
An application of the Threshold Accepting metaheuristic
for curriculum based course timetabling

Martin Josef Geiger

Received: date / Accepted: date

Abstract The article presents a local search approach for the solution of timetabling

problems in general, with a particular implementation for competition track 3 of the In-

ternational Timetabling Competition 2007 (ITC 2007). The heuristic search procedure

is based on Threshold Accepting to overcome local optima. A stochastic neighborhood

is proposed and implemented, randomly removing and reassigning events from the

current solution.

The overall concept has been incrementally obtained from a series of experiments,

which we describe in each (sub)section of the paper. In result, we successfully derived

a potential candidate solution approach for the finals of track 3 of the ITC 2007.

Keywords Threshold Accepting · Curriculum Based Course Timetabling · Interna-

tional Timetabling Competition ITC 2007

1 Introduction

Timetabling describes a variety of notoriously difficult optimization problem with con-

siderable practical impact. Important areas within this context include employee time-

tabling, sport timetabling, flight scheduling, and timetabling in universities and other

institutions of (often higher) education [2].

Typically, timetabling is concerned with the assignment of activities to resources.

In more detail, these resources provide timeslots (time intervals) to which the activities

may be assigned subject to certain side constraints. The overall objective of the problem

is to find a feasible assignment of all events such that some desirable properties are

present in the final solution.

Timetabling problems are challenging not only in terms of their complexity, but

also as they often involve multiple conflicting objectives [8] and even multiple stake-

holder with conflicting interests and views. University timetabling problems present

M. J. Geiger
University of Hohenheim
70593 Stuttgart, Germany
E-mail: mjgeiger@uni-hohenheim.de



2

an interesting example of this problem domain. Here, compromise solutions must be

found that equally meet the expectations of students and teachers.

Numerous publications are devoted to problem domain of timetabling, with impor-

tant work by the EURO Working Group on Automated Timetabling WATT. Members

of the group maintain a bibliography and collect other timetabling-related resources

under http://www.asap.cs.nott.ac.uk/watt/.

More recently, timetabling competitions stimulated the scientific development of

the field, encouraging researchers to propose solution approaches for newly released

benchmark instances. By creating a competitive atmosphere for algorithmic develop-

ment, similar to the famous DIMACS implementation challenges, fresh ideas have been

developed. In 2007, another timetabling competition started, and this article describes

a contribution and the obtained results for it.

The article is organized as follows. In the following Section 2, the problem under

investigation is briefly described. An approach for the construction of initial feasible so-

lutions is presented in Section 3, and experimental results of this constructive approach

obtained on benchmark instances are presented. The initially constructed solutions are

then improved using the iterative local search heuristic given in Section 4. Experimental

results of the iterative phase are reported. Conclusions follow in Section 5.

2 The curriculum based timetabling problem

The curriculum based timetabling problem [3] is a particular variant of an educational

timetabling problem, described in track 3 of the International Timetabling Competition

(http://www.cs.qub.ac.uk/itc2007/).

It reflects the situation of many universities, where curricula describe sets of courses

such that any pair of courses of a curriculum have students in common. Contrary

to post-enrollment based timetabling problems, where students register for courses

they wish to attend, some prior knowledge about the courses attended by groups of

students is required here. However, as university faculties define the required courses

that students have to attend, this information is usually known.

A technical description of the problem is given in [3]. Besides some usual hard

constraints, four ‘soft constraints’ are relevant that measure desirable properties of

the solutions, and it becomes clear that these desirable properties of timetables are

beneficial for both the students as well as the lecturers:

1. A room capacity soft constraint tries to ensure that the number of students attend-

ing a lecture does not exceed the room capacity.

2. Lectures must be spread into a minimum number of days, penalizing timetables in

which lectures appear in too few distinct days.

3. The curricula should be compact, meaning that isolated lectures, that is lectures

without another adjacent lecture, should be avoided.

