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Abstract. We give a short description of the solver that ranked third in
Track Two of the International Timetabling Competition 2007 (ITC2007).
It implements a heuristic approach based on stochastic local search and
consists of several modules that were found to be useful in different
phases of the solution process. Common to all modules is the consider-
ation of only a subset of the constraints that have to be satisfied. The
solver is the result of an engineering process conducted with the aid of
ParamILS, a recent tool for automated algorithm configuration. A dis-
cussion on this process and the underlying methodology is also provided.
A remarkable property of our solver is the ability to consistently find fea-
sible solutions to all of the instances from ITC2007, outperforming the
other submissions by this measure.
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We address the Post Enrolment Course Timetabling problem as defined by Lewis
et al. (2007) for the Track 2 of the International Timetabling Competition
(ITC2007). Our solver builds on previous work by Chiarandini et al. (2006)
and consists of several heuristic modules that have been tuned and assembled
using the automated algorithm configuration procedure ParamILS (Hutter et al.,
2007b). By using ParamILS throughout the development of our solver, we have
been able to explore a large design space of hybrid stochastic local search al-
gorithms and to construct heuristics in a manner similar to that described by
Hutter et al. (2007a). At a high level our solver consists of two main procedures:
a hard constraint solver and a soft constraint violation minimizer.

The hard constraint solver consists of a constructive phase followed by a
stochastic local search phase. The constructive phase generates feasible partial
assignments of lectures to time slots and rooms by using an approach similar to
that of Arntzen and Løkketangen (2003). The heuristic assigns lectures to time
slots in such a way that the five hard constraints are satisfied. Specifically, first
a topological order of the precedence graph is constructed and the lectures are
sorted accordingly (ties are broken randomly). Then, lectures are considered in
that order and each is placed into a time slot that is feasible and that can ac-
commodate the fewest yet unscheduled lectures. The feasibility of the insertion
of a lecture in a time slot with respect to room assignment is checked by comput-
ing the exact matching of the lectures and rooms scheduled so far in that time
slot. Lectures without a feasible insertion point are left in a list of unscheduled
lectures.

The construction is repeated a number of times, taking advantage of the
existence of multiple topological orderings to vary the insertion order. For easier
problem instances, this procedure is often sufficient to obtain a complete feasible
assignment. In general, however, we may be left with some unassigned lectures.
These are handled in a second search phase, which uses a tabu search procedure
based on the PARTIALCOL algorithm by Blöchliger and Zufferey (2008). At
each iteration of this procedure, an unscheduled lecture is inserted into the best
non-tabu time slot for it, and all lectures breaking any hard constraint as a result
of the insertion are moved into the list of currently unscheduled lectures. The
selection of the lecture to be inserted at each step is guided by evaluating the
number of students attending each unscheduled lecture, which is the contribution
of that lecture to the distance-to-feasibility measure of Lewis et al. (2007). After
a fixed number of non-improving iterations, the best partial feasible solution
is perturbed by applying the soft constraint violation minimizer. The procedure
continues alternating tabu search on the unscheduled lectures and soft constraint
optimization until a feasible solution is found or a given time limit is reached.
On instances for which feasibility is reached relatively quickly, we additionally
use a look-ahead procedure consisting of a fast soft constraint optimization, and
repeat the entire procedure a number of times before selecting the assignment
to exploit for the minimization of soft constraint violations.

The soft constraint violation minimizer is applied to the assignment re-
turned by the hard constraint solver. It consists of local search procedures using



1-exchange, 2-exchange, swap-of-time-slots and Kempe chains neighborhoods;
these have all been previously described by Chiarandini et al. (2006) and are
applied in the same order as in their work. Some of these procedures include an
exact matching of rooms at every change. In its final phase, the soft constraint
minimizer applies simulated annealing on the 1- and 2-exchange neighborhoods
with exact room reassignment.

The final solver, as submitted to the competition, is the result of an engi-
neering process that uses an automated algorithm configuration procedure to
guide decision making during the construction of the algorithm, as well as in
the final configuration and tuning. Generally, designers of heuristic algorithms
have to make crucial choices at many levels. At a high level, the representa-
tion of candidate solutions and the overall search strategy has to be decided.
At an intermediate level, concrete search procedures and search neighborhoods
(including the ordering used within construction heuristics) need to be chosen;
at an even more detailed level, the values of the parameters controlling the be-
havior of search heuristics and procedures, such as the tabu tenure and tabu
acceptance level in our hard constraint solver, have to be determined. The ca-
pability of human designers to manually explore all of these choices is limited,
and consequently, much can be gained by automating this aspect of algorithm
development and design.

