
A modular hybrid approach to employee timetabling

Drago Bokal

Department of Mathematics
and Computer Science
University of Maribor

Koroška 160
SI-2000 Maribor, Slovenia
drago.bokal@uni-mb.si

Gašper Fijavž

Faculty of Computer and Information Science
University of Ljubljana

Tržaška 25
SI-1000 Ljubljana, Slovenia

gasper.fijavz@fri.uni-lj.si

Bor Harej

Department of Mathematics
University of Ljubljana

Jadranska 19
SI-1000 Ljubljana, Slovenia
bor.harej@gmail.com

Andrej Taranenko

Department of Mathematics
and Computer Science
University of Maribor

Koroška 160
SI-2000 Maribor, Slovenia

andrej.taranenko@uni-mb.si

Klemen Žagar

Cosylab d.d.
Teslova 30

SI-1000 Ljubljana, Slovenia
klemen.zagar@cosylab.com

July 25, 2008

Abstract
We consider a classical employee timetabling problem: a set of employees with various skill

levels, qualifications, workload and availability distributions has to be assigned to a set of shifts,
each requiring a prescribed number of qualified employees and spanning a given time period.

The novelty of our approach is a hybrid combination of the methods proposed in bibliography,
such that we leverage the advantages of known methods while minimizing their disadvantages.
Thus, we first apply the generalized local hill-climbing with randomized neighborhoods to quickly
reach the vicinity of local optima, and then use the tabu search to explore more of the search
space around those solutions. Our experiments show that the resulting hybrid technique performs
better than the comparable approaches presented in bibliography due to the hybrid nature of the
technique.

In addition, we propose a modular design that utilizes dependency injection to compose the the
search algorithm. Together with careful modeling, this approach allows for constant-time evaluation
of each possible step in the neighborhood and for an easy evaluation of different hybrid combinations
that can be combined and parameterized at runtime.

Keywords: employee timetabling, generalized local hill-climbing, tabu search, hybrid local optimiza-
tion

1 Introduction

Employee timetabling problems are ubiquitous in large enterprise information systems. Bibliography
reports about applications of automated timetabling algorithms in health care [Berghe, 2002; Burke
et al., 1999; Chiarandini et al., 2001; Meisels and Schaerf, 1999] and bus crew scheduling [Voss and
Daduna, 2001], but the range of applications is far from exhausted with these two. For instance, the
commercial version of the system described in this paper has been applied in scheduling of airport
and gaming facility crews, and is planned to be used for scheduling of bus fleet crews as well.

AMS Subject Classification (2000): 90B35, 90B70, 90C591



The employee timetabling problem in our model consists of a set of employees and a set of shifts,
with each shift requiring a specific number of qualified employees. The solution to the problem is an
assignment of employees to shifts, such that it satisfies the given constraints. Constraints mandate
that the assigned work to each employee respects the policies of the organization (e.g., employees have
required qualifications), that the legal regulations and employee’s work contract are respected, that
the schedule is historically fair for each employee and that the overall quality of the work process is
maximized.

The underlying model we use is similar to the one described in [Chiarandini et al., 2001; Meisels
and Schaerf, 1999]. An important difference is that the tasks within a shift as well as shift’s location
are fixed, therefore assigning an employee to a shift determines both his/her task and location. We
solved the problem using the generalized hill-climbing techniques with randomized neighborhoods from
[Meisels and Schaerf, 1999] and the tabu search proposed in [Chiarandini et al., 2001]. We replicated
the results of [Meisels and Schaerf, 1999]: generalized hill-climbing with randomized neighborhoods
does outperform the neighborhood-exhaustive generalized local hill-climbing if the methods are ran
only for a comparatively short timed period. However, our special attention was devoted to efficiently
computing the changes in the cost function between two solutions in the neighborhood. We managed to
evaluate these changes in constant time, and thus were able to run both randomized and neighborhood-
exhaustive generalized local hill-climbing to the convergence of the two methods. In this experiment,
the exhaustive method needed substantially more time, but gave better results than the randomized
method.