4. All lectures of a course should be held in exactly one room.

The overall evaluation of the timetables is then based on a weighted sum approach,

combining all four criteria in a single evaluation function. While we adopt this approach

in the current article, is should be mentioned that Pareto-based approaches may be

used as an alternative way to handle the multi-criteria nature of the problem.



3

3 Construction of feasible initial solutions

3.1 Preprocessing

Prior to the computation of a first solution, some preprocessing is carried out. This

preprocessing is relevant both for the construction of an initial solution, as well as for

the following improvement phase. In brief, some problem-specific characteristics are

employed, adding some additional structure to the problem.

For each given lecture Li, events Ei1, . . . , Eie are created which are later assigned

to timeslots. The number of events e is given in the problem instances. Creating events

for each lecture leads to a more general problem description, and the solution approach

only needs to concentrate on the assignment of all events, one to a single timeslot, as

opposed to keeping track of assigning a lecture to e timeslots.

Second, we categorize for each lecture Li (and thus for each event belonging to

lecture Li) the available rooms in three disjunct classes Ri1,Ri2,Ri3.

Ri1 refers to the rooms in which the lecture fits best, that is the rooms Rk with the

minimum positive or zero value of ck − si, ck being the room capacity, si the number

of students of lecture Li.

The class Ri2 stores the rooms in which lecture Li fits, that is si < ck, but not best,

and Ri3 contains the rooms in which lecture Li does not fit. With respect to the given

problem statement, events of lectures may be assigned to timeslots of rooms in Ri3,

this however results in a penalty.

The underlying assumption of the classification of the rooms is that events are

preferably assigned to timeslots belonging to a room of class Ri1, followed by Ri2

and Ri3. It has to be mentioned however, that this cannot be understood as a binding,

general rule but rather should be seen as a recommendation. A randomized procedure is

therefore going to be implemented when assigning events to timeslots (see the following

section), allowing a certain deviation from the computed room order.

3.2 A myopic construction approach

The method

The constructive phase tries to obtain a first feasible assignment of all events to times-

lots. A simple heuristic approach is used, successively assigning all events to timeslots,

one at a time, with the given pseudo-code of Algorithm 1. In this description, we de-

note the set of all events with E , and the set of unassigned (open) events with Eo.

During the successive assignment procedure, a set of events that have been impossible

to assign is maintained, denoted with Eu. In cases of assigning all events to timeslots,

Eu = ∅ is returned.

A greedy approach is used in the assignment procedure, selecting in each step the

‘most critical’ event E from Eo, that is the event with the smallest number of timeslots

to which it may be assigned.

The choice of timeslots for the events reflects the initial categorization of rooms.

With a probability of 0.5, timeslots of rooms in Ri1 are preferred over Ri2 over Ri3,

and with a probability of 0.5, timeslots of Ri2 are preferred over the ones of Ri1 over

Ri3. Within each class, timeslots are randomly chosen with equal probability. In cases

where a most-preferred class of timeslots is empty, the choice is made from the lesser

preferred class and so on.



4

Algorithm 1 Myopic construction

1: Set Eo = E
2: Eu ← ∅
3: while Eo �= ∅ do
4: Select the most critical event E from Eo, that is the event with the smallest number of

available timeslots
5: if E can be assigned to at least one timeslot then
6: Select some available timeslot T for E
7: Assign E to the timeslot T
8: else
9: Eu ← Eu ∪ E

10: end if
11: Eo ← Eo\E
12: end while

As mentioned above, timeslots of rooms of class Ri1 are preferable to the ones of class

Ri2 and Ri3. The randomized assignment procedure generally considers this aspect,

however allowing a certain deviation from the rule. This is done as we have been able

to observe that the assignment of events to timeslots following only a single order

does not lead to satisfactory results. In this case, the choice of timeslots simply is too

restrictive.

It has been pointed out in this context that the probability of assigning events to

timeslots of Ri1 → Ri2 → Ri3 could be expected to be greater than the one of

the order Ri2 → Ri1 → Ri3. While we generally agree with this comment, other

probabilities than 0.5 for both orders have not been investigated yet. Consequently,

subsequent experiments certainly will have to examine the influence of this control

parameter on the obtained results.

