
Local Search and Constraint Programming for the Post
Enrolment-based Course Timetabling Problem?

Hadrien Cambazard, Emmanuel Hebrard, Barry O’Sullivan
and Alexandre Papadopoulos

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard|e.hebrard|b.osullivan|a.papadopoulos}@4c.ucc.ie

Abstract. We present a study of the university post-enrolment timetabling prob-
lem, proposed as Track 2 of the 2007 International Timetabling Competition. We
approach the problem using several techniques, particularly local search, con-
straint programming techniques and hybrids of these in the form of a large neigh-
bourhood search scheme. Our local search approach won the competition. Our
best constraint programming approach uses an original problem decomposition.
Incorporating this into a large neighbourhood search scheme seems promising.

1 Introduction

Timetabling problems have a wide range of applications in education, sport, manpower
planning, and logistics. A diverse variety of university timetabling problems exist, but
three main categories have been identified [5, 9, 26]: school, examination and course
timetabling. The Post Enrolment University Course Timetabling Problem [17] occurs
in an educational context whereby a set of events (lectures) have to be scheduled in
timeslots and located in appropriate rooms. The problem tackled in this paper was pro-
posed as part of the 2007 International Timetabling Competition organised by PATAT
(Track 2)1. The problem was also used in the 2003 competition without two specific
hard constraints introduced in 2007, which are discussed in Section 2. These new con-
straints were introduced in the 2007 competition in order to make the search for fea-
sible timetables difficult. In 2003 finding feasible timetables was relatively easy and
all algorithms, therefore, focused on optimising the soft constraints. According to the
organisers [17], the two constraints have been added to move the competition closer to
real-world timetabling where finding feasible timetables can be a very challenging task.

This context seemed a good opportunity to investigate Constraint Programming
(CP) techniques, and compare them with the strong local search baseline developed dur-
ing the 2003 challenge. Our main contribution in this paper is a comprehensive study
of the problem using a wide range of techniques highlighting both pitfalls and positive
results. Our main technical novelty lies in the analysis of complete approaches with

? This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).
1 http://www.cs.qub.ac.uk/itc2007/

original CP models and lower bounds for the costs associated to the soft constraints,
including algorithms to maintain them. We also present an original local search ap-
proach that can deal with the hardness of feasibility; this was ranked first out of thirteen
teams in Track 2 of the 2007 International Timetabling Competition. Finally, a promis-
ing large neighbourhood search (LNS) scheme [27] is proposed, which contrasts with
all previous published local search work on this problem [1, 6, 10, 15, 24].

2 Problem Description

The post enrolment-based course timetabling problem consists of a set of n events, E,
to be scheduled in 45 timeslots {1, . . . , 45} (5 days of 9 hours each) using a set of
m rooms, R. Each room is characterised by its seating capacity, which we will refer
to as its size, and a set of features defining the set of services available in each room.
Each event needs a room whose size is larger than the number of students attending the
event, and it must be placed in a room with the required features. Additionally, a set of
precedence requirements state that some events must occur before others. We are also
given a set S of students and the set of events each must attend. Each event must be
assigned to a room in a timeslot while obeying a set of constraints. The constraints of
the problem are partitioned into two sets: the hard constraints define the requirements
of a feasible timetable, while the soft constraints define an optimal timetable. The hard
constraints are the following:

1. No student can attend more than one event at the same time.
2. In each case the room has to be big enough for all the attending students and satisfy

all of the features required by the event.
3. Only one event is put into each room in each timeslot.
4. An event can only be assigned to its pre-defined “available” timeslots.
5. When specified, events have to occur in the correct order in the week.

Because feasibility can be very difficult to achieve, the organisers of the competition
have introduced the notion of “distance to feasibility” to be able to discriminate entries
that do not find any feasible solution. We will ignore this point in our study and consider
all infeasible solutions as mere failures2. The quality of a feasible timetable is evaluated
in terms of the soft constraints. A feasible solution is penalised equally if a student:

1. attends an event in the last timeslot of the day ({9, 18, 27, 36, 45});
2. attends more than two events in a row on a given day; one penalty is counted for

each event attended consecutively after the first two;
3. attends exactly one event during a day.

The problem defined by the hard constraints only can be seen as a constrained list-
colouring in a graph where a node is an event and an edge is added between two events
that must go to different timeslots. This graph is primarily made of many large over-
lapping cliques, referred to as student cliques, defined by the set of events chosen by
each student. It can also be worthwhile to notice that two events that share a unique

2 This notion is indeed relevant for the competition but not for the problem itself.

Table 1. Some statistics about the colouring graph structure in the first eight instances.

inst student cliques room cliques final cliques density
min max avg number min max avg number min max avg basic full

1 18 25 21.02 6 12 32 17.17 506 12 32 22.07 0.33 0.34
2 19 24 21.03 5 8 32 18.80 505 8 32 21.92 0.37 0.37
3 10 15 13.38 13 1 7 3.85 906 7 28 19.55 0.47 0.48
4 10 15 13.40 10 1 10 3.90 925 4 33 21.75 0.52 0.52
5 19 23 20.92 14 2 21 9.07 314 5 25 20.66 0.30 0.31
6 18 24 20.73 17 4 17 11.12 317 7 26 20.62 0.29 0.30
7 10 15 13.47 19 3 18 8.26 498 5 29 18.57 0.52 0.53
8 11 15 13.83 19 2 13 7.26 503 7 25 17.65 0.51 0.52

possible room, due to their size and features, have to be assigned to different timeslots.
The cliques relying on those edges are referred to as room cliques. At last, precedences
also imply differences and can be added in the graph. Table 1 gives some details about
the size and number of cliques found in the colouring graph because both our LS and
CP approaches will try to take advantage of them. It also shows the density of the basic
graph, i.e. the original graph of student choices including the precedence edges, and the
full graph, i.e. the same graph augmented with rooms.

The final cliques of Table 1 are obtained by the following process: the neighbour-
hood of a clique c, i.e. the set of nodes connected to all the nodes of c (but not necessarily
with each other) can intersect another clique, and the corresponding intersection can,
therefore, be used to extend c. The final cliques are obtained by applying such a pro-
cess iteratively from the student/room cliques until a fixed point is reached. The density
of the full graph is not much bigger than for the basic graph, but the added edges can
significantly improve the maximum and average size of the cliques.

3 A Local Search Approach

Our local search baseline is strongly based on the work achieved during the 2003 com-
petition and the improved results published later in [6, 15, 24]. There are, however, some
differences to consider due to the increased difficulty of finding feasible timetables in
the 2007 competition instances. Similar to most approaches of 2003, our local search is
performed in two steps: we first try to identify a feasible solution, and then try to reduce
the cost of violating the soft constraints. The originality of our local search lies mainly
in finding feasible timetables. We describe both steps in more detail below.

3.1 Finding Feasible Solutions

The search for feasible solutions is performed by considering a unit cost per hard con-
straint violation: an infeasible timeslot or room for an event, two events sharing a stu-
dent in the same timeslot, two events violating a precedence between them.

