
1 

A Multi-Staged Algorithmic Process for the 

Solution of the Examination Timetabling 

Problem 

Christos Gogos
1,2
, Panayiotis Alefragis

1,3
, Efthymios Housos

1
.  

1
University Of Patras-Greece. Dept. of Electrical and Computer Engineering. 

2
Technological Educational Institute of Epirus. Dept. of Finance and Auditing 

(Preveza. L. Ioanninon 210). 

3
Technological Educational Institute of Mesolonghi. Dept. of Telecommunication 

Systems and Networks (Varia, Nafpaktos). 

{cgogos|alefrag|housos@ece.upatras.gr}   

 

Abstract. We present an approach for the examination timetabling problem as defined in the 

second International Timetabling Competition (http://www.cs.qub.ac.uk/itc2007).  The solution 

approach can be considered as an implementation of the GRASP (Greedy Randomized Adaptive 

Search Procedure) method with the combination of several other metaheuristics.  Three stages are 

employed. The first stage is responsible for the construction of a relatively high quality feasible 

solution while the second stage improves it using simulated annealing local search. The final stage 

uses mathematical programming and analyzes each examination period in isolation proposing 

movements of exams to other rooms resulting in further improvement of the solution quality. The 

procedure produces feasible solutions for each dataset provided under the runtime limit imposed 

by the competition’s rules. Results are presented and analyzed. 

Keywords: GRASP, simulated annealing, Kempe chains, integer programming.   

1. Introduction 

The initial goal of the research effort undertaken was to address the problem of examination 

timetabling for universities and attempt to bridge the gap between research and practice 

(McCollum, 2007). Examination timetabling has been an active area of research during the last 

decade and a number of solution approaches originating from various disciplines have been 

proposed.  Analytical surveys for the examination timetabling problem can be found in (Schaerf, 

1999) and in (Qu et al., 2006). A critical point that differentiates these approaches stems from 

individual problems definition, as each institutional examination timetabling problem is usually 

unique due to rules, regulations and quality factors incorporated. For example, the possibility to 

schedule more than one exam in the same room might be indifferent in one case while being of 

most importance in another. As a consequence, an effort started to formulate the examination 

timetabling problem in a general yet able to specialize way so as to be able to capture most of the 

aspects of the problem that most universities have to confront several times each year (Burke et al., 

1996). It must also be noted that solution quality is measured in different ways depending on how 
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each institution views what a desired examination timetable is. Solution quality can usually be 

interpreted as timetables which have sufficiently long periods between exams for each student. 

It was fortunate that during our involvement with the problem, the second International 

Timetabling Competition (ITC07) was in progress and included a special track about examination 

timetabling (ETT) in universities. The objective of this track was to address university 

examination problems that included constraints which usually commence in real life. This fact 

provided valuable test data and insight in our approach. We believe that the problem model, as 

described in ITC07, is mature enough to capture most of the requirements typically encountered in 

reality.  Our general objective was to produce an optimization platform that could be used for 

further research on timetabling problems. Due to the requirements of the competition, we also had 

to produce high quality feasible solutions in a strictly defined time frame.  

2. Problem Description 

As the description of the problem is published by the competition organizers, in this section a brief 

presentation is included for the sake of complicity. The interested reader should further consult the 

extensive description presented in (McCollum et al., 2007). The Examination Timetabling 

Problem (ETP) assigns exams to a specific set of time periods and examination rooms while 

satisfying a set of feasibility and quality constraints aiming to the maximization of the overall 

productivity and usability of the schedule. A key point in the examination timetabling problem 

formulation is whether a fixed or variable examination length can be produced as a solution. In our 

case, the examination period is scheduled for a fixed number of time periods that could span from 

several days to a few weeks. Each exam has a known enrolled set of students and has to be 

scheduled in one of the feasible periods while respecting constraints concerning student conflicts, 

capacity of individual rooms, period and exam length and sequencing and assignment constraints. 

