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1 Introduction

A key requirement of the Introduction to Management course at Sabancı University, is the
preparation of a business plan. About 40 teams present their business plans. Teams present
in groups of 3 or 4, and all members of the teams in a group are required to be in the
audience when other teams of their group present. Teams of judges used for different groups
may change. MGMT 201 is taken students from different colleges and classes (sophomore,
junior, etc).

Three key goals defined the need for the current work. Firstly, as judges inevitably grade
presentations relative to each other, we would like to have each group of teams to reflect the
academic diversity (college, GPA, class) present in the course. The second goal is to have
teams with the same type of business plans (e.g. retail, manufacturing, or services) assigned
to the same group. The third goal is related to the timing of the presentations. It is not
desirable to schedule all the presentations after 6:30 PM when students do not have any
classes. This creates a timetabling problem where only certain day time–slots are feasible
for certain teams.

2 MIP Formulation of the Problem

We model characteristics of teams with binary attribute matrices. Three business plan types
are used: retail/wholesale trade, pure service firms and non–service production. Then, for
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each team three academic attributes are defined as binary variables. The first academic
attribute is GPA. If a team’s median GPA is less than 2.5 it is designated as ‘low GPA’,
otherwise ‘high GPA’. The second attribute is college. If the number of engineering students
is more than half of the team size we refer to it as an ‘engineer–dominated’ team. The third
attribute is class (or year). We categorize teams based on whether more than half of the
students in a team are freshman or sophomore, or not. The notation we use is as follows:
Data:

Ti : set of feasible time–slot indices for all members of Team i, i = 1, . . . , I

aik : 1 if Team i exhibits academic attribute k, 0 otherwise, k = 1, . . . , K

pil : 1 if Team i has business plan type l, 0 otherwise, l = 1, . . . , L

nmin : lower limit on the number of teams per group

nmax : upper limit on the number of teams per group

Decision Variables:

Xit = 1 if team i is assigned to time–slot t, 0 otherwise

Zt = 1 if time–slot t is used, 0 otherwise

We use the Total Absolute Deviation (TAD) measure of Mingers and O’Brien to quantify
difference between groups for two reasons (Mingers and O’Brien, 1995). Firstly, it can be
formulated as a linear program and secondly, compared to a large selection of alternative
objective functions it is reported to perform quite well (see (Baker and Powell, 2002)).

Let,Ctk =
∑

i aikXit and Qk denote the average number of teams per time–slot exhibiting
attribute k, (Qk =

∑
i aik/B, where B =

∑
t Zt), we measure the academic diversity of a

particular time–slot t by

Dt =
∑
k

|Ctk − ZtQk| (1)

Since, dI/nmaxe ≤ B ≤ dI/nmine and B makes the objective function term (1) non–
linear, we assume number of time–slots used is a constant, denoted by b, and use the term
qk =

∑
i aik/b in the model. Given b, (1) can be linearized as well (Mingers and O’Brien,

1995):

Ctk + S−tk − S+
tk = Ztqk (2)

Similarity of business plans within a time–slot is measured somewhat differently. Let,

C ′lt =
∑

i

pilXit (3)

so that, C ′lt denotes the number of teams in time–slot t that have business plan type l. Then,
given Nt =

∑
i Xit, we measure the homogeniety of business plan types in a time–slot by

Ht =
∑

l

(Nt − C ′lt)Plt (4)
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where, Plt is a decision variable defined as follows:

Plt =

{
1 if business plan type l is the primary (target) plan type for time–slot t
0 otherwise

Expression (4) is linearized as follows.

C ′lt + Rlt = Nt ∀l, t (5)

Rlt ≤ R̄t + nmax(1− Plt) ∀l, t (6)∑
l

Plt = 1 ∀t (7)

By minimizing
∑

t R̄t the model sets the business with the largest number of teams as
the primary plan of that time–slot, so that R̄t becomes the number of team which are not
the primary–plan teams in that time–slot. Constraints (6) ensure that exactly one plan type
is selected as the “target” for each time–slot.

The third goal is modeled by assigning a weight, wt, to each time–slot t and incorporating
wt in the objective function as follows:

Z =
∑

t

wt(
∑
k

(S−tk + S+
tk) + R̄t) (8)

Thus the mixed integer linear programming formulation of the problem is as follows:

min Z

subject to∑
t∈Ti

Xit = 1 ∀i (9)

∑
i

Xit ≤ nmaxZt ∀t (10)∑
i

Xit ≥ nminZt ∀t (11)

Xit = 0 ∀i, t 6∈ Ti (12)

Nt =
∑

i

Xit ∀t (13)

Ctk =
∑

i

aikXit ∀t, k (14)

C ′lt =
∑

i

pilXit ∀t, l (15)∑
l

Plt = Zt ∀t (16)∑
t

Zt = b (17)

C ′lt + Rlt = Nt ∀l, t (18)

Rlt ≤ R̄t + nmax(1− Plt) ∀l, t (19)
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Ctk + S−tk − S+
tk = Ztqk ∀k, t (20)

S−tk, S
+
tk ∈ R+ ∀t, k

Rlt ∈ R+ ∀l, t
R̄t ∈ R+ ∀t

3 A Meta-Heuristic Approach

Our heuristic methodology is based on Tabu Search principles. At the first stage of the
algorithm, we construct a starting solution x0 by first identifying b time-slots and an anchor
team for each time slot. We randomly select an unassigned team g and make it the anchor of
an available time-slot. We then iteratively assign remaining teams to one of the b time-slots
in a cheapest insertion manner.

Once a starting solution is constructed, we attempt to improve it for a pre-defined number
of iterations. We use three neighborhood definitions N1, N2 and N3. At each iteration,
we consider every member of these neighborhoods as a candidate move, and evaluate the
incremental cost of each move. We allow non-improving moves in order to avoid local optima,
and we maintain two tabu lists to complement the search. The first tabu