Representation of the solution. The position of an event is defined by a given timeslot
and room. The solution is represented by the position of each event as opposed to
the solution representation described in [24], which ignores the rooms and maintains
the room violations by solving a matching problem per timeslot. Knowing if a set of
events can fit in a given timeslot with respect to room availability and capacity is a

bipartite matching problem (events to rooms). For efficiency reasons, the lists of events
per timeslot as well as the list of all free positions in the timetable (positions where no
event is currently assigned) are added to the representation.

Neighbourhood. The neighbourhood can be seen as a composite neighbourhood struc-
ture [1, 10] defined in terms of the following moves:

1. TrE: translates an event to a free position of the timetable.
2. SwE: swaps two events by interchanging their position in the timetable.
3. SwT : swaps two timeslots ti and tj , i.e. translates all events currently placed in ti

to tj and all events in tj to ti.
4. Ma (Matching): reassigns the events within a given timeslot to minimise the num-

ber of room conflicts; to allow violations, a maximum matching is solved.
5. TrE+Ma: translates an event to a timeslot and evaluates if this does not violate the

room constraints by checking the corresponding matching problem; if the matching
is infeasible, the move is rejected.

6. Hu (Hungarian): picks a set of events {e1, . . . , ek} assigned in different timeslots
(k ≤ 45) that do not have precedences defined between them, and reassigns them
optimally by solving an assignment problem with the Hungarian algorithm [16].
The violation of the hard constraints for placing each event in each timeslot is
known as it does not depend on the other removed events, since they do not share
precedences and only a single event is removed per timeslot. We solve 45×k max-
imum matching problems to evaluate the cost due to the room capacities of placing
each event in each timeslot. As the number of such moves is exponential, the size
of the neighbourhood is restricted to K sets (K = 20 in practice), including con-
flicting events (involved in hard constraints violations) and completed randomly.

TrE and SwT are always considered in the neighbourhood. The remaining moves
are ranked in terms of their time complexities and included in the neighbourhood at a
given iteration depending on a probability related to their complexity. More specifically,
the probabilities are set to p(Hu) = p(SwT) = 5

104 , p(Ma) = 1
103 , p(TrE + Ma) =

1
102 . Thus, time consuming moves are performed less frequently than faster ones. The
set of moves considered at each iteration, therefore, varies and the order of explo-
ration amongst them is chosen randomly. However, for each move the exploration is
performed deterministically from the last point where it was left (similar to [15]).

Search. Improving and sideways moves, which keep the current violation cost constant,
are always accepted and no emphasis is put on conflicting events, except by move Hu.
We believe that moves TrE and SwE are very important in our approach. They can
be performed very quickly and, therefore, provide a diversification mechanism as the
search is not guided by conflicting events. This also explains why we choose a solution
representation that includes the room information explicitly, since this is mandatory for
TrE and SwE. A simple tabu list of size k = 10 prevents cycling by forbidding an
event being considered in a timeslot it was assigned in the last k iterations; this is similar
to [6] and classic in graph colouring [11]. Finally, a pure random configuration is used
to start as we found no significant benefits to starting from a greedy solution.

Intensification. As mentioned previously, the problem defined by the hard constraints
can be seen as a constrained list-colouring problem in which the graph is made of many
overlapping large cliques (see Table 1). The intensification step tries to take advan-
tage of the presence of such large cliques by iteratively applying move Hu on each
clique containing at least one conflicting event. All events of the clique have to be in
different timeslots and define an assignment problem in the current timetable. This in-
tensification is applied every 50000 non-improving iterations. All cliques containing a
conflicting event are considered, and simplified to ignore any precedences amongst the
events inside the clique. This step is applied on all the “final cliques” of Table 1.

Results. Table 2 compares a local search LS1 with a neighbourhood based only on the
moves {TrE, SwE,Ma, TrE +Ma} with the full scheme, LS2, described previously
(involving a richer and randomised neighbourhood as well as the intensification step).
All instances except instances 1,2,9 and 10 seem quite easy from the point of view of
feasibility, and the efficiency of our improvements can be mainly seen on instances 2,9
and 10, which are much more challenging. The diversification given by the randomised
neighbourhood (by favouring TrE and SwE), and the intensification given by Hu and
its systematic use on the cliques, is beneficial for the hard instances. Table 2 shows the
percentage of feasible solutions found over 100 runs with different seeds within the time
limit3 and the average time required by LS1 and LS2, which is computed only on runs
that have found a solution. Instance 10 is the only instance that remains really “open”
for feasibility as all others are solved more than 94% of the time.

Table 2. Percentage of solutions found, with average time, using a simple Local search (LS1) and
our improved scheme (LS2).

Instances 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
LS1 % solved 100 70 100 100 100 100 100 100 92 17 100 100 100 100 100 100

avg time (s) 35.9 240.7 1.1 0.9 5.1 5.4 5.3 2.6 169.5 385 0.9 1.5 10 7.7 1 0.7
LS2 % solved 100 94 100 100 100 100 100 100 95 33 100 100 100 100 100 100

avg time (s) 30.4 127.9 2 1.9 5.9 7.8 8 6.6 116.3 355 0.8 1.3 6.8 7.5 1.3 1.1

3.2 Finding Good Solutions

Once a feasible solution has been found, another local search optimises its soft cost.

Representation of the Solution. We extend the previous representation by adding the
student view. The timetable of each student (needed for cost 2) is kept as a three dimen-
sional matrix of size |S| × 5× 9 where each entry is equal to the event attended by the
student at the corresponding day and timeslot (if there is one, and set to -1 otherwise).
Moreover, the number of events attended by each student, each day, is stored for cost 3.

Neighbourhood. The only move used in this phase is TrE+Ma. Moreover, the moves
considered are only those preserving feasibility. We note that this is a severe disadvan-
tage for the search due to the tightness of the hard constraints. The main motivation for
the LNS approach of Section 6 is to compensate for this disadvantage.

3 These experiments were run on a MacBook (2 GHz Intel Core Duo, 2 GB 667 Mhz DDR2)
with a time limit of 420s given by the benchmarking system of the competition.

Search. The tabu search appears inefficient for the soft cost and better results are
obtained using simulated annealing (SA) [14]. This seems to match the experience
of [6, 15] and the study made in [24]. Improving and sideways moves are always per-
formed and degrading ones are accepted with a probability depending on their cost
variation ∆ : Pacceptance(∆, τ) = e−

∆
τ where the parameter τ , the temperature, con-

trols the acceptance probability and is decreased over time. The temperature is cooled
at each step using a standard geometric cooling τn+1 = 0.95× τn. Two parameters are
needed to define the cooling: the initial temperature τ0, and the length of a temperature
step, L, i.e. the number of iterations performed at each temperature level. As the time
demand varies a lot from one instance to the other, we try to predict “the speed” of our
soft solver during an initialisation phase by running the SA at a temperature of 1 for
20000 iterations and set τ0 and L in the following way. Firstly, τ0 is set to the average
of the cost variation observed during the initialisation; then, based on the time needed
to perform the initialisation, we get an estimation of the number of iterations that will
be performed in the remaining time, I . By setting a final temperature to τf = 0.2, we
also know the number of temperature step, nbSteps, needed to go from τ0 to τf and
therefore L is set to L = I

nbSteps . A reheating is performed if the neighbourhood is
scanned without accepting any moves. This can happen if the number of feasible moves
is limited and the SA is more likely to reject all choices as the temperature decreases.