We used dependency injection [Fowler, 2004] to design a modular system in which the methods
could be arbitrarily combined and adapted to each customer using a commercial application framework.
Using this modular approach we designed a hybrid optimization technique that combines the better
of both previous methods: generalized local hill-climbing is used to quickly produce a high-quality
starting solution, and tabu search is used to finetune this solution. Furthermore, due to the special
structure of the employees in the test problems, we discovered that for all methods (generalized hill-
climbing, tabu search, and the hybrid method), a three-phase optimization performs best (both in
quality and time-wise): the first phase distributes the work among regular employees, the second
among the short-term contract employees, and the third optimizes for soft constraints.

The rest of the paper is organized as follows: Section 2 describes the model and its constraints in
a greater detail. Section 3 reveals the details about the search techniques that we used, with special
attention devoted to the multiphase hybrid technique in Section 4. Section 5 presents the modular
design of the developed system and Section 6 presents the results of comparison of all the developed
methods. Final remarks are given in Section 7.

2 Constraints and the cost function

The model is constructed following [Chiarandini et al., 2001; Meisels and Schaerf, 1999; 2003]. Its
main entities are employees, workdays and shifts. Each shift is performed on a specific workday. For
each employee, his/her availability for each workday is known, as well as the overall minimum and
maximum desired workload. For each employee, the list of feasible shifts is given, together with the
suitability of the employee to work on a specific shift. Furthermore, for each employee and each pair
of shifts, we also know whether the employee is allowed to work on both of those shifts, and if so, how
suitable he/she is to work on the shifts.

A solution—assignment of employees to shifts—is feasible, if all of the hard constraints are met.

2



The quality of a feasible solution is measured according to the soft constraints.
Finding a single feasible solution is a difficult task (the corresponding decision problem is NP

complete, as it contains list multicoloring of graph vertices as a subproblem [Marx, 2004; 2002]).
Thus, we include nonfeasible solutions into the extended search space, heavily punishing any violation
of the hard constrains as suggested in [Chiarandini et al., 2001; Meisels and Schaerf, 1999].

The list of hard constraints includes:

(H1) Every shift is assigned a sufficient number of employees.

(H2) Employees can only be assigned to shifts they are qualified to work on.

(H3) No conflicting pair of shifts is assigned to the same employee.

(H4) The workload of every employee stays within prescribed employee-dependent lower and upper
bounds.

(H5) The maximum number of consecutive working days is bounded; the bound may be employee-
dependent.

(H6) The minimum number of consecutive working days is bounded, the bound may be employee-
dependent (and not equal to 1).

(H7) The number of free days between two consecutive runs of working days may depend on the
number of working days therein, i.e. an employee must be given two free days between two
consecutive runs of, say, five working days, but can be assigned a single free day if both working-
day-runs last, say, just four days.

The set of employees is partitioned into types. Employees of the same type are hired under comparable
working contracts. Consequently, employees of the same type have the same forbidden shift pairs (H3).

The soft constraints are described as follows:

(S1) The price for employees to work on shifts, which is calculated independently for all feasible
employee-shift pairs.

(S2) Suitability of employee types being assigned to work.

(S3) Suitability of pairs of shifts being assigned to the same employee (which for every pair of shifts
depends on the employee type, similarly as in the case of (H3)).

The generalized cost is a sum of hard and soft cost functions. The hard cost function essentially
counts the number of weighted violations of each of the hard constraints (H1–H7), multiplied with
a large-enough coefficient. The soft cost function is computed as a linear combination of prices
according to constraints (S1–S3). Choosing a large coefficient for the hard cost function makes our
solution converge to a feasible one.

Additional auxiliary information is associated with each solution which enables us to test the
relative quality of a neighboring solution (the one obtained from the current solution with either
addition, removal, or exchange of employee(s) on a shift) in constant time with no restrictions on the
number of employees, shifts or working days. This model can be generalized to include other constraint
satisfaction problems related to assignment. The details and the generalization will be described in a
forthcoming paper [Bokal and Fijavž, 2008].

3



3 Search techniques

The problem described in the previous section is solved using local search. The following techniques
are recommended in the literature [Burke et al., 1999]:

• Generalized local hill climbing GLHC [Meisels and Schaerf, 1999; 2003]: hill climbing is a family
of techniques based on the idea of performing only operations that improve the value of the cost
function f (or leave its value unchanged).