In our problem, no penalized relaxation of the above constraints was allowed. Only solutions that 

satisfy hard constraints are compared according to soft constraints. The considered soft constraints 

could be divided according to the affected entity. The first soft constraint group considers the 

exam schedule of each individual student. These constraints take into consideration the existence 

of two immediately consecutive exams or two exams in the same day for the same student and the 

distance among every two examinations also for the same student. The second soft constraint 

group covers global constraints concerning the structure of the required solution and includes 

constraint about mixed duration of examinations within individual periods, constraints about large 

examinations appearing later in the timetable and constraints about the use of penalized periods 

and rooms. Users are able to assign penalty weights for each soft constraint and the set of all these 

weights is called the Institutional Model Index (IMI). The objective value used in the solution 

process is the weighted sum of the soft constraint violations. This objective function might 

produce low quality solutions for a number of students but it appears to be a reasonable method for 

the comparison of various algorithmic processes. 
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3. Solution Process 

The chosen approach for tackling the ETP problem can be regarded as a variation of the GRASP 

metaheuristic. GRASP (Feo and Resende, 1995) is an iterative process in which each iteration 

consists of two phases: construction and local search. The construction phase builds a feasible 

solution whose neighborhood is investigated until a local minimum is found using a local search 

phase.  A recent treatment of GRASP can be found in (Resende and Ribeiro, 2003). GRASP, with 

several improvements, has been successfully used in order to tackle the examination timetabling 

problem by (Casey and Thompson, 2003). In our approach, GRASP functions as the overall 

procedure that incorporates tabu search (Glover and Laguna, 1997), multiple ordering criteria 

(Burke and Newall, 2004) and simulated annealing (Dowsland, 1993). In addition, during the final 

optimization stage, an Integer Programming formulation that uses Branch and Bound as the 

solution mechanism is also used for a number of individual subproblems. In our approach the 

solution process is initiated using a pre-processing step followed by a sequence of optimization 

stages. The complete problem model is used at all stages due to the tight feasibility constraints of 

the problem.  The construction phase is repeated a number of times and the best feasible solution 

achieved is recorded. Then, starting from this solution a local search phase tries to locate a better 

solution. By using simulated annealing moves to inferior solutions are admissible under certain 

conditions making possible the escape of local optima. After the local search phase, the algorithm 

orders the periods of the examination session by the amount of penalty regarding the use of certain 

rooms that should have been avoided plus the penalty that derives from the scheduling of exams 

with different lengths in the same room. Periods with higher penalties are handled with higher 

priority and an Integer Program is formulated and solved with the mathematical solver package 

GLPK (http://www.gnu.org/software/glpk/). Each one of the phases will be presented in detail in 

the following. 

3.1 Pre-processing Step 

The scheduling difficulty for an exam is a function of its enrollments, student conflicts, 

educational importance and other custom criteria. Exams with increased scheduling difficulty must 

be analyzed first because their late entry into the scheduling process would most likely increase the 

backtracking needs. The ordering of exams based on such difficulty criteria prior to their 

assignment to timeslots is a common technique and has been used by (Carter et al., 1996), (Burke 

and Petrovic, 2002), (Burke and Newall, 2004) and others. Our pre-processing procedure involves 

the creation of five ordered lists. The first list contains the exams sorted by their student size and 

the second list ranks the exams based on their conflict weight which is calculated as the sum of the 

nonempty intersections of all pairs of exams. The third list contains for each exam the number of 

all other exams that must take place in the same period. The list which follows contains for every 

exam a weight which is based on the sequence constraints that must be satisfied by the solution. 

Finally, the fifth list holds only the exams that have room constraints in order to be given certain 
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priority by the scheduling process.  The lists are constructed at the beginning of the process and 

remain available thereafter. Whenever an exam is assigned to a timeslot, its presence in the lists is 

ignored.  

3.2 First Stage – Achieving Feasibility 

A feasible solution is constructed by adding to the schedule all the exams sequentially. The 

algorithm examines in a round robin manner each one of the five lists discussed in the previous 

section and at each step selects one of the exams from the currently active list. This is done by 

organizing a tournament among items of the active list which become what is known in the 

GRASP terminology as the Restricted Candidate List (RCL). More specifically RCL is 

constructed by selecting the N top items of the currently active list where N is a runtime parameter 

that in our experiments assumed the value of 10. The tournament approach is used in order to give 

advantage to exams that are highly ranked. More specifically, a linear bias is used that assigns a 

value of 1/ri for each element of the list where ri denotes the rank of element i. Consequently, the 

probability of each one of the first N elements of active list is given by  
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If one of the last three lists has no exams that are unassigned, then turn is passed to the next list. 

The above method of selecting exams occurs only when no high priority exams are present. High 

priority exams might be exams that have been removed from the program as a result of another 

exam assignment or exams that are of coincidence type with already assigned exams.  