Experimental results

The constructive approach has been tested on the first seven benchmark instances of

ITC 2007 track 3. These are the instances that initially have been made available by

the organizers of the competition. In February 2007, only a few weeks before the sub-

mission deadline, seven more instances followed (comp08.ctt–comp14.ctt). Obviously,

experimental investigations had to start considerable earlier, and we therefore had to

conclude on the effectiveness of the approach based on these early seven instances.

After 1000 repetitions on each benchmark instance, we computed the number of

trials in which all events have successfully been assigned to timeslots, given in Table 1.

Table 1 Number of trials in which all events have successfully been assigned (out of 1,000
trials)

Instance Cases with Eu = ∅
comp01.ctt 1,000
comp02.ctt 354
comp03.ctt 377
comp04.ctt 1,000
comp05.ctt 0
comp06.ctt 953
comp07.ctt 827



5

The results reveal significant differences between the instances. While we have been

able to always assign all events to timeslots for instance comp01.ctt and comp04.ctt,

comp05.ctt turns out to be particularly difficult (constrained). After not having been

able to identify a single constructive run in which all events have been assigned to

timeslots, we conclude that simply relying on more repetitions is most probably insuf-

ficient for this instance. We rather need to adapt the constructive methodology to the

particular instance, overcoming problems with the assignment of events to timeslots.

3.3 Reactive repetitive reconstruction

The method

Based on the initial constructive approach, we propose a reactive procedure that adapts

to the set of unassigned events from previous runs. The logic behind this approach is

that the constructive procedure ‘discovers’ events that are difficult to assign, giving

them priority in successive runs. Similar ideas have been sketched by the squeaky

wheel optimization approach [6], and implemented in ant colony metaheuristics for

examination timetabling problems [4].

In the following, let Ep be the set of prioritized events, E¬p the set of non-prioritized

events, and Eu the set events that have not been assigned during the construction phase.

It is required that Ep ⊆ E , E¬p ⊆ E , Ep ∩ E¬p = ∅, and Ep ∪ E¬p = E .

Algorithm 2 describes the reactive construction procedure.

Algorithm 2 Reactive construction

1: Set Ep = ∅, Eu = ∅, loops = 0
2: repeat
3: Ep ← Eu

4: Eu ← ∅
5: E¬p ← E\Ep

6: while Ep �= ∅ do
7: Select the most critical event E from Ep, that is the event with the smallest number

of available timeslots
8: if E can be assigned to at least one timeslot then
9: Select some available timeslot T for E

10: Assign E to the timeslot T
11: else
12: Eu ← Eu ∪ E
13: end if
14: Ep ← Ep\E
15: end while
16: while E¬p �= ∅ do
17: Select the most critical event E from E¬p, that is the event with the smallest number

of available timeslots
18: if E can be assigned to at least one timeslot then
19: Select some available timeslot T for E
20: Assign E to the timeslot T
21: else
22: Eu ← Eu ∪ E
23: end if
24: E¬p ← E¬p\E
25: end while
26: loops ← loops + 1
27: until Eu = ∅ or loops = Maxloops



6

As given in the pseudo-code, the construction of solutions is carried out in a loop un-

til either a feasible solution is identified or a maximum number of iterations Maxloops

is reached. When constructing a solution, a set of events Eu is kept for which no times-

lot has been found. When reconstructing a solution, these events are prioritized over

the others. In that sense, the constructive approach is biased by its previous runs,

identifying events that turn out to be difficult to assign.