• Tabu search [Berghe, 2002; Burke et al., 1999; Chiarandini et al., 2001]: Tabu search is an
extension of the local hill climbing technique that is capable of stepping out of local minima. To
avoid retracing the steps used to get into a local minimum, the method records recent moves in
one or more tabu lists. Avoiding reverse moves, tabu search chooses the best neighboring solution
that may be worse than the original one. The main difference compared to the generalized local
hill climbing is the prohibition mechanism implemented by the use of the tabu list.

These search methods use a neighborhood function N to obtain a list N(s), the neighborhood of s,
that contains the solutions among which the search methods choose the solution for the next iteration.
The maximal neighborhood N(s) contains all the solutions that are obtained from the solution s either
by the operation replace(S,E,E’) that replaces the employee E with the employee E′ on the shift S,
the operation insert(S,E’) that inserts a new employee to a shift, or the operation delete(S,E) that
deletes an employee from a shift. In this context, some parameters of the operations can be fixed to
define a smaller neighborhood. In particular, [Meisels and Schaerf, 1999; 2003] suggest the following
types of neighborhoods:

• RRB. We randomly select a shift S and its employee E. For employee E′, we select an employee
that is currently not assigned to S and for which the operation replace(S,E,E’) yields maximal
improvement of the cost function.

• RBB. We randomly select shift S and choose employees E and E′ so that replace(S,E,E’) max-
imally improves the value of the cost function.

• BBB. We choose the triple S, E and E′ for which replace(S,E,E’) maximally improves the value
of f .

4 Fast hybrid local search for employee timetabling

As discussed in Section 6, several combinations of the above techniques with the listed neighborhood
structures retain the appealing properties of the techniques. Generalized local hill climbing in com-
bination with the RRB neighborhood structure returns a good suboptimal solutions quickly. On the
other hand, tabu search combined with the BBB neighborhood structure is slower, but yields better
solutions. The modularity of our approach (cf. Section 5) allowed us to test various combinations of
the above methods and apply the advantages of both techniques into a hybrid local search. In the
phases of the overall method discussed in Section 4, we interlace a run of generalized local hill climbing
with the RRB neighborhood structure that quickly converges to a local optimum, and a run of tabu
search with BBB neighborhood structure that explores a wider region of the search space around the
local optimum.

4



The timetables, obtained by either generalized local hill-climbing or by tabu search, were unsat-
isfactory. Analysis of the constraint violations in the final solutions indicated that the problem lies
in the structure of the employees: the regular employees, to whom the algorithm was supposed to
distribute most of the workload, were highly constrained by the work regulations, but the short-term
contract employees that were supposed to be auxiliary workforce were less constrained. As a result,
the algorithm distributed too much workload to the short-term contract employees so that the regular
employees did not get assigned their required monthly amount of work.

The problem was solved by splitting the optimization into three phases (for results consider Ta-
ble 1):

• First phase: distributing the workload among the regular employees. The employees were
weighted according to their type in such a way that assignment of a short-term contract employee
to a shift was heavily discouraged.

• Second phase: obtaining a feasible solution. The weight of the short-term contract employees
was decreased, and in this phase we tried to eliminate as many of the remaining violations of
hard constraints as possible using both types of employees.

• Third phase: obtaining a near-optimal feasible solution. Only in the third phase we accounted
for the soft constraints, keeping the relative weights of the hard constraints the same as in the
second phase.

The phases are distinguished by their cost functions, which implies that the final timetable of one
phase (its local optimum) is in most cases not the (locally) optimal timetable with respect to the cost
function of the next phase.

The modularity of presented approach allowed the decomposition of the search into phases, making
use of faster search methods in the initial phase, of slower but more exhaustive search methods in the
later phases, and to completely rule out computation of several components of the cost function that
make little or no sense in certain phases. For instance, the number of assigned employee-shift pairs
which violate e.g. (H6) is of no information in the initial phases, and by avoiding its computation the
performance of the search increased.

