. and Newall J.P. (2004). Solving examination timetabling problems through adaptation

of heuristic orderings. Annals of operations research 129, 107-134. Kluwer Academic Publishers,

Netherlands.

11

Burke E.K. and Petrovic S. (2002). Recent research directions in automated timetabling. European

Journal of Operational Research, 140, 266-280.

Carter M.W., Laporte G., Lee S.Y. (1996). Examination timetabling: Algorithmic strategies and

applications. Journal of Operational Research Society, 47, 373-383.

Casey S. and Thompson J. (2003). GRASPing the Examination Scheduling Problem. PATAT

2002, LNCS 2740, pp. 232-244. Springer-Verlag Berlin Heidelberg.

Dowsland K.A. (1993). Simulated Annealing. Modern heuristic techniques for combinatorial

problems by C. Reeves. John Wiley & Sons Inc. New York, USA. ISBN 0-470-22079-1.

Feo T.A. and Resende M.G.C. (1995) Greedy Randomized Adaptive Search Procedures. Journal

of Global Optimization, 6, 109-133.

Glover F., Laguna M. (1997). Tabu Search. Kluwer Academic Publishers, Boston, MA.

Hansen P. and Mladenovic N. (2003). Chapter 6. Variable Neighborhood Search. Handbook of

Metaheuristics by F. Glover and G. Kochenberger. Kluwer. ISBN: 978-1-4020-7263-5

McCollum B. (2007). A Perspective on Bridging the Gap Between Theory and Practice in

University Timetabling. PATAT 2006, LNCS 3867, pp 3-23, ISBN 978-3-540-77344-3.

McCollum B. and McMullan M. (2007). The Second International Timetabling Competition:

Examination Timetabling Track. Technical Report: QUB/IEEE/Tech/ITC2007/Exam/v4.0/17.

September 20, 2007.

Qu R., Burke E., McCollum B. Merlot L. and Lee S. (2006). A Survey of Search Methodologies

and Automated System Development for Examination Timetabling. Computer Science Technical

Report No. NOTTCS-TR-2006-4.

Resende M.G.C. and Ribeiro C.C. (2003). Chapter 8. Greedy Randomized Adaptive Search

Procedures. Handbook of Metaheuristics by F. Glover and G. Kochenberger. Kluwer. ISBN: 978-

1-4020-7263-5.

Thompson

J.M. and Dowsland K.A. (1996). Variants of Simulated Annealing for the Examination

Timetabling Problem. Annals of Operations Research Volume 63, Number 1. Springer.