After at most a maximum number of Maxloops iterations, the construction proce-

dure returns a solution that is either feasible (Eu = ∅) or not (Eu �= ∅).
It has been pointed out that even when events are put into Ep, they do not nec-

essarily remain elements of that set. Instead, they might be removed from Ep in the

subsequent loop. To some extent, this is counterintuitive, as the algorithm does not

build up a complete datastructure storing all unsuccessfully assigned events. Instead,

the direct ‘learning’ is limited to the preceding run. It has to be mentioned however,

that some implicit information is nevertheless transferred from loop to loop, as any

loop is biased by its predecessor. It also should be noticed that this implementation of

a more limited adaptive algorithm led to satisfactory results, which is why alternative

approaches have not been further investigated yet.

Experimental results

In the experiments, we focused on the difficult instance comp05.ctt, computing for

1000 trials the number of feasible solutions reached after a certain number of loops of

the constructive approach. The obtained results are given in Table 2.

Table 2 Feasible solutions after a certain number of loops for comp05.ctt (out of 1,000 trials)

Loops feasible solutions

1 0
2 56
3 272
4 387
5 511
6 608
7 688
8 754
9 802
10 831

The number of cases in which a feasible solution has been reached slowly converges

to 1000, monotonically increasing with each additional loop. This indicates that the

biased reconstruction in the presented approach successfully adapts to events which

are difficult to assign to timeslots.

It should be noticed that the behavior of the approach for the other benchmark

instances is similar. This observation is however less important, as a repetitive applica-

tion of the simple constructive approach will increase the percentage of cases in which

a feasible solution is reached, too. For instance comp05.ctt, where not a single feasible

solution is found after the first loop, this does not hold.



7

4 Threshold Accepting based improvement

4.1 Description of the approach

The constructive approach as described in Section 3 only aims to identify a first feasible

assignment of events to timeslots, not taking into consideration the resulting soft con-

straint violations. An iterative procedure continues from here, searching for an optimal

solution with respect to the soft constraints.

The formulation of the approach is rather general. One of the reason for this is that

while we hope for a feasible assignment of all events, the constructive approach does

not guarantee it. Nevertheless, search for improved solutions needs to continue at some

point, and an approach that is able to handle infeasible solutions is therefore required.

Also, in case of an infeasible first assignment, the procedure should be able to later

identify a feasible one.

In each step of the procedure, a number of randomly chosen events is unassigned

from the timetable and reinserted in the set Eu. A reassignment phase follows. Contrary

to the constructive approach, where events are selected based on whether they are

critical with respect to the available timeslots, events are now randomly chosen from

Eu, each event with identical probability. The choice of the timeslot follows the logic as

described in the constructive approach, prioritizing timeslots of particular room classes.

Again, we use the two possible preference structures of rooms, Ri1 over Ri2 over Ri3,

and Ri2 over Ri1 over Ri3. Each of them is randomly chosen with probability 0.5.

When evaluating timetables, two criteria are considered. First, the number of unas-

signed timeslots (distance to feasibility) hc, second, the total penalty with respect to

the given soft constraints sc. Comparison of solutions implies a lexicographic ordering

of the hard constraint violations hc over the penalty function sc. We therefore accept

timetables minimizing the distance to feasibility independent from the soft constraint

count. This means that in cases in which the initial construction phase is unable to as-

sign all events to timeslots, a later assignment of more events is preferred independent

from an increasing value of sc, closely following the evaluation of solutions as given in

the ITC 2007.

In case of identical distance to feasibility hc, inferior solutions with respect to sc are

accepted up to a threshold. This idea has been introduced by the Threshold Accepting

metaheuristic [5], a simplified deterministic variant of Simulated Annealing. Previous

research has shown that simplifications of Simulated Annealing may be very effective

for timetabling problems [1].

The implementation of the Threshold Accepting approach compares the quality

of neighboring solutions with the current best alternative, permitting an acceptance

of inferior alternatives up to the given threshold. An alternative strategy would be

the comparison with the current solution instead of the globally best one. In this case

however, a subsequent acceptance of inferior solutions can happen, and for that reason,

the more restrictive acceptance strategy has been chosen.