3.3 A Synthesis of the Local Search Approach

We conclude the presentation of the local search approach by showing the behaviour of
the search at the two stages, i.e. feasibility and optimisation on the plots of Figure 1.

 0

 5

 10

 15

 20

 10000 20000 30000 40000 50000 60000

co
st

number of iterations

(a) Tabu search - feasibility stage

 0

 500

 1000

 1500

 2000

 2500

 3000

 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

co
st

te
m

pe
ra

tu
re

number of iterations

violation cost
temperature

(b) Simulated Annealing - optimisation stage

Fig. 1. Evolution of the violation cost per iteration for the two stages of the local search approach.

Both plots show the evolution of the costs at each iteration. The cooling is also
indicated for the SA. The search for feasibility proceeds by moving over a large plateau
of configurations of equivalent violation cost, i.e. the cost is never degraded in practice.
Sideways moves appear to be very frequent for feasibility. Therefore, the search can stay
for a long time on the same plateau as it does not focus on conflicting events and accept

any sideways step; this is why favouring moves TrE and SwE brings diversification
over the plateau. Therefore, the role of the intensification step is important.

Sideways moves are less likely to occur at the optimisation stage and one can see
the effect of the cooling by observing that the cost variation is decreasing while the best
known cost is converging toward its final value. The choice of the different metaheuris-
tics for feasibility and optimisation, with their resulting behaviours, is also motivated by
the fact that, in the first case, we try to get a feasible solution as soon as possible whereas
in the second case we aim for the best possible solution within a given time-limit.

4 Constraint Programming Models for Feasibility

This timetabling problem was tackled by a number of local search techniques [1, 6, 10,
15, 24]. We are not aware, however, of any complete approach. We considered several
CP models, none of which were able to match the efficiency of local search. However,
as we shall see in Section 6, the CP approach can still be valuable to provide com-
plex neighbourhoods within the SA algorithm. We present here the most promising CP
model as well as two less successful ones and give some insights into their inefficiency.

4.1 Basic Model

For an event i we introduce two variables eventT imei ∈ {1, . . . , 45} and eventRoomi ∈
{1, . . . ,m}, for the timeslot and room associated to event i, respectively. Let Ri be the
set of rooms that can accommodate event i, Ti be the set of timeslots available for event
i, student(i) be the set of students attending event i and, finally, let prec be the set of
the pairs of ordered events. We define the first model as follows:

Model 1
∀i, j ≤ n s.t. student(i) ∩ student(j) 6= ∅ eventT imei 6= eventT imej (1)
∀i ≤ n eventRoomi ∈ Ri (2)
∀i, j ≤ n (eventT imei 6= eventT imej) ∨ (eventRoomi 6= eventRoomj) (3)
∀i ≤ n eventT imei ∈ Ti (4)
∀(i, j) ∈ prec eventT imei < eventT imej (5)

In this viewpoint, the constraints (1), (4) and (5) correspond to a list colouring problem
with precedences on the variables eventT ime. Constraints (2) and (3) enforce that
events be allocated to suitable rooms, and that within a given timeslot, every event be
put into a different room, respectively. They correspond to a set of matching problems,
one for each timeslot, conditioned by the result of the above colouring problem. An
important observation is that these two aspects are relatively disconnected. Indeed, as
long as an event is not committed to a given timeslot, we do not know in which matching
it will participate because of the disjunctions (3). If an early decision on the colouring
part prevents a consistent room allocation, it will not be discovered until very late in the
search, leading to a trashing behaviour where large unsatisfiable subtrees are explored
again and again. We explored two ways of resolving this issue. First, we modelled the
relation between the room allocation (matching) and timeslot allocation (colouring)
using a global constraint [2] to achieve stronger inference between these two aspects

and detect mistakes earlier. We describe this model in Section 4.2. The second solution
was to separate the solving of the colouring and the matchings, so that we explore more
diverse colourings, and hopefully avoid trashing. We describe this model in Section 4.3.

4.2 Matching Constraint

Knowing if a set of events can fit in a given timeslot with respect to room availability
and capacity is a bipartite matching problem (events to rooms). The objective is to
remove the eventRoom variables from the search space. In other words, we will make
sure that constraint propagation alone ensures that an assignment of all events can be
extended to a matching for each timeslot. As a result, we solve a colouring problem
where we only assign events to timeslots subject to timeslot availability, precedences
and such that the remaining matching sub-problems are backtrack-free.

The room allocation sub-problem can be represented in a bipartite graph G =
(V1, V2, E) where V1 = {1, . . . , n} is the set of events, and V2 = {〈1, 1〉, . . . , 〈45,m〉}
is the set of all pairs 〈timeslot, room〉. An edge (i, 〈j, k〉) is present iff event i can be
assigned to timeslot j in room k. A maximal matching of G thus represents an as-
signment of events to rooms satisfying constraints (2) and (3). We introduce n vari-
ables to link this matching with the colouring. eventi ∈ {〈1, 1〉, . . . , 〈45,m〉} de-
notes the timeslot and room, represented by a pair, to which event i is assigned. An
ALLDIFF({event1, . . . , eventn}) [22] makes sure that the graph G admits a matching
of cardinality n. Notice that during search, arc-consistency is achieved for all matching
problems at once, giving stronger inference than considering matchings independently.
Notice that we could post other constraints directly on variables events. However, this
can be done more easily on the eventT ime variables. They also provide a naturally
good branching scheme, since rooms have been factored out of the search space. We
thus define a second model, where we substitute the variable eventRoomi with eventi
and channel it to eventT imei using a simple binary constraint.

Model 2
∀i, j ≤ n s.t student(i) ∩ student(j) 6= ∅ eventT imei 6= eventT imej (1)
∀i ≤ n eventT imei ∈ Ti (4)
∀(i, j) ∈ prec eventT imei < eventT imej (5)
∀i ≤ n eventi ∈ 〈Ri × Ti〉 (6)
∀i ≤ n eventT imei = eventi[0] (7)

ALLDIFF({event1, . . . , eventn}) (8)

Constraint (7) channels the variables eventT ime to event by projecting on the first
element of the pair. Notice that since arc consistency is achieved in polynomial time on
the ALLDIFF constraint, an assignment of eventT ime satisfying Model 2 can always
be extended to event in a backtrack-free manner.

