
A Late Acceptance Strategy in Hill-Climbing for

Exam Timetabling Problems

Edmund K. Burke, Yuri Bykov

Automated Scheduling, Optimisation and Planning Group,

School of Computer Science & IT,

The University of Nottingham, UK

Phone: +44 (0)115 846 7663

Email: {ekb,yxb}@cs.nott.ac.uk

Over the years, many variants, extensions and adaptations of local search techniques have

appeared in the literature. Some of them have become extremely famous, such as

Simulated Annealing. Other ones have almost been forgotten, for example, “Record-to-

Record Travelling” (Dueck 1993) or the “Old Bachelor Acceptance Algorithm” (Hu et al.

1995). In this abstract, we are proposing another new local search strategy. It is simple

and, in many ways, rather obvious. We have made an exhaustive search through the

optimization literature, but have not found the same idea in a published paper. We have

termed this method the “Late Acceptance Strategy”. However, if it eventually emerges

that the same approach has already been published then this paper could be considered to

be a reminder about a “forgotten” way of improving a local search procedure.

As the basis of our proposed method, we take a simple Hill-Climbing algorithm.

Although its performance is known to be relatively worse than that of more sophisticated

metaheuristics, it is still very popular thanks to its simplicity. It is also widely used in

different hybridizations, such as guided, multi-start or variable neighborhood search

methods (see Glover and Kochenberger 2003; Burke and Kendall 2005). Hill Climbing is

an iterative process. At each iteration, a current solution is used to determine the

acceptance of a new candidate. In other words, a candidate solution is compared with a

current one and accepted when its cost function is not worse. Our idea is to delay this

comparison, namely: to compare the candidate solution with a solution, which was

“current” several steps before. Here, each current solution still takes on the role of an

acceptance benchmark, but it will be used at later steps.

In a similar way to Tabu Search, this algorithm maintains a list of a given length L.

However, the list contains no information about executed moves, but it does contain

previous values of the cost function Ĉk , where k ∈ {1...L}. At each iteration, a candidate

cost is compared with the last element of the list ĈL . The comparison method is the same

as in Hill-Climbing, i.e. the candidate solution is accepted when its cost is equal to or

better than ĈL . After the comparison and the acceptance procedure, the new current cost

(it can be equal either to the previous cost or to the cost of the accepted candidate) is

inserted into the beginning of the list (for later comparison), and correspondingly, the last

element is removed from the list. It could be also suggested that, at the beginning of the

search, all elements of the list are the same and are equal to the initial cost function.

Although, in Tabu Search, the increase of the length of the tabu list always causes

higher computational expense, the Late Acceptance strategy is free from this drawback.

First, we do not have to enumerate the complete list at each step: just shift forward its

elements. Second, we can eliminate the shifting by simple recalculation. Here the

“physical” list remains static, but its “virtual” beginning v is calculated dynamically as a

reminder of the division of the current number of iteration I to the length of the list L

(v = I mod L). Thus, the search can maintain a list of any length without extra expense.

The complete search procedure is summarized in Algorithm 1.

Algorithm 1 General purpose Late Acceptance Hill-Climbing methodology (LAHC)

Produce an initial solution s

Calculate initial cost function C(s)

for all k∈{0...L-1} do Ĉk ← C(s)

Assign the initial number of iteration I ← 0;

do until a chosen stopping condition:

 Construct a candidate solution s*

 Calculate its cost function C(s*)

 v ← I mod L

 if C(s*)≤Ĉv

 then accept candidate (s ← s*)

 Insert cost value into the list Ĉv ← C(s)

 Increment the number of iteration I ← I+1

end do

We can indicate several motivations behind the Late Acceptance strategy. Firstly, this

method allows some worsening moves, which (as might be expected) should prolong the

search time and simultaneously help to avoid local minima. Secondly, it depends on a

single genuine parameter, i.e. the length of the list L (rather than a function, like in

Simulated Annealing or the Great Deluge Algorithm). Therefore, it could be seen to be

less vulnerable to inadequate parameterization. Thirdly, it draws upon an idea of Laguna

and Glover (1996) of the “intelligent” use of information, collected during the search (but

in a different way than that used in Tabu Search). Here, the list of previous cost functions

determines a pattern for further decisions, and this pattern reflects specific properties of a

current problem’s neighborhood. In this context, it can be viewed as a yet unstudied

variant of Adaptive Memory Programming (see Taillard et al. 2001).