5 Modular design and dependency injection

The search techniques described in Section 3 all belong to commonly used local optimization tech-
niques, and can thus be regarded as walks in the solution space of the employee timetabling problem.
Using this abstraction, the techniques differ only in the following aspects of the walk:

• Determining the neighborhood N(s) of the current solution s. The neighborhood depends on
the operation, i.e., assignment, deletion, or exchange of an employee on a shift, and on whether
one or more parameters are chosen randomly.

• Evaluating the alternative solutions in the neighborhood N(s). The evaluation depends on the
list of constraints used for the current timetabling problem.

• Updating the current solution s on the basis of the evaluation. This step depends on the
algorithm used: generalized local hill climbing accepts only better solutions, whereas tabu search
may accept an inferior one.

5



The above tasks are independent of each other, and are for a particular technique combined together
in a specific way. In order to capitalize on this implicit structure of the techniques, we decided to make
it explicit by developing data structures for each of these algorithm tasks. We isolated and implemented
the following abstract entities and their operations using the object-oriented programming approach:

• A constraint can perform the following operations:

– determine the change of the value of a specific constraint when assigning or relieving an
employee from a shift,

– count and list the violations of the constraint appearing in a specific timetable.

• A neighborhood structure can perform the following operations:

– maintain a list of constraints used to search for a timetable,

– using the list of constraints, determine the change of the value of the cost function when
assigning or relieving an employee from a shift,

– using the list of constraints, count and list all the violations appearing in a specific timetable,

– choose the most suitable parameters (shift, employee), for a given operation according to
the specific neighborhood and the list of applicable constraints.

• An algorithm can perform the following operations:

– maintain the neighborhood structure used for walking through the solution space,

– choose the next operation to be performed,

– choose the parameters of the next operation, using the specifics of the algorithm and the
given neighborhood structure,

– perform the operation using the specifics of the implemented algorithm,

– perform the optimization until the stopping condition is met.

To make the above structures reusable for all the contexts in which they are required, we have
made use of the dependency injection software design pattern, where a module assembler [Fowler,
2004] instantiates and links the structures as required for a given task.

All the structures had access to the problem data in order to manipulate and maintain it; the
dependency diagram is presented in Figure 1.

The dependency injection approach allowed us to configure the parameters of the search technique
at runtime, as well as combine different techniques in several ways, among which the hybrid local
optimization technique described in Section 3 turned out to give the best results (see Table 3).

The presented modularity proved valuable when the application was extended to a slightly different
setting, where the focus was on determining the changes in the planned timetable due to changes in
the availability of employees (e.g. sick leaves). The only change we added to the algorithm was a new
soft constraint that penalized changing of the assigned shift whenever this was not necessary due to
the change of availabilities. The change may still be necessary in order to produce a feasible timetable,
but the presence of this new soft constraint allowed the same algorithm as before to minimize not
just the number of violated constraints, but also the number of adjustments needed to produce a
feasible schedule. In a similar manner we added a constraint penalizing employees according to their
employment type when we discovered that this is a bottleneck when distributing the workload among
regular and short-term contract employees (cf. Section 4).

6



Figure 1: Dependencies among the entities involved in search techniques.

The modularity also allowed for a systematic treatment of the constraints described in Section 2.
We developed auxiliary data structures so that evaluating the change of the partial cost function with
regard to a specific constraint for a proposed operation took constant time. The benefits are discussed
in Sections 3 and 6.

6 Results

In this section we present the performance evaluation of the algorithms on three different problems in
monthly employee timetabling.

• T1: The basic problem on 121 employees.

• T2: A variant of T1; a couple of employees in T1 were consistently producing violations of having
too many consecutive working days in the beginning of the month — together with working days
of the previous month, which are hard coded into the input data. We have relaxed the previous
month’s conditions on exactly two employees that were causing problems.

• T3: 151 employees with relaxed conditions on minimal and maximal workload.

Each of the problems contains almost 600 different shifts distributed over 30 days, cumulatively having
around 1350 employee-day requests. The problems all originate in the gaming business. The shifts
were distributed around the clock with no suitable condition to canonically separate the problem into
working days of the month.