4.3 Alternate Colourings and Matchings

Constraint (8) of Model 2 is very costly to maintain. Therefore, we consider a decom-
position similar to a logic-based Benders decomposition scheme [12]. We delay the
resolution of the matchings once a colouring has been found. If the matching is infeasi-
ble, we seek another solution for the colouring sub-problem, and iterate in this way until

a full solution is found. Clearly, solving the colouring part alone allows for a far more
optimised and sleeker model, however, reaching a fixed point might not be easy. We first
describe the lighter model restricted to the colouring and precedence constraints, and
where the room allocation constraints are relaxed to a simpler cardinality constraint.
Then, we show how Benders cuts can be inferred when failing to solve a matching in
order to tighten the colouring sub-problem.

The eventRoom variables are ignored as in the previous model and a single global
cardinality constraint (GCC) [23] is added to ensure that every timeslot is used at most
m times. This constraint eliminates trivially infeasible matchings where the number of
events assigned to a timeslot is greater than the number of rooms.

Model 3
∀i, j ≤ n s.t. student(i) ∩ student(j) 6= ∅ eventT imei 6= eventT imej (1)
∀i ≤ n eventT imei ∈ Ti (4)
∀(i, j) ∈ prec eventT imei < eventT imej (5)
∀i ≤ n GCC({eventT imei | i ≤ n}, [[0..r], . . . , [0..r]]) (9)

A solution of this model is not guaranteed to be a feasible solution of the original prob-
lem. Indeed, a matching problem can be inconsistent once the colouring is fixed. We,
thus, iteratively solve the colouring part until we find a feasible room allocation, as de-
picted in Algorithm 1. If a matching problem fails, a minimal conflict corresponds to
a set of events that cannot be assigned together in any timeslot, whilst forming an in-
dependent sub-graph of the colouring graph. We use an algorithm for finding minimal
conflicts [8] to extract such a set of events (line 3). In order to rule out this conflicting as-
signment in future resolutions of the colouring sub-problem, we post a NOTALLEQUAL
constraint to the model (line 4). The constraint NOTALLEQUAL(x1, . . . xk) ensures that
there exists i, j ∈ [1..k] such that xi 6= xk. It acts as a Benders cut and prevents the
same assignment from being met again. Observe that since we extract minimal sets of
conflicting events [4, 13], entire classes of assignments that would fail for the same rea-
son are ruled out. Notice also that although this constraint is inferred from a particular
timeslot, it holds for every timeslot.

Algorithm 1: Decomposition
1 repeat
2 solve Model 3;

matched← true;
foreach 1 ≤ j ≤ 45 do

G← (V1 = {i | eventT imei = j}, V2 =
⋃

i∈V1
Ri, E = {(i, k) | i ∈ V1, k ∈ Ri});

if cannot find a matching of G then
matched← false;

3 cut← Extract-min-conflict(G);
4 add NOTALLEQUAL(eventT imek|k ∈ cut) to Model 3;

until matched;

We explored further improvements of this model based on the analysis of the colour-
ing graph described in Section 2. Conflicts between events are organised into large
cliques, one for each student and even larger cliques can be inferred by taking room

conflicts into account. This information can be used to obtain stronger filtering from
the model. One possibility is to replace the constraints (1) by ALLDIFF constraints.
Each of the aforementioned “final cliques” implies an ALLDIFF constraint between a
set of eventT imei variables. In this manner, all the binary differences (1) are covered
by at least one clique and can thus be removed. We can expect to achieve a stronger level
of propagation as a result. On the other hand, ALLDIFF can be expensive to maintain.
We can therefore choose to keep, amongst the final cliques, only the cliques obtained
from a room clique, as a trade-off between the efficiency of binary differences and the
additional reasoning brought by the cliques, as they are big and they contain additional
conflicts. This leads to two variations of Model 3 that we assess empirically below.

4.4 Experimental Results

We ran Model 2, Model 3, Model 3-cliques (Model 3 including all implied ALLDIFF
constraints) and Model 3-rooms (Model 3 including only the ALLDIFF constraints
standing for room cliques). In Table 3, we give the number of iterations of Algorithm 1
(Decompositon), that is, the number of feasible colourings that were required to find
a complete solution. This number is always 1 for Model 2. We also give the cumulative
CPU time and number of nodes explored on solved instances. Notice that no model
could solve instances 1, 2, 9, 10, 13 or 14 within the time cutoff of 420 seconds, corre-
sponding to the 10 minutes cutoff of the competition on an Apple MacBook. Model 2
does not need to solve several colouring problems, however, the overhead due to the ex-
tra variables (event) and to the large ALLDIFF constraint, is too large. In fact the search
tree explored by Model 2 is several orders of magnitude smaller than that explored by
Model 3. We also observe that in most cases, the ALLDIFF constraints on events sharing
the same unique suitable room reduces dramatically the number of iterations required to
solve the problems. On the other hand, using ALLDIFF constraints for representing the
colouring problem seems to be slightly detrimental. The best combination seems to be
Model 3 using ALLDIFF only for rooms. We believe that the main reason for Model 3
to dominate Model 2 is that the difficult part of the problem lies primarily in the colour-
ing for these instances. The very low number of colouring sub-problems solved when
adding the implied ALLDIFF constraints provides further evidence of this. Any given
colouring satisfying the implied ALLDIFF constraints is very likely to be extensible to
a feasible matching. We also observed (but this is not apparent in the tables) that the
extra GCC constraint used to approximate the matching part was almost unnecessary
in most cases. That is, even without this constraint, the number of iterations to reach a
complete solution remains relatively small. Notice, however, that this last observation
does not stand for instances 1, 2, 9 and 10, which happen to be the hardest.

Next we compare three heuristics all using the best model: Model 3 (room). We
used minimum domain over future degree (dom/deg) and impact [21] as benchmarks,
since they are both good general purpose heuristics. The former was used success-
fully on list-colouring problems in the past, whilst the latter proved to be the best
in our experiments. The third heuristic, contention, is based on computing the con-
tention of events for a given timeslot. In scheduling, resource contention has been
used as heuristic with success [25]. In our case, timeslots can be viewed as resources,
of capacity m, required by events. The contention C(j) of a time slot j is C(j) =

Table 3. A comparison of the various CP models we studied.
Model 2 Model 3 (conflicts) Model 3 (all) Model 3 (room)

Inst. iter time nodes iter time nodes iter time nodes iter time nodes
3 1 12.813 327 2 5.111 312 1 15.919 198 1 4.850 198
4 - - - 2 7.386 3789 1 18.154 351 1 4.814 351
5 - - - - - - 4 23.428 5335 3 9.599 1977
6 - - - 22 28.878 26049 3 93.895 42753 2 25.619 22137
7 - - - 9 17.608 21410 1 17.459 2595 1 7.690 5626
8 1 119.190 2144 6 2.521 534 1 7.283 633 1 3.015 633
11 - - - 5 4.297 713 3 18.485 443 3 5.678 1896
12 - - - 8 160.732 178437 2 271.381 29291 1 75.705 78666
15 - - - 10 2.528 601 2 6.096 191 2 2.783 191
16 1 4.883 213 12 2.477 1143 2 6.153 261 2 2.713 261

Table 4. Comparison of search heuristics for the CP models.
Impact Contention Dom/Deg