Next a period and a room have to be assigned to the selected exam. This is done by examining for 

every valid period the room with the seat number that fits the exam best (leaves the smallest 

number of free seats in the same room). The penalty of the partial solution is computed and the 

first period with the minimum cost is preferred so as to schedule the exam in. If scheduling an 

exam in a period result in zero increment of penalty, then this period is selected without further 

investigation of the remaining periods. The construction process generates a feasible solution and 

its objective value is recorded. Then the construction phase is repeated considering another period 

as the start of the schedule. If during the new construction the objective value becomes worse than 

the recorded best solution, then the current construction process is dropped altogether and a new 

construction starts from scratch.  

While assigning each exam in the schedule it is possible to that there will not be any more valid 

periods. If this is the case, then a backtrack method is executed and the selected exam is scheduled 

in a period and room while other exams that are now invalid are moved back to the list of 

unscheduled exams. An extra field (removals) is added in each exam recording the number of 

exams that the current exam forced to move in previous steps of the construction phase. This 

information is exploited in subsequent steps so that exams that have a history of major disruptions 

in the construction phase become relatively fixed in the schedule. So the backtracking procedure 

works by locating the period and room that will be used to schedule the new exam.  For each 
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period a list is constructed using the scheduled exams that will have to be removed due to conflicts 

and room seats restrictions. Then a corresponding value is computed that is the summation of all 

its exams “removals” field value. The period that the selected exam will be put is selected 

stochastically among the list items with the smallest corresponding “removals” value. In order to 

avoid cycles of adding and then in subsequent steps removing the same exam a tabu list is 

implemented rendering each newly added exam unmovable for a number of successive iterations. 

On the other hand, removed exams are given high priority in order to return shortly to the 

schedule. 

The backtracking mechanism proved to be successful and fast in finding feasible solutions for all 

eight of the provided datasets in ITC07. Information about the datasets examined and the solution 

achieved can be seen in Table 1. Details of all of these parameters can be found in (McCollum and 

McMullan, 2007). Conflict density is an important metric calculated from the input data in order to 

characterize the density level of the problem graph. The conflict density shows the percentage of 

conflicts among the exams. Two exams are considered to be in conflict if their enrollments share 

common students. 

ITC07-DATASETS 

  Exams Students Periods Rooms 

Two In 

A Row 

Penalty 

Two In 

A Day 

Penalty 

Period 

Spread 

Penalty 

No Mixed 

Durations 

Penalty 

Number 

Of 

Largest 

Exams 

Number 

Of Last 

Periods 

To 

Avoid 

Frontload 

Penalty 

Conflict 

Density 

Dataset 1 607 7891 54 7 7 5 5 10 100 30 5 5,05% 

Dataset 2 870 12743 40 49 15 5 1 25 250 30 5 1,17% 

Dataset 3 934 16439 36 48 15 10 4 20 200 20 10 2,62% 

Dataset 4 273 5045 21 1 9 5 2 10 50 10 5 15,00% 

Dataset 5 1018 9253 42 3 40 15 5 0 250 30 10 0,87% 

Dataset 6 242 7909 16 8 20 5 20 25 25 30 15 6,16% 

Dataset 7 1096 14676 80 15 25 5 10 15 250 30 10 1,93% 

Dataset 8 598 7718 80 8 150 0 15 25 250 30 5 4,55% 

Table 1 

3.3 Second stage – local search 

Starting from a feasible solution provided by the previous stage, a local search phase follows. The 

neighborhood structure is defined by randomly selecting a pair of periods and moving certain 

exams from one period to the other. Kempe chains are used in order to select the appropriate 

exams (Thompson and Dowsland, 1996). Kempe chains are a by-product of the effort towards 

solving the infamous “four color problem”. The vertices of a graph are grouped in sets according 

to the color that has been assigned to them. The goal is to produce new feasible solutions by 

moving vertices between sets. Such a movement might result in an infeasible solution because 

nodes of the same color must not be connected directly. By using Kempe chains we can move 

across feasible solutions only. This is done by selecting two sets and constructing a number of 

chains consisted of vertices belonging to either of the sets which are disconnected between each 

other. If a vertex of a chain is moved from one set to the other then all other vertices of the same 

chain must also move to the other set in order to maintain feasibility for the solution.  
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In our algorithm a graph is constructed with vertices and edges corresponding to exams and 

conflicts between exams respectively. Each period can be regarded as a color and the purpose is to 

colorize the graph so as not to have directly connected vertices with the same color. Since we 

already have a feasible solution we also have a proper coloring of the underlying graph. So Kempe 

chains can be used in order to produce new feasible solutions according to conflicts between 

exams. Each solution produced in this way is further checked regarding other constraints like room 

capacities and in case it is valid its cost is computed. If the cost is better than the best cost found so 

far then it is accepted as the new best solution. Even if the cost is not better, there is a possibility of 

accepting this solution as the next solution of the local search phase. This happens according to the 

Simulated Annealing local search scheme that accepts inferior solutions that are close to the best 

solution with a probability that degrades while the process continues. Finally the best solution 

encountered is the result of the local search stage. 