We investigated the performance of the proposed method by applying it to Exam

Timetabling problems using a model from our previous studies (see Burke et al. 2004;

Burke and Bykov 2008). It starts from the Saturation Degree initialization procedure.

Afterwards an iterative search is used, which performs the following moves: we move a

random exam into a random timeslot (using Kempe chains in the case of infeasibility)

and we swap two randomly chosen timeslots. The search is run for as long as it is able to

improve a current solution, i.e. we stop it when no further improvement is possible. In the

present study, convergence is considered to have taken place after 50000 idle moves.

However, optimizing this parameter is the subject of further investigation (see the

discussion below). 13 benchmark problems were taken from the University of Toronto

collection. The notation from Qu et al. (2009) is used. Statistics were collected during

three experiments, while running each experiment 20 times over each problem.

In the first experiment, we estimated a lower bound of the performance of our

method, i.e. when L=1 (which corresponds to pure Hill-Climbing). The second

experiment was carried out with L=500 for all problems. In the third experiment, we have

empirically customized the length of the list for each benchmark problem in order to run

the search for approximately 10 minutes. All results (best and average costs, average run

times and L in the third experiment) are presented in Table 1.

Table 1 Performance of HC and LAHC for benchmark problems

Pure HC (L=1) LAHC with L=500 LAHC with custom list length

Problem
Result

(best/av)

Av. time

(sec)

Result

(best/av)

Av. time

(sec)
L

Result

(best/av)

Av. time

(sec)

Car92 4.33/4.52 34 3.93/4.08 184 2000 3.81/3.92 604

Car91 5.24/5.46 55 4.77/4.89 329 1300 4.58/4.68 665

Ear83 I 36.62/37.94 3 33.22/34.13 18 14000 32.65/32.91 450

Hec92I 10.94/11.60 1 10.32/10.70 2 120000 10.06/10.22 590

Kfu93 13.99/14.72 6 13.02/13.40 113 5000 12.81/13.02 882

Lse91 11.11/12.02 5 10.08/10.53 150 4000 9.86/10.14 641

Pur93 4.88/5.08 584 4.32/4.39 3332 100 4.53/4.71 747

Rye92 8.79/9.15 9 8.17/8.36 68 5000 7.93/8.06 901

Sta83I 157.17/157.51 1 157.03/157.13 2 60000 157.03/157.05 587

Tre92 8.74/8.99 7 8.09/8.25 38 9000 7.72/7.89 608

Uta92I 3.62/3.72 43 3.29/3.37 219 1500 3.16/3.26 805

Ute92 25.57/26.45 1 24.87/25.03 8 30000 24.79/24.82 528

Yor83I 38.07/39.27 3 36.34/37.17 15 19000 34.78/35.16 502

As we expected, the increase of L increases the computational cost and

simultaneously helps to achieve much better solutions. In Table 2 we give a brief

comparison of our results with best previously published ones using the survey of Qu et

al. (2009).

Table 2 Comparison of LAHC with best published results

Problem Carter et al.

1996

Casey and

Thompson

2003

Yang and

Petrovic

2005

Burke et al.

2009

Caramia et al.

2008
LAHC

Car92 6.2 4.4 3.93 4.0 6.0 3.81

Car91 7.1 5.4 4.5 4.6 6.6 4.58

Ear83I 36.4 34.8 33.7 32.8 29.3 32.65

Hec92I 10.8 10.8 10.83 10.0 9.2 10.06

Kfu93 14.0 14.1 13.82 13.0 13.8 12.81

Lse91 10.5 14.7 10.35 10.0 9.6 9.86

Pur93 3.9 - - - - 4.32

Rye92 7.3 - 8.53 - 6.8 7.93

Sta83I 161.5 134.9 158.35 159.9 158.2 157.03

Tre92 9.6 8.7 7.92 7.9 9.4 7.72

Uta92I 3.5 - 3.14 3.2 3.5 3.16

Ute92 25.8 25.4 25.39 24.8 24.4 24.79

Yor83I 41.7 37.5 36.35 37.28 36.2 34.78

It can be seen that this simple and straightforward approach produces strong results.