The tests present performance of both Tabu and GLHC search techniques with both RRB and
BBB neighborhood types and comparison of the results with the hybrid technique (see Tables 1, 2,
and 3).

6.1 Phases and soft constraints

The sets of employees in our problems could be partitioned into two blocks: regular employees with
strong restrictions on minimal and maximal workload (hired on a full time basis) and short-term
contract employees (part time, student jobs).

A single phase of the optimization consists of a cost function ϕ, a search technique employed (Tabu
or GLHC), and a neighborhood type (RRB or BBB). As noted in Section 4 one phase approaches are
not suitable for our problems. A 3-phase approach uses the same search technique (Tabu or GLHC)

7



1-phase 2-phase 3-phase
Avg Stdev Avg Stdev Avg Stdev

GLHC RRB 80.3 6.34 65.53 5.55 2.6 1.71
GLHC BBB 76.8 4.47 67.6 2.35 1.06 1.08
Tabu RRB 283.5 32.7 209.8 15.0 287.3 18.9
Tabu BBB 75.7 3.14 67.5 1.92 1.03 1.21

Table 1: Comparing 1, 2 and 3 phase approaches: number of violations of hard constraints, 30 runs,
problem T1.

1-phase 2-phase 3-phase
GLHC RRB 9.9 15.2 10.8
GLHC BBB 599.6 499.4 829.7
Tabu RRB 2.1 2.6 2.9
Tabu BBB 723.8 539.0 615.4

Table 2: Average running times in seconds, problem T1.

and the same neighborhood type (RRB or BBB) from beginning to the end of the optimization.
It employs a sequence of cost functions ϕ1, ϕ2, ϕ3, with each phase terminating after a number of
consecutive steps have yielded no progress (typically less than 200 steps). The best solution found in
a phase is then used as the starting solution of the next phase.

We have compared 1-, 2-, and 3-phase approaches to our problem (see Table 1). All the tests have
used the same cost function ϕfinal in their respective last phases and the same halting criterion: 200
consecutive steps with no progress.

The poor performance of Tabu RRB relative to GLHC RRB is because Tabu is required to make
a move, whereas GLHC on the other hand may pass on a suggested move. Limiting to a small subsets
of neighbors of the current solution (using RRB) may force the algorithm to actually take many moves
which reduce the quality of the solution before finally finding one that improves on the quality.

The results in Table 1 indicate that the 3-phase BBB approaches (Tabu and GLHC) produce
solutions of better quality than any other technique. Also note that 3-phase GLHC RRB comes in
third regarding output quality.

Local search using RRB neighborhood type significantly reduces the running time compared to
BBB techniques. The average running times are presented in Table 2 (in seconds using a standard
office PC - Pentium 4 3GHz, 1GB RAM).

6.2 Hybrid approach

The ability of Tabu BBB to produce solutions of superior quality, and fast convergence with reasonable
quality of GLHC BBB have inspired us to combine both approaches into a hybrid technique: we split
each phase of the three phase method into a pair of phases utilizing the same cost function. The first
solution is obtained using the faster GLHC RRB method, which is subsequently used as a starting
solution for Tabu BBB. Hence, the hybrid approach we have investigated is a six phase approach,
with vague convergence stopping criteria in intermediate phases. We emphasize that the very same
Tabu and GLHC implementations that were described in the previous section were used in the hybrid

8



Problem Algorithm Avg Stdev Time
T1 GLHC RRB 2.6 1.7 10.8

GLHC BBB 1.07 1.08 829.7
Tabu BBB 1.03 1.21 615.4
Hybrid 0.63 0.85 235.9

T2 GLHC RRB 1.9 1.9 8.8
GLHC BBB 1.13 1.5 697.2
Tabu BBB 0.57 0.9 510.0
Hybrid 0.53 0.86 174.4

T3 GLHC RRB 0.03 0.18 12.2
GLHC BBB 0 0 894.0
Tabu BBB 0 0 457.1
Hybrid 0 0 199.2

Table 3: Comparison over three data sets; number of violations, running time; 30 runs.

approach; this was possible due to the aforementioned modular design of the algorithms.
The partial usage of RRB neighborhood structure in the hybrid technique caused a significant

speed-up over 3-phase GLHC and Tabu BBB approaches. Also, the quality of the output compares
favorably, as can be seen in Table 3.