Inst. iter time nodes iter time nodes iter time nodes
3 1 4.850 198 1 3.455 182 1 3.183 228
4 1 4.814 351 - - - - - -
5 3 9.599 1977 3 66.489 112413 - - -
6 2 25.619 22137 2 318.635 529877 - - -
7 1 7.690 5626 - - - - - -
8 1 3.015 633 2 1.958 413 3 3.021 3098
11 3 5.678 1896 4 3.165 342 - - -
12 1 75.705 78666 - - - - - -
15 2 2.783 191 1 6.224 6478 - - -
16 2 2.713 261 2 1.878 252 2 1.831 237

∑
i | j∈D(eventT imei)

1/|D(eventT imei)|. Intuitively, this quantity describes the de-
mand for timeslot j. It clearly induces a value ordering, since less contended for time
slots are less likely to lead to a failure. Next we can compute a contention value for vari-
ables C(eventT imei), representing how constrained is a given variable and equal to
C(eventT imei) =

∑
j∈D(eventT imei)

1
C(j) . The event i that minimises C(eventT imei)

and the timeslot j that minimises C(j) are explored first.
In Table 4, we give the number iterations of Decompositon (Alg. 1) as well as

the cumulative cpu time and number of nodes explored on solved instances. The results
clearly show that contention dominates dom/deg and is itself dominated by impact.
Notice that these two better heuristics also provide value orderings, whereas dom/deg
does not. This is important on these benchmarks, since they have a relatively large
number of solutions whilst being hard for a complete method.

5 Constraint Programming Models for Optimisation

In this section we introduce three soft global constraints to reason about the costs and
especially derive lower bounds. The main difficulty we encountered is that all three
costs are defined in terms of students who are numerous and, thus, not represented
explicitly in our CP model. In each case we tried to get around this issue by projecting
the cost on events and/or timeslots.

5.1 Last Timeslot of each Day

This soft constraint counts the number of students attending an event in the last timeslot
of the day ({9, 18, 27, 36, 45}). Let us introduce, for each event i a Boolean variable bi

such that bi = 0 if the event i is in a timeslot other than the last ones, and bi = 1 if the
event i is in one of the last timeslots. The cost can then be expressed as cost1 =

∑
i(bi×

|student(i)|). The Boolean variables can be added to Model 3 and channelled with
eventT imei or a simple dedicated global constraint can be implemented. We chose the
latter option for efficiency reasons and to be able to augment it with stronger inference.

Lower Bound. Consider the bipartite graph G = (V1, V2, E) described in Section 4.2
and captured by constraint (8) of Model 2. We recall that V1 = {1, . . . , n} is the set
of events and V2 = {〈1, 1〉, . . . , 〈45,m〉} is the set of all pairs 〈timeslot, room〉. The
existence of a maximum matching in this graph ensures a possible allocation of each
event to a pair 〈timeslot, room〉. WG extends G by adding a weight wij to each edge
of E defined as follows:

wij =
{

0 iff j = 〈a, b〉 with a ∈ {9, 18, 27, 36, 45};
|student(i)| otherwise.

Let us denote by W the value of the maximum weighted matching in WG. Observe that
W represents the maximum number of students who can fit in the 40 non-last timeslots
and the rest is therefore a lower bound on the minimum number of student going in the
last timeslots: lb(cost1) =

∑
i≤n |student(i)| −W .

Pruning. The pruning process is trivial here and removes values {9, 18, 27, 36, 45}
from the domain of an event eventT imei if lb(cost1) + |student(i)| > ub and event i
has not been included in lb(cost1). This can be done in O(n) time.

Computational Complexity. The maximum weighted matching corresponds to an as-
signment problem and can be solved in polynomial time (in O(n3) with the Hungarian
method [16]). As n can reach 400 in the data sets, an incremental algorithm for the max-
imum weighted matching is needed and this improved bound has not yet been included
in our current implementation.

Note that this bound is exact when relaxing only constraints 1 and 5 of the problem
description. We have seen that the colouring sub-problem can however be tighter than
the matchings so that reasoning on the colouring might improve this bound.

5.2 Consecutive Events

This soft constraint counts the number of students attending more than two events in a
row on a given day. The main difficulty with this cost is the potentially large number
of parameters having an impact on the cost. We present the lower bound developed for
this cost and how it is maintained incrementally at a relatively low computational cost.

Lower Bound. We first consider only events committed to a timeslot, i.e., instanti-
ated variables. The cost of consecutive allocation of every possible triplet of events
is pre-computed initially and stored in a large static table: static-cost(i1, i2, i3) =
|student(i1)∩student(i2)∩student(i3)|. The lower bound, lb(cost2), is then, firstly,

made of the sum of these costs implied by instantiated events i1, i2, i3 to consecutive
timeslots. This part of the bound is referred to as lbg(cost2):

ground-cost(i1, i2, i3) =

static-cost(i1, i2, i3) if eventT imei1/i2/i3 are
assigned and consecutive;

0 otherwise.

lbg(cost2) =
∑

i1<i2<i3

ground-cost(i1, i2, i3).

Then, for each unassigned event, a lower bound on the cost involved by its inser-
tion in the current timetable is maintained. For a timeslot j, let pairs(j) be the set
of pairs of events assigned respectively to j − 2 and j − 1, or j − 1 and j + 1, or
j + 1 and j + 2. The cost of assigning event i to timeslot j is the sum of all triplets
formed by i and any existing pair p in pairs(j). Then we define pending-cost(i, j)
as:

∑
p∈pairs(j) static-cost(p ∪ {i}). The lower bound lb(i) associated with allocat-

ing event i to one of its possible timeslots is equal to the minimum pending cost over
all values lb(i) = minj∈D(eventT imei)pending-cost(i, j). We use the following lower
bound during search:

lb(cost2) = lbg(cost2) +
∑

|D(eventT imei)|>1

lb(i).

Pruning. We prune timeslot j for event i iff lb(cost2) + pending-cost(i, j) − lb(i) is
greater than the current upper bound of the variable associated to this cost.

Computational Complexity. The base lower bound lbg(cost2) is maintained incremen-
tally during search. It is updated only when a variable eventT ime becomes assigned
to some timeslot. In this case we increase the cost by the the value of static-cost
of the newly formed triplets of events. There are at most 35m3 triplets in total, the
amortised computational cost of maintaining this lower bound along one branch of
the search tree is thus O(m3). The pre-computation of the static-cost is here a key
for efficiency. Computing pending-cost(i, j) can be done in O(m2) time since there
are three sets of at most m2 pairs to consider for each timeslot of each event. Since
there are at most 45 possible timeslots for a given event, one can compute lb(i) for
all events in O(nm2). In practice, we update the values of lb(i) only when event
i loses some values, or when another variable get assigned to some timeslot j and
D(eventT imei) ∩ {j − 2, j − 1, j + 1, j + 2} 6= ∅. The pruning can be done in the
same time complexity since we only need to go through at most 45n values.