4.2 First results and comparison with other approaches

Different configurations of the algorithm have been tested on the benchmark data

from the ITC 2007. A first implementation has been made available, however without

optimizing the code with respect to speed and efficiency. This has been done later, and



8

the final results for the ITC 2007, as reported later, are therefore significantly better,

simply because the final version of the program allowed much faster computations. On

an Intel Core 2 Quad Q6600 2.4 GHz processor, equipped with 2 GB RAM, mounted

on an ASUS motherboard, 375 seconds of computing time have been allowed for each

test run.

Besides the determination of the number of reassigned events in each iteration,

which has been set to five, an appropriate choice of the threshold needs to be made.

Three different configurations of the threshold are reported here, 0% of sc, 1%, and

2%.

The following Table 3 gives the obtained average values of the soft constraint penal-

ties sc for three threshold configurations and compares the results to an Iterated Local

Search approach [7]. In this context, a threshold of 0% leads to a hillclimbing algorithm

as only improving moves are accepted.

The Iterated Local Search approach consists of a hillclimbing algorithm (a Thresh-

old Accepting algorithm with threshold 0%), perturbing the current solution after a

number of non-improving moves. Perturbations are done by a random reassignment

of five events. Contrary to the usual acceptance rule with respect to the cost function

sc, the perturbed alternative is accepted in any case, and search continues from this

new solution. Two configurations of the Iterated Local Search Approach have been

implemented. The first variant, ILS 10k, starts pertubing after 10,000 non-improving

moves, the other, ILS 3k, after 3,000 moves.

Table 3 Average values of sc

Instance TA 0% TA 1% TA 2% ILS 10k ILS 3k

comp01.ctt 10 12 13 12 14
comp02.ctt 229 199 204 218 223
comp03.ctt 216 201 213 211 202
comp04.ctt 134 126 132 138 145
comp05.ctt 656 594 657 658 641
comp06.ctt 199 177 230 196 194
comp07.ctt 179 196 316 181 185

On the basis of the obtained results, we conclude that a rather small threshold

of 1% leads for most instances to the best average results. There are some instances

in which the Iterated Local Search obtains good results, but TA 1% is overall most

promising.

It should be noticed that the choice of a percentage as a threshold has been iden-

tified after experimenting with other algorithmic variants. The main advantage of this

approach appears to be that for small values of sc the algorithm behaves more like a

hillclimbing algorithm, while for larger values a larger threshold is derived.

4.3 Results for the International Timetabling Competition ITC 2007

The initial implementation of the algorithm has been optimized with respect to execu-

tion speed, however keeping the methodological ideas as described above. A significant

improvement has been achieved, due in particular to a delta-evaluation of the moves.



9

Table 4 gives the best results of the Threshold Accepting algorithm with a threshold

of 1%. The results are based on 30 trials with different random seeds. Each trial was

allowed to run for 375 seconds on the hardware mentioned above. The number of

evaluated solutions is given, too. In contrast the the initial experiments, we now report

results for 14 instances, seven of which had been released a few weeks before the

required submission of the results.

Table 4 Best results and the used seeds (out of 30 trials)

Instance seed hard constraint soft constraint evaluations
violations violations

comp01.ctt 130 0 5 13,072,619
comp02.ctt 112 0 108 8,547,980
comp03.ctt 119 0 115 9,211,859
comp04.ctt 128 0 67 10,352,548
comp05.ctt 119 0 408 6,512,059
comp06.ctt 117 0 94 8,631,146
comp07.ctt 113 0 56 7,673,851
comp08.ctt 129 0 75 9,881,464
comp09.ctt 119 0 153 9,248,758
comp10.ctt 122 0 66 8,386,538
comp11.ctt 111 0 0 13,468,229
comp12.ctt 103 0 430 6,782,742
comp13.ctt 104 0 101 9,838,210
comp14.ctt 122 0 88 9,693,538

It can be seen that the approach leads to reasonable results, and that the best re-

sults of the improved code are significantly better than the ones of the first implemen-

tation. For some instances, comp01.ctt and comp11.ctt, particularly good solutions

are found. Others such as comp05.ctt and comp12.ctt have best found alternatives

with soft constraint penalties that are still quite large. Based on the observed improve-

ment in comparison to the first implementation, we can conclude that efficiency of the

implementation plays an important role for the final results.