6.3 Quality spectra

We have used cost functions that combine both requirements: meeting all of the hard constraints and
sufficient quality with respect to the soft constraints. The coefficients of the hard constraints were
tuned so that the search techniques produced as few violations of these as possible. On the other
hand, we may regard the relative weights of soft constraints as fixed.

Whereas maximizing the total sum of the suitabilities of employees does help improve the quality
of the timetable, it could still happen that only minority of the assignments would be highly suitable,
whereas the majority would be of low quality. It is not clear whether such an assignment with few
exceptionally well-assigned shifts is better than a timetable in which there are no exceptionally well-
assigned shifts, but the shifts in general get a more balanced assignment. For this reason we also
evaluated the distribution of the suitabilities and not just their sum in the designed timetables. In
this section, we formalize this concept and present the results of the evaluations.

Assume we have constructed a feasible timetable T in which an employee e is assigned to work on
a shift sk on a working day d. Let s1, s2, . . . , sn be the sequence of shifts of day d so that:

(i) e is allowed to work on shifts si, i = 1, . . . , k, ie. assigning e to work on any of these shifts does
not cause a violation of (H2).

(ii) The shifts si are sorted according to the cost of e working on si i.e. the constraint (S1) suggests
that assigning e to work on si is preferred to assigning him/her to work on sj , if i < j.

The grade of the employee-shift pair e, sk on his/her working day d is defined as d5k
n e. The choice of

assigning e to work on sk is first grade if the shift sk is among top 20% of shifts on which e can be
assigned to work on (among shifts of day d).

9



Shift-employee Employee-shift
Grade 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th
GLHC RRB 23.8 47.3 8.0 1.1 17.1 70.4 12.2 11.6 3.9 0
GLHC BBB 23.7 46.5 8.2 1.5 17.4 69.4 12.4 12.3 3.8 0
Tabu BBB 23.5 46.4 8.5 1.4 17.7 69.5 12.0 12.5 4.0 0
Hybrid 23.8 47.3 8.2 1.1 17.0 70.2 12.1 12.0 3.8 0

Table 4: Comparison of quality spectra for the constraint (S1) in the example T1.

The employee-shift quality spectrum is the set of relative grade frequencies averaged over all em-
ployees and their working days in T .

We define grades of shift-employee pairs in a similar way: given a shift s and an employee ek

assigned to work on s in T , we sort the employees e1, e2, . . . , em according to the constraint (S1)
taking into account only the employees which can be assigned to work on this shift and which were
indeed assigned to work on the day of shift s in timetable T . The shift-employee quality spectrum is
the set of relative grade frequencies averaged over all shifts.

The quality spectra shown in Table 4 indicate that for both quality spectra considered, the pro-
duced solutions accounted for the preferences of the employees rather well, as most of the assignments
were either first or second grade. Furthermore, the hybrid method marginally outperforms Tabu BBB
as well as GLHC BBB with regard to both spectra.

To conclude this section, we point out that GLHC with RRB neighborhood does perform best
when only comparably short time is allowed for the execution of the optimization (in accordance
with the results of [Meisels and Schaerf, 1999]). On the other hand, if the methods are allowed a
sufficiently long time to converge, then those utilizing the exhausting neighborhood search produce
timetables of higher quality. The results indicate that the proposed new hybrid method is faster than
GLHC BBB and Tabu BBB for a considerable factor, is more likely to produce a feasible solution,
and gives solutions of slightly better distribution of the suitability of assigned shifts than these two
methods individually. As the hybrid approach utilizes precisely the same Tabu Search and GLHC
implementations as it was compared to, we conclude that the better performance is a consequence of
the hybrid nature of the proposed method.