Finally we should point out some general issues.

• We have presented here a very early study of a new proposed technique. Obviously,

its properties require further investigation. For example, when the list is quite long

the presented algorithm tends to make an extremely slow improvement in the final

phase of the search. We have observed that sometimes 50000 idle moves were not

sufficient for the recognition of “true” convergence. This number should probably be

calculated as a percentage of the total number of moves, but this issue needs to be

more deeply studied.

• In addition to the proposed algorithm, the basic idea of the Late Acceptance

approach could be implemented in different ways. For example, we can imagine an

alternative variant where the benchmark cost is not taken from the end of the list, but

chosen randomly over all its elements.

• We have applied here the proposed technique to Exam Timetabling problems.

However, we think that the Late Acceptance technique could be effective as a

general purpose strategy, which can be applied to any problem where Hill Climbing

is applicable. We have already tested it on Grid Scheduling problems and it showed

a high level of performance.

• We presented here the Late Acceptance strategy applied within Hill Climbing.

However it can be embedded into any search method, where a candidate cost is

compared with a current one. For example, we could propose the use of the Late

Acceptance strategy with Simulated Annealing, Functional Annealing or Threshold

Acceptance methods.

References

Burke, E. K., Bykov, Y., Newall, J., & Petrovic, S. (2004). A time-predefined local search approach to

exam timetabling problems. IIE Transactions, 36(6), 509-528.

Burke, E. K., & Kendall, G. e. (2005). Search methodologies: introductory tutorials in optimization and

decision support techniques, Springer: New York.

Burke, E. K., & Bykov, Y. (2008). An adaptive flex-deluge approach to university exam timetabling.

Submitted to INFORMS Journal of Computing.

Burke, E. K., Eckersley, A. J., McCollumn, B., Petrovic, S., & Qu, R. (2009, to appear). Hybrid variable

neighborhood approaches to university exam timetabling. European Journal of Operational Research.

Caramia, M., Dell’Olmo, P., & Italiano, G. (2008). Novel local search based approaches to university

examination timetabling. INFORMS Journal of Computing, 20, 86-99.

Carter, M. W., Laporte, G., & Lee, S. (1996). Examination timetabling: algorithmic strategies and

applications. Journal of Operational Research Society, 47, 373-383.

Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling problem. PATAT IV, Selected

Revised Papers, Springer LNCS 2740, 232-246.

Dueck G. (1993). New optimization heuristics. The great deluge algorithm and the record-to-record travel.

Journal of Computational Physics, 104, 86-92.

Glover, F., & Kochenberger, G.A. (2003). Handbook of metaheuristics. Kluwer Academic Publishers:

Dordrecht.

Hu, T. C., Kahng, A. B, & Tsao, C.-W. A. (1995). Old bachelor acceptance: a new class of nonmonotone

threshold accepting methods. ORSA Journal on Computing, 7, 417-425.

Laguna, M., & Glover, F. (1996). What is tabu search? Colorado Business Review, 61, 5-12.

Qu, R., Burke, E. K., McCollumn, B., Merlot, L. T. G., & Lee, S. Y. (2009 to appear). A survey of search

methodologies and automated system development for examination timetabling. Journal of Scheduling.

Taillard, E. D., Gambardella, L. M., Gendreau, M., & Potvin J.-Y. (2001). Adaptive memory

programming: a unified view of metaheuristics. European Journal of Operational Research, 135, 1-16.

Yang, Y., & Petrovic, S. (2005). A novel similarity measure for heuristic selection in examination

timetabling. PATAT V. Revised Selected Papers. Springer LNCS 3616, 377-396.