The following Table 5 gives the average results of the top five competitors of ITC

2007, track 3. The columns are sorted in descending order of the overall ranking, thus

showing the results of Thomas Müller in the leftmost column. In brief, our approach

ranked 4th overall. When closer analyzing the obtained results, it becomes clear that

the approaches of the first three finalists did indeed lead to comparable superior re-

sults. In relation to the approach of Clark, Henz, and Love, our implementation of

the Threshold Accepting algorithm turned out to be better, however not for all test

instances.

Unfortunately, we do not have any information about the algorithms of the other fi-

nalists. Consequently, the possibilities of drawing precise conclusions are limited. Nev-

ertheless, we suspect that the top three ranked programs are substantially better than

our Threshold Accepting implementation, simply because the average results are su-

perior. This raises the question whether the observed differences are due to a better

(faster) implementation, or due to better algorithmic ideas. Longer optimization runs

are therefore carried out in the following, allowing a better convergence of the meta-

heuristic without the immediate pressure of terminating the search after only 375

seconds.



10

Table 5 Average results of the top five competitors of ITC 2007, track 3

Instance Müller Lu, Hao Atsuta, Geiger Clark,
(USA) (France) Nonobe, (Germany) Henz, Love

Ibaraki (Singapore)
(Japan)

Rank: 1 2 3 4 5

comp01.ctt 5.0 5.0 5.1 6.7 27.0
comp02.ctt 61.3 61.2 65.6 142.7 131.1
comp03.ctt 94.8 84.5 89.1 160.3 138.4
comp04.ctt 42.8 46.9 39.2 82.0 90.2
comp05.ctt 343.5 326.0 334.5 525.4 811.5
comp06.ctt 56.8 69.4 74.1 110.8 149.3
comp07.ctt 33.9 41.5 49.8 76.6 153.4
comp08.ctt 46.5 52.6 46.0 81.7 96.5
comp09.ctt 113.1 116.5 113.3 164.1 148.9
comp10.ctt 21.3 34.8 36.9 81.3 101.3
comp11.ctt 0.0 0.0 0.0 0.3 5.7
comp12.ctt 351.6 360.1 361.6 485.1 445.3
comp13.ctt 73.9 79.2 76.1 110.4 122.9
comp14.ctt 61.8 65.9 62.3 99.0 105.9
comp15.ctt 94.8 84.5 89.1 160.3 138.0
comp16.ctt 41.2 49.1 50.2 92.6 107.3
comp17.ctt 86.6 100.7 107.3 143.4 166.6
comp18.ctt 91.7 80.7 73.3 129.4 126.8
comp19.ctt 68.8 69.5 79.6 132.8 125.4
comp20.ctt 34.3 60.9 65.0 97.5 179.3
comp21.ctt 108.0 124.7 138.1 185.3 185.8

4.4 Convergence in longer runs

In contrast to the optimization runs for the ITC 2007, we allow in the following ex-

periments the evaluation of 100 million timetables before terminating the algorithm.

Again, 30 trials have been carried out, and Table 6 gives the best found solutions out

of all test runs.

Obviously, the Threshold Accepting algorithm did not converge after only 375 sec-

onds. Rather big improvements can be seen for most instances, sometimes improving

the best solution by 25% (comp10.ctt). For the instances with large values of sc,

comp05.ctt and comp12.ctt, improvements are possible, but the absolute values re-

main rather high. We suspect that these instances possess properties that complicate

the identification of timetables with small soft constraint violations. Recalling that

instance comp05.ctt was problematic with respect to the identification of a feasible

assignment in the initial experiments, this is however not surprising.

No improvements are possible for instance comp01.ctt, and of course for instance

comp11.ctt.