It has to be mentioned that a number of Kempe chains are produced for every two selected periods. 

Our algorithm starts by processing the longer chains first in an effort to disrupt more the current 

solution. In case a better solution is found remaining Kempe chains of the periods under 

consideration are not examined. A critical point for the success of the search method has to do 

with the mechanism of selecting periods that will be used in order to search for Kempe chains. 

Poor selection might result in cycles of non improving steps and in ignoring parts of the search 

space that could have been useful otherwise. Our design of this part of the application proposes in 

each step period pairs with relatively minor involvement in previous steps and also periods that in 

the past resulted in successful moves. A memory structure is used in order to achieve this. The first 

period of a pair is selected according to the relative success of previous moves examining all the 

periods. After selecting the first part of a pair then all the other periods are examined according to 

past successful moves for both the periods. 

Another point of interest is that our use of the simulated annealing metaheuristic involves a 

reheating scheme additional to the typically used cooling scheme. When a number of local search 

steps is examined without producing a solution to replace the currently best one, parameter 

temperature rises resulting in greater probability of acceptance of inferior solutions. Our 

experiments showed that a starting temperature of 10 degrees Celsius, cooling and heating 

schemes of geometric nature and a typical exponential function of  accepting solutions with less 

good objective function values produce relatively good results. 

3.4 Third stage – improvements per period 

The timetable produced when the local search phase has finished is further examined in a period 

by period basis so as to discover and remedy situations that might result in further cost 

improvements. Cost can be reduced by not using rooms with high penalty and avoiding putting in 

the same room exams with mixed durations. The following Integer Programming model was 

formulated. Let E be the set of exams, R the set of rooms and K the set of discrete exams 

durations. Then si is the number of students enrolled in exam i, cj is the capacity of room j, pj is the 

penalty of using room j, Pnmd is the penalty of having mixed exams durations in a room and dik is 

a parameter having value 1 when exam i has duration equal to the k
th
 discrete duration from set K 



7 

and 0 otherwise. Let xij be a binary variable which is supposed to take value 1 when exam i is 

scheduled in room j and 0 otherwise. Let yj be an integer variable that counts the number of exams 

scheduled in room j and finally let zkj be a binary variable with value 1 when distinct duration k is 

among the durations of the exams scheduled in room j. 

Min  

1 1

R K

j j kj

j k

p y z Pnmd
= =

 + 
 

∑ ∑      
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1
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x y
=

=∑   j in 1..R    

  
1

K

ik kj ij

k

d z x
=

≥∑   i in 1..E, j in 1..R   

  xij ∈ {0,1}, zkj ∈ {0,1}, yj ∈ Z+ 

 

We solve the above model for each one of the periods using the open source mathematical solver 

GLPK. GLPK employs a branch and bound algorithm with LP relaxations for solving IP problems.  

A few parameters had to be tuned in order to get good results in a timely manner. So in our 

problem branching occurs on the most fractional integer variables while the backtrack scheme 

used is depth first search. Experimenting with the model we also find out that the solution process 

is greatly accelerated by using what GLPK calls advanced MIP solver which is also a branch and 

bound with the enhancements of presolving the MIP problem and generating cutting planes to 

improve its LP relaxation. We have observed that due to small objective value variations in the 

feasible solution space, GLPK tends to spend a significant amount of time without proving 

optimality and so we decided to enforce a time limit criterion for each subproblem. 
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Our incentive for programming the third stage was that the solutions produced by the previous 

stages were likely to be consisted of suboptimal assignments of exams to rooms revealed by 

examining each period in isolation. Those suboptimal fragments of the timetable are easily located 

by a human operator and their presence in a final solution might give the impression of a low 

quality outcome for the whole process. 

Unfortunately the time available for this stage is limited so periods are ordered according to the 

value of their penalties resulting from rooms and mixed durations. 

4. Experiments  

Our experiments used the eight provided datasets from ITC07 which according to the organizers of 

the competition represent a relatively real model of the examination timetable problem in terms of 

data, constraints and evaluation. Four more datasets which are called ‘hidden’ will be released at a 

time later to the writing of this paper. The variability of the provided datasets is significant not 

only according to the size of the problems but also with respect to the IMI index.  