7 Final remarks

In this contribution, we describe a novel approach to employee timetabling. Following the previous
bibliography that favored generalized local hill climbing using various neighborhood types or tabu
search, we combine the good aspects of these approaches and demonstrate that the resulting hybrid
technique outperforms the previous approaches. We also propose a modular design that uses the
dependency injection software design approach to combine pieces of the search algorithms. This
allows for an easy evaluation of different hybrid approaches that can be combined and parametrized
at runtime. Furthermore, we propose quality spectra as a measure of the distribution of the suitability
of the shift assignments in the produced timetables. This measure can be easily adopted to measure
quality of timetables regarding other weak constraints.

The proposed techniques were applied in an employee timetabling module of the SchedulerExpert
software [ICIT, 2008] and used to produce employee timetables in airport and gaming facilities.

10



In our future research work, we plan to develop an abstract relational model for constraint sat-
isfaction problems that will generalize the model used in this paper and will fully capitalize on the
constant-time criterion function change evaluation, [Bokal and Fijavž, 2008]. In addition, we intend
to use the modularity of the developed system to study adaptive methods of self-configuration of
the hybrid local search for specific customers, whose monthly schedules have similar structure and to
which the parameters of the search can be fine-tuned.

Note added in proof. After submitting the paper to the PATAT 2008 conference, we learned that
an approach similar to ours was proposed at a somewhat higher level in [Di Gaspero and Schaerf,
2006]. Their approach also uses a variety of neighborhoods and algorithms, and combines them in
a manner similar to ours, but automated. We believe that the constant-time neighboring solution
evaluation method applied in our study can be combined with their approach, and propose this as
another direction for further research.

Acknowledgement

The research is supported by ICIT d. o. o. and HIT d. d. through the SchedulerExpert project,
www.icit.si. We are also greateful to anonymous referees for useful comments that helped improve
the paper.

References

[Berghe, 2002] G. V. Berghe. An Advanced Model and Novel Meta-heuristic Solution Methods to
Personnel Scheduling in Healthcare. PhD thesis, University of Gent, 2002.

[Bokal and Fijavž, 2008] D. Bokal and G. Fijavž. Relational model for CSP that supports constant
time difference evaluation. in preparation.

[Burke et al., 1999] E. Burke, P. De Causmaecker, and G. V. Berghe. A hybrid tabu search algorithm
for the nurse rostering problem. In B. McKay, X. Yao, C. S. Newton, J. H. Kim, and
T. Furuhashi, editors, Simulated Evolution and Learning, number 1585 in Lecture Notes in
Computer Science, pages 187–194. Springer, Berlin, 1999.

[Chiarandini et al., 2001] M. Chiarandini, A. Schaerf, and F. Tiozzo. Solving employee timetabling
problems with flexible workload using tabu search. In E. Burke and W. Erben, editors,
Practice and theory of automated timetabling III, number 2079 in Lecture Notes in Computer
Science, pages 298–302. Springer, Berlin, 2001.

[Fowler, 2004] M. Fowler. Module assembly. IEEE Software, 21:65–67, 2004.

[Di Gaspero and Schaerf, 2006] L. Di Gaspero, A. Schaerf. Neighborhood portfolio approach for local
search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms,
5:65–89, 2006.

[ICIT, 2008] ICIT d.o.o. Scheduler expert, 2008. http://www.icit.si/.

[Marx, 2002] D. Marx. The complexity of tree multicolorings. In Mathematical Foundations of Com-
puter Science 2002 (Warsaw-Otwock), pages 532–542. Springer, Berlin.

11



[Marx, 2004] D. Marx. Graph coloring problems and their applications in scheduling. Periodica
Polytechnica Ser. El. Eng., 48:5–10, 2004.

[Meisels and Schaerf, 1999] A. Meisels and A. Schaerf. Solving employee timetabling problems by
generalized local search. In Proc. Ital. AI-1 (Bologna, Italy, May 1999), pages 281–331.

[Meisels and Schaerf, 2003] A. Meisels and A. Schaerf. Modelling and solving employee timetabling
problems. Ann. Math. Artif. Intell., 39(1-2):41–59, 2003. Foundations of artificial intelligence,
VI.

[Voss and Daduna, 2001] S. Voss and J. R. Daduna, editors. Computer-aided scheduling of Public
Transport. Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 2001.

12