In comparison to the three top ranked finalists of ITC 2007, inferior overall results

are found, even when allowing the execution of 100,000,000 evaluations. Independent

from the personal programming skills of the competitors, which are unknown to us and

difficult to assess, we suspect that the performance of the approaches is mainly due to

the algorithms as such.



11

Table 6 Best results after 100,000,000 evaluations (out of 30 trials)

Instance hard constraint soft constraint
violations violations

comp01.ctt 0 5
comp02.ctt 0 91
comp03.ctt 0 108
comp04.ctt 0 53
comp05.ctt 0 359
comp06.ctt 0 79
comp07.ctt 0 36
comp08.ctt 0 63
comp09.ctt 0 128
comp10.ctt 0 49
comp11.ctt 0 0
comp12.ctt 0 389
comp13.ctt 0 91
comp14.ctt 0 81

5 Summary and conclusions

The article presented an approach for curriculum-based course timetabling, employing

the general idea of the Threshold Accepting metaheuristic. The methodological con-

cepts are rather problem-independent as only simple removals and reassignments of

events from and to the timetable are carried out during search.

Initial experiments with a first implementation indicated that small values of the

threshold present a good parameter setting. Comparison studies with a simple hill-

climbing algorithm and an Iterated Local Search Algorithm have been carried out. In

brief, the Threshold Accepting variant with a threshold of 1% appeared to be most

promising.

Comparisons of the short runs for the International Timetabling Competition 2007

with long runs reveal that the proposed algorithm does not converge within the given

time limit. More time for computations is needed, and further improvements of the

concept are certainly possible.

We are confident that a fair contribution to the ITC 2007 has been made. In

comparison to the other participants of the ITC 2007, our approach ranked 4th over-

all. However, a considerable gap to the average results of the top three contributions

became obvious, and we are looking forward to read the articles describing these ap-

proaches. Nevertheless, good solutions are found, in some cases even in short time.

We find optimal solutions for instance comp11.ctt, and a very good one for instance

comp01.ctt.

Acknowledgements The author would like to thank three anonymous referees for their
helpful comments.

References

1. E. K. Burke, Y. Bykov, J. P. Newall, and S. Petrovic. A time-predefined approach to course
timetabling. Yugoslav Journal of Operations Research (YUJOR), 13(2):139–151, 2003.



12

2. M. W. Carter. Timetabling. In S. Gass and C. Harris, editors, Encyclopedia of Operations
Research and Management Science, pages 833–836. Kluwer Academic Publishers, Boston,
Dordrecht, London, 2. edition, 2001.

3. Luca Di Gaspero, Barry McCollum, and Andrea Schaerf. The second international time-
tabling competition (ITC-2007): Curriculum-based course timetabling (track 3). Technical
Report QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, August 2007.

4. K. A. Dowsland and J. M. Thompson. Ant colony optimization for the examination schedul-
ing problem. Journal of the Operational Research Society, 56:426–438, 2005.

5. G. Dueck and T. Scheuer. Threshold accepting: A general purpose optimization algorithm
appearing superior to simulated annealing. Journal of Computational Physics, 90:161–175,
1990.

6. David E. Joslin and David P. Clements. “Squeaky wheel” optimization. Journal of Artificial
Intelligence Research, 10:353–373, 1999.

7. Helena R. Lourenço, Olivier Martin, and Thomas Stützle. Iterated local search. In Fred
Glover and Gary A. Kochenberger, editors, Handbook of Metaheuristics, volume 57 of Inter-
national Series in Operations Research & Management Science, chapter 11, pages 321–353.
Kluwer Academic Publishers, Boston, Dordrecht, London, 2003.

8. S. Petrovic and Y. Bykov. A multiobjective optimisation technique for exam timetabling
based on trajectories. In E. Burke and P. De Causmaecker, editors, The Practice and
Theory of Automated Timetabling IV: Selected Papers (PATAT 2002), volume 2740 of
Lecture Notes in Computer Science, pages 149–166. Springer Verlag, Berlin, Heidelberg,
New York, 2002.