Among the datasets, dataset 4 is rather special because it has only one room rendering stage 3 of 

our procedure useless and a much higher value of conflict density compared with the remaining 

datasets. High conflict density value makes successful backtracking harder. In our initial 

experiments the backtracking mechanism was implemented by examining all periods and choosing 

the one that resulted in the fewer number of dislocating already scheduled exams. Unfortunately 

when the above mechanism operated in dataset 4, it led to cycles of removing big exams of the 

timetable and after a number of steps inserting the same exam again resulted in mass removals of 

smaller exams. The above problem was not alleviated even with the presence of taboo lists. 

Finally, the adoption of the backtracking mechanism described in 3.2 eliminated this problem.  

The program ran on a simple workstation equipped with java runtime environment. In this 

machine the benchmarking routine provided by the organizers of the competition showed that the 

acceptable run time for our application had to be no more than 422 seconds. Our application 

adhered to this limit and distributed time into the three stages giving 30% of the time to the first 

stage, 50% to the second and the remaining 20% to the third. In special cases like dataset 4 where 

stage 3 is obsolete its time was appended to stage 2. 

4.1 Programming Issues 

In order to achieve the limited available execution time a number of enhancements was 

considered. Redundant data structures were designed and optimized versions of the functions that 

compute the penalty incrementally were coded. A preprocess step creates for each exam extra data 

that makes positioning exams and backtracking easier. For example if an after constraint exists for 

exam E1 that links it with exam E2 and E1 has a coincidence constraint with E3 then the same 

after exam constraint for E3 to E2 is added. Another example also about coincidence exams is the 

following. If two or more exams with coincidence constraints between them have different 

duration then the longest duration must be assumed for all the exams. 



9 

Our program is implemented in Java 5 despite the slowest runtime performance of Java compared 

to compiled programming languages. We believe that this disadvantage is balanced by the ease of 

programming complex algorithms and Java’s rich API especially regarding data structures.  

4.2 Results 

The results obtained using the approach of this paper can be seen in Table 2. The second and third 

columns show the best and the average penalty that our implementation produced after a number 

of runs respecting the same limit in execution time for each individual run. We can observer that 

the best and average values are relatively close between them indicating robustness for the 

approach.  

 Five runs for each one of the eight datasets are presented in Table 3. For some of the datasets the 

second and third stage of the algorithm fail to reduce the cost significantly. We believe that this 

happens because the proposed search on a neighborhood structure which is based on Kempe 

chains does not visualize all the problem constraints.  The problem is that in some cases local 

search moves are able to locate improved solutions without exam conflicts but other constraints 

like room constraints, period constraints, etc failed to be satisfied because a more global view of 

the problem is needed. As a result a significant percentage of intermediate solutions during the 

local search process are invalid.  

 Best Penalty Average Penalty 

Dataset 1 5.814 5.914 

Dataset 2 1.062 1.091 

Dataset 3 14.179 14.336 

Dataset 4 20.207 21.846 

Dataset 5 3.986 4.167 

Dataset 6 27.755 28.361 

Dataset 7 6.885 7.010 

Dataset 8 10.449 10.796 

Table 2 
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Table 3 

5. Conclusions - Future Work 

In this paper we presented an algorithmic approach for the solution of the examination timetabling 

problem as it was defined in the first track of ITC07.  The solution process has been partitioned 

into stages and a number of heuristics, metaheuristics and exact methods have been used. The 

limited execution time was a critical factor that heavily affected our approach. The solutions 

appear satisfactory but it is also clear that further improvements are possible. This is especially 

true if the execution time limit is relaxed. We plan to experiment with fuzzy multiple ordering 

(Asmuni, Burke and Garibaldi, 2005) during the construction phase because two or more ordering 

criteria can be used simultaneously using a fuzzy expert system. The local search phase can also be 

improved by using a variable neighborhood search schema (Hansen and Mladenovic, 2003) that 

will enable the systematic change of the neighborhood using as an alternative neighborhood 

structure the one resulting from single exam moves. We plan to capitalize on the experience 

gained from our involvement with ITC07 by modifying our algorithm in order to solve the 

examination problem for the colleges and universities in Greece. The main modeling extensions to 

the ITC07 competition involve the existence of an availability schedule for the lecturers and the 

various rooms and the uniformity of the duration of the exams.  
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