Alternative Lower Bound. For a given student s, let us introduce the following Boolean
variables: for each timeslot j, bs

j = 1 if the student has an event assigned to the timeslot
j, bs

j = 0 if he is free at that time. These variables can be easily channelled with the
eventT imei variables. For a given assignment of bs

1, . . . , b
s
45, cs is the corresponding

cost (i.e. the sum of the number of triplets by day), and for a given c ≥ 0, opts(c) =
max{

∑
j≤45 bs

j | cs ≤ c}. In other words, opts(c) is the biggest number of bs
j variables

we can set to 1 without exceeding the cost c.

A lower bound lb′(s) of the cost for the student s can thus be defined as follows:

lb′(s) = min{c ≥ 0 | |events(s)| ≤ opts(c)}

i.e. the minimal cost at which we can place all the events of the student s. The alternative
lower bound for the cost is therefore lb′(cost2) =

∑
s∈S lb′(s).

Proposition 1. Let c be a value ≥ 0, in a given state of the bs
i variables, determining

opts(c) is polynomial.

Proof. Consider each timeslot of one day from the first to the last and the following
greedy procedure. If an event can be added in the current timeslot without creating
more triplets than c, add it, else, let this timeslot empty. Repeat this for each day. The
number of events finally added is optimal. Indeed, suppose we are at the timeslot k in
some day, and let a(k − 1) =

∑
j≤k−1 bs

j , a be the total number of bs
j set to 1 when

bs
k = 1 and a′ when bs

k = 0. Let us prove a ≥ a
′
.

If bs
k = 1 increases the number of triplets over c, clearly we have no other choice

than setting it to 0. Suppose it is not the case. If we set bs
k to 1, then in the worst case,

that is if bs
k−1 = 1, we must let k + 1 empty and optimally fill the remaining timeslots

with ar 1’s. Thus a ≥ a(k − 1) + 1 + ar. If we set bs
k to 0, then the remaining slots

can be optimally filled with a′r 1’s, and so a′ = a(k − 1) + a′r. We have a′r = ar + 1
or a′r = ar, so a ≥ a(k − 1) + 1 + ar ≥ a(k − 1) + a′r ≥ a′. So, supposing (by
induction) that a(k − 1) was optimal, we optimise the total number of 1’s by setting bs

k

to 1 whenever that is possible. ut

This is of course not an exact lower bound, as we do not take into account that one
event can only go to a single timeslot, as nothing prevents us from putting the same
event into two different timeslots for two different students in order to optimise the cost
of each of them. We also do not take into account the domains of the events.

Proposition 2. lb(cost2) and lb′(cost2) are incomparable.

Proof. lb(cost2) is not better than lb′(cost2): Consider three events 1, 2, 3 such that
students(1) ∩ students(2) ∩ students(3) = {s}. Suppose that we have cost2 ≤ 0
and eventT ime1, eventT ime2 ∈ {1, 2}, eventT ime3 ∈ {3}. We have lbg(cost2) =
0, lb(1) = 0, lb(2) = 0, hence the overall lower bound is lb(cost2) = 0. However
using the alternative cost, when considering the student shared by all three events, we
have bs

1 ∈ {0, 1}, bs
2 ∈ {0, 1}, bs

3 = {1}. Supposing we only have a single day with
three timeslots (we can easily repeat this basic pattern to fill the whole week for a more
realistic situation), lb′(s) = 1, hence lb′(cost2) > 0.

lb′(cost2) is not better than lb(cost2): Suppose now we have two students indexed
1 and 2, such that the first one is busy at timeslots 1,2 and 6, and the second at timeslots
1, 5 and 6. We have one more event taken by both students that can go in 3 or 4. Then
lb′(1) = lb′(2) = lb′(cost2) = 0, by setting for each student respectively b1

3 = 0,
b1
4 = 1 and b2

3 = 1, b2
4 = 0. However this does obviously not lead to a solution, which

would have been detected by lb(cost2). Indeed, lb(3) = lb(4) = lb(cost2) = 1. ut

5.3 Single Events

This soft constraint counts students attending a single course in any day of the week.
The non-monotonic nature of this cost makes it difficult to reason about. Indeed, schedul-
ing an event in a given day simultaneously increases the cost for students attending only
this event, and decreases it for student attending another, until then unique, event. In
fact, we show that even when we relax all other factors to an extremal case, computing
an exact lower bound for this constraint is NP-hard.

Theorem 1. Finding the exact lower bound for Cost 3 is NP-complete, even if all other
constraints are relaxed.

Proof. We consider the problem of finding a lower bound for cost3 for a given day,
with as few external constraints as possible. We only assume that a set of events may
already have been assigned to this day, and that we have a finite set of extra events to
choose from. We analyse the corresponding decision problem, SINGLE-EVENT:

Data: An integer k, a set R of events already assigned to a given day, and
another set P that can possibly be assigned to this day.
Question: Is there a set R ⊆ S ⊆ P of events such that no more than k students
have a single event in that day.

We reduce SET-COVER to SINGLE-EVENT. A SET-COVER instance is composed
of a set U = {u1, . . . , un}, a set S = {S1, . . . , SM} ⊆ 2U of subsets of U , an integer
k ≤ M . The problem consists of deciding whether there exists a set C ⊆ S such that
∪Si∈CSi = U and |C| ≤ k.

We build R with one event E, that contains k +1 students e1
i , . . . , e

k+1
i per element

ui of U (the element-students). We build P with an event Ej for each subset Sj ∈ S.
Each event Ej contains the element-students of each element in Sj , i.e. the element-
students e1

i , . . . , e
k+1
i for each ui ∈ Sj , plus one unique student sj (the set-student).

Each subset R ⊆ S ⊆ P of cost k, i.e. such that no more than k students attend
a single event in the day, corresponds to a set cover of U of size k and vice-versa. A
set cover C of size k corresponds to a set S = {Ej |Sj ∈ C} of cost k. Conversely,
a set S of cost k corresponds to a set cover of size k. Clearly, S corresponds to a set
cover: if any element of U is not covered, then the cost of S is at least k + 1 (each
uncovered element corresponds to k + 1 element-students attending only E). Now, as
all the element-students attend at least two events, the cost can only result from the set-
students, which is simply the number of events (other than E) in S. ut

Observe that solving a sequence of SINGLE-EVENT instances with decreasing val-
ues of k gives us a lower bound on this cost when all other constraints are relaxed, and
without even imposing each variable to take at least one value. For instance if event i
is in P , we can choose not to schedule it at all, whereas in effect, it will necessarily be
assigned to some day of the week. This is, therefore, a much easier problem than finding
the exact lower bound of Cost 3. However, even this relaxed problem is NP-complete.

Taking this fact into consideration, we only maintain this cost correctly in the com-
putationally cheapest possible way. We consider each pair 〈day, student〉. As long as at
least two events attended by this student can potentially happen this day, we do nothing.

Otherwise, there are two choices, either this student has no course at all in this day, or
has exactly one. In the latter case we increase the cost by one. This can be efficiently
done with a system akin to the watched literals used in SAT unit propagation [18]. For
every student and every day, we randomly pick two events to “watch” for this pair.
When an event cannot be assigned to some day anymore, we update its list of students
watched for that day, finding a new available watcher. Notice that this is very cheap
to do. For instance if this event was not watching any student for that day, it does not
cost anything at all. When we do not find any replacement, we know that the given
student is either attending no event in that day, or only a single one. We update the cost
accordingly.