ParamILS (Hutter et al., 2007b) is a tool that performs local search in the
space of parameter configurations of a given algorithm in order to achieve op-
timal (or near-optimal) performance on a set of problem instances. It currently
supports parameters with discrete, finite domains; these parameters can be ei-
ther numerical or categorical, where categorical parameters are used primarily
for choices between alternative options or components, such as search heuristics.
ParamILS also supports nested parameters and can hence deal with situations in
which the choice of one component introduces additional parameters of this com-
ponent into the configuration process, as happens often in the design of complex
stochastic local search algorithms. The procedure to be configured is considered
to be a black box, and ParamILS does not need any specific information about
how it operates or about the problem it is solving.

Our experimental setting, in terms of problem instances, evaluation measure
and time limit used, was designed to comply with the rules of the competition.
Automated configuration using ParamILS was performed on a cluster of ma-
chines, each with a dual-core Intel Xeon 3.20Ghz CPU and 2GB of RAM. Each
run of ParamILS used only one machine and processor core, and the cluster was
used to perform multiple runs in parallel. The entire iterative process of design-
ing and testing our solver took one month, during which a total of about 1000
CPU hours were used for ParamILS runs. In general, each tuning phase used
five to ten machines in parallel for ten to twenty hours.

In Figure 1, we report the statistics of 100 runs of our solver on the 16
instances that were made public before the submission date, using one of our
machines. Each run was limited to 384 seconds, the maximum runtime deter-
mined by the benchmarking tool provided for ITC2007. Our solver finds feasible



solutions in all but a small number of runs, particularly for instance comp-2007-
2-10. In Figure 2, we compare the best five solvers submitted to the ITC2007
Track 2 (there were thirteen submissions overall). The figure is based on the offi-
cial ITC2007 results available at http://www.cs.qub.ac.uk/itc2007/. According
to an aggregate rank analysis that, compliant with the evaluation rules defined
for ITC2007, takes into account both the distance-to-feasibility and the score for
soft constraint violations, our solver ranks clearly behind the the winning entry
by Cambazard, Hebrard, O’Sullivan and Papadopoulos. However, focusing only
on the feasibility problem (left plot in the figure) we see that our solver actually
performs best. This is consistent with the fact that the hard constraint solver
was the primary focus of our development process and confirms the success of
our approach. Making the design of the soft constraint minimizer more modular
and allowing ParamILS to explore the subsequent configuration space is the sub-
ject of current and future work. Preliminary work in this direction has already
improved the overall performance of the solver substantially.
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comp-2007-2-1.tim 0 925
comp-2007-2-2.tim 0 1156
comp-2007-2-3.tim 0 179
comp-2007-2-4.tim 0 66
comp-2007-2-5.tim 0 52
comp-2007-2-6.tim 0 536
comp-2007-2-7.tim 0 7
comp-2007-2-8.tim 0 0
comp-2007-2-9.tim 0 1480
comp-2007-2-10.tim 0 1364
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comp-2007-2-13.tim 0 360
comp-2007-2-14.tim 0 576
comp-2007-2-15.tim 0 0
comp-2007-2-16.tim 0 0

Fig. 1. Left side: boxplots of results on the 16 public instances obtained from 100
runs of our solver; DTF indicates the distance-to-feasibility and CSCV the cost of soft
constraint violations. Right side: table with the best results achieved by our solver, as
submitted to the competition.
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Fig. 2. Performance results of the the best five top-ranking solvers from ITC2007.
Absolute values are transformed into ranks in order to remove bias due to different
scales of the instances. The boxplots indicate the distribution of ranks attained by
each solver in 10 runs for each of the 24 instances. Left side: Results based on distance-
to-feasibility (DTF) only. Right side: Aggregate results, compliant with the rules of the
competition. Note that the vertical lines inside the boxes indicate the median values of
the distributions; the final ranking of the competition was determined, instead, on the
basis of average values, which are the following: Cambazard et al. 13.90417; Atsuta et
al. 24.42708; Chiarandini et al. 28.33958; Nothegger et al. 29.51667; Muller 31.31250.
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