6 Large Neighbourhood Search

One weakness of the local search approach is the lack of flexibility when moving in the
space of feasible solutions. The search space accessible from a given feasible solution
might be very limited by the hard constraints and even disconnected. In such a case, the
search can only reach the best solution connected with the initial one.

One solution would be to relax feasibility during search without any guarantees to
find it again or to restart from different feasible solutions. Due to the difficulty of finding
feasible solutions, we discarded these two approaches. Another alternative is to design
more complex moves that affect larger parts of the current assignment. Move Hu is one
example of a complex move that remains polynomial. A more general kind of move can
be performed using a complete solver. This is the central idea of Large Neighbourhood
Search (LNS) [27]. LNS is a local search paradigm where the neighbourhood is defined
by fixing a part of an existing solution. The rest of the variables are said to be released
and all possible extensions of the fixed part define the neighbourhood which is usually
much larger than the one obtained from classical and elementary moves. Algorithm 2
presents the simple LNS scheme. An efficient systematic algorithm is needed to explore
this large neighbourhood and the CP Model 3 presented earlier will be used for this.

Algorithm 2: LNS Scheme
1 find a feasible solution;
2 while optimal solution not found or time limit not reached do
3 choose a set of events to release;
4 freeze the remaining events to their current position;
5 if search for an improving solution then
6 update the upper bound;

Nature and Size of the Neighbourhood. The selection of variables to release is a key
element of a LNS scheme. We need to decide which events should be released (nature
of the neighbourhood), and in what number (size of the neighbourhood). Previous work
on LNS [7, 19, 20] outlines the importance of structured neighbourhoods dedicated to
the problem. We have investigated neighbourhoods that release events per timeslots (all
events contained in a given set of timeslots). It is critical to choose a neighbourhood

that releases related variables, i.e. variables that are likely to be able to change and ex-
change their values. It is indeed very important that the neighbourhood contain more
feasible solutions than the one we already had before releasing the variables. A promis-
ing neighbourhood is also likely to contain feasible solutions of better cost. We, there-
fore, investigated a neighbourhood that releases kc conflicting and kr random timeslots
(all events in the corresponding timeslots are released).

The size of the neighbourhood is difficult to set as the tradeoff between searching
more versus searching more often is difficult to achieve. We choose to start from small
sizes (kc = 2 and kr = 2) and to increase it when the search stagnates; in practice, after
100 non improving iterations, the minimum of kc and kr is increased by 1. The reason
is that the accurate size seems to vary a lot regarding instances. Much bigger sizes are
typically needed for instances 1, 2, 9 and 10 where feasibility is tight. Sideways moves
are again very important for diversification and are always accepted.

LNS as an intensification mechanism for the SA. The LNS approach relies only on
the CP solver as shown on Algorithm 2. Another idea is to use the LNS move at the
low temperatures of the SA to help the very important and final phase of optimisation
performed at the end of the cooling. In this mode, we do not accept sideways moves to
speed up the solving process and look for improving solutions only. Diversification is
ensured by other moves of the SA that continuously change the current assignment. The
CP move is included in the neighbourhood of the SA at each iteration with a probability
that increases while the temperature decreases: pinclude lns(τ) = 1

200∗τ .

7 Experimental Results

Comparison of our Approaches. We summarise here the results of our study with four
approaches:

– CP: The Constraint Programming approach described in Sections 4 and 5 based on
Model 3 (room) using Impact-based search.

– LNS: The Large Neighbourhood Search approach relying on Model 3 (room) (the
local search of Section 3.1 is used to provide an initial feasible solution).

– SA: The local search approach described in Section 3 which is based on Simulated
Annealing for the optimisation stage.

– SA LNS: the SA approach augmented with LNS as an intensification mechanism
at the end of the cooling (still using Model 3 (room)).

Table 5 reports the cost found by each technique on the 16 instances. LNS, SA
and SA LNS were run on 20 different seeds and the average, min and max cost found
over the 20 runs are reported. The CP approach is entirely deterministic and a single
run is therefore shown. The last three columns show the percentage of improvements
given by SA LNS over SA alone. Two computers were used, CP was run on a Mac-
Book4 within a time limit of 420s and the others were run on an iMac5 within a time

4 Mac OS X 10.4.11, 2 GHz Intel Core 2 Duo, 2 GB 667 Mhz DDR2.
5 Mac OS X 10.4.11, 2.33 GHz Intel Core 2 Duo, 3 GB 667MHz DDR2 SDRAM.

limit of 372s6. Firstly, the LNS scheme outperforms CP alone (even by only looking
at instances where CP does find a feasible solution) while being a very simple modifi-
cation of CP. Secondly, LNS is itself outperformed by the SA. We observed here that
it remains stuck in local minima despite the large size of the neighbourhood. [19] out-
lines the same problem and suggests that the LNS scheme still needs other and more
powerful diversification mechanisms. Finally, SA LNS improves LNS but is not very
convincing. The CP moves do not seem to bring much more flexibility to the SA to
escape local minima in general. It allows, however, to find three new optimal solutions
(instances 7, 12 and 16) and improves significantly the resolution of two instances (7
and 16). Note that all the minimum costs are improved showing that LNS does play a
role in the final intensification stage even if this does not give a major improvement.

Table 5. Overall results on 20 runs reporting the average, min and max cost.

Inst CP LNS SA SA LNS Improvements
avg min max avg min max avg min max %avg %min %max

1 - 2042.90 1758 2365 1012.75 597 1339 1006.50 593 1324 0.62 0.67 1.12
2 - 2255.16 2062 2561 1414.00 758 2462 1429.68 758 2446 -1.11 0.00 0.65
3 1930 778.00 494 1041 232.50 166 309 225.25 155 307 3.12 6.63 0.65
4 2097 950.70 776 1110 358.95 249 420 355.40 242 425 0.99 2.81 -1.19
5 1767 962.80 755 1133 3.50 0 10 4.15 0 11 -22.06 0.00 -10.00
6 1681 984.00 845 1136 11.90 0 76 13.45 0 80 -13.03 0.00 -5.26
7 1450 561.70 308 719 11.80 6 53 0.60 0 6 94.92 100.0 88.68
8 1111 498.15 389 644 0.00 0 0 0.00 0 0 0.00 0.00 0.00
9 - 2402.00 2168 2708 1972.77 1099 2660 1950.55 1099 2620 1.13 0.00 1.05

10 - 2572.22 2097 2940 2209.22 1515 2730 2250.75 1512 2730 -1.88 0.20 0.00
11 2388 852.65 618 1120 347.80 242 538 334.05 241 462 3.95 0.41 14.13
12 2328 1156.30 992 1368 393.50 1 606 386.45 0 602 1.79 100.00 0.66
13 - 1011.45 839 1175 113.30 0 218 113.55 0 195 -0.22 0.00 10.55
14 - 1087.00 960 1189 0.90 0 3 1.05 0 3 -16.67 0.00 0.00
15 1225 620.45 492 795 71.15 0 269 71.10 0 268 0.07 0.00 0.37
16 964 456.65 342 541 27.35 1 135 16.20 0 130 40.77 100.00 3.70

Comparisons with other Algorithms in the Competition. Five algorithms7 were
choosen for the final phase and evaluated on 24 instances (the 16 already mentioned
and 8 unknown competition ones). Since all solvers were randomised, 10 runs per in-
stance were performed giving 50 runs per instance. Each run was ranked among the 50
for each instance and the average rank across all runs and all instances was used to give
a rank to each algorithm. Table 6 shows the ranking of each algorithm, with the number
of times they have found the best solution among all runs for a given instance, and the
number of times they have failed to find a feasible solution.

Our local search with a score of 13.9 therefore did significantly better than the al-
gorithm of Atsuta et al. that came second with 24.43. Our approach appeared generally
more robust for both finding feasible and good solutions (Chirandini et al. being the
most robust on feasibility only). It also obtained the best results on many instances. It is
however very interesting to notice that it was outperformed on instances we considered
here as very hard on feasibility for our algorithm, e.g. instance 10. Nothegger et al. or

6 Both time limits were established by the benchmarking program used during the competition.
7 The other four algorithms were developped by: M. Atsuta, K. Nonobe, T. Ibaraki; M. Chiaran-

dini, C. Fawcett, H. H Hoos; C. Nothegger, A. Mayer, A. Chwatal, G. Raidi; T.Muller.

Table 6. Ranking of the five finalists from the tests ran by the organizers on the 24 instances.
Atsuta et al. Cambazard et al. Chiarandini et al. Nothegger et al. Muller

Average rank (out of 240 runs) 24.43 13.9 28.34 29.52 31.31
Number of best solutions (out of 24 instances) 11 13 3 11 0
Number of failures on feasibility (out of 240 runs) 43 17 4 54 53
Rank in the competition 2 1 3 4 5

Atsuki et al. could not only systematically find a feasible solution on instance 10 but
also the optimal one. On the other hand, these algorithms fail to find feasible solutions
on instances where our approach succeeds easily. On instance 9 they only find a feasible
solution 30% of the time but when they do, it is the optimal one. This lead us to con-
jecture that they have been using the soft cost to guide the search of feasible solutions.
On very tight instances, this strategy pays off as there are maybe few feasible solutions
and it is known that an optimal solution of cost 0 always exists. On other instances it
either misleads the search or just slows down the process, thus degrading the results.
This shows that there is a significant room for improvement in our results.

8 Conclusion

We have presented a comprehensive study of a university timetabling problem, com-
paring a variety of local search and constraint programming approaches. We designed a
constraint programming approach that proceeds by decomposing the list-colouring and
the matching subproblems and outperforms more classical CP models. Lower bounds
were introduced to tackle soft constraints, leading to the first complete algorithm for
this problem. While our local search technique benefits from the experience of the 2003
competition, we have presented several improvements to deal with hard constraints;
the results show more maturity than the CP technique. However, an LNS scheme inte-
grating both our CP and LS approaches obtained the best results. The structure of the
list-colouring graph made of large and overlapping cliques was shown to be important
for both CP and LS techniques. Improving the propagation we can achieve from a col-
lection of ALLDIFF constraints is very important in this context. Arc-consistency on
two overlapping ALLDIFF is already known to be NP-Complete [3] but a number of
pragmatic filtering rules could be designed. This is an important topic for future work.

References

1. S. Abdullah, E. K. Burke, and B. McCollum. Using a randomised iterative improvement
algorithm with composite neighbourhood structures for course timetabling. In MIC 05: The
6th Meta-Heuristic International Conference, 2005.

2. A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex scheduling and
placement problems. Mathematical Computing and Modelling, 17(7):57–73, 1993.

3. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit. Global constraint catalogue: Past,
present and future. Constraints, 12(1):21–62, 2007.

4. H. Cambazard, P.E. Hladik, A.M. Déplanche, N. Jussien, and Y. Trinquet. Decomposition and
learning for a real time task allocation problem. In Proc. of CP, pages 153–167, 2004.

5. M. W. Carter and G. Laporte. Recent developments in practical course timetabling. In PATAT,
pages 3–19, 1997.

6. M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria. An effective hybrid algorithm
for university course timetabling. J. Scheduling, 9(5):403–432, 2006.

7. E. Danna and L. Perron. Structured vs. unstructured large neighborhood search: A case study
on job-shop scheduling problems with earliness and tardiness costs. In CP, pages 817–821,
2003.

8. J.L. de Siqueira and J.F. Puget. Explanation-based generalisation of failures. In European
Conference on Artificial Intelligence (ECAI’88), pages 339–344, 1988.

9. D. de Werra. An introduction to timetabling. European Journal of Operational Research,
19(2):151–162, February 1985.

10. L. Di Gaspero and A. Schaerf. Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modeling and Algorithms, 5(1):65–89, 2006.

11. P. Galinier and A. Hertz. A survey of local search methods for graph coloring. Comput.
Oper. Res., 33(9):2547–2562, 2006.

12. J.N. Hooker and G. Ottosson. Logic-based benders decomposition. Mathematical Program-
ming, 96:33–60, 2003.

13. V. Jain and I. E. Grossmann. Algorithms for hybrid milp/cp models for a class of optimization
problems. INFORMS Journal on Computing, 13:258–276, 2001.

14. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

15. P. Kostuch. The university course timetabling problem with a three-phase approach. In
PATAT, pages 109–125, 2004.

16. H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1):83–98, 1955.

17. R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A de-
scription of the problem model used for track two of the second international timetabling
competition. Technical report, Cardiff University, 2007.

18. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference (DAC’01),
pages 530– 535, 2001.

19. L. Perron and P. Shaw. Combining forces to solve the car sequencing problem. In CPAIOR,
pages 225–239, 2004.

20. L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In CP,
pages 468–481, 2004.

21. P. Refalo. Impact-based search strategies for constraint programming. In CP, pages 557–571,
2004.

22. J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI-94), pages 362–367, 1994.

23. J.C. Régin. Generalized arc consistency for global cardinality constraint. In National Con-
ference on Artificial Intelligence (AAAI’96), pages 209–215, 1996.

24. O. Rossi-Doria, M. Sampels, M. Birattari, M. Chiarandini, M. Dorigo, L. M. Gambardella,
J. D. Knowles, M. Manfrin, M. Mastrolilli, B. Paechter, L. Paquete, and T. Stützle. A com-
parison of the performance of different metaheuristics on the timetabling problem. In PATAT,
pages 329–354, 2002.

25. N. Sadeh and M.S. Fox. Variable and Value Ordering Heuristics for the Job-Shop Scheduling
Constraint Satisfaction Problem. Artificial Intelligence, 86(1):1–41, September 1996.

26. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127,
1999.

27. P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP, pages 417–431, 1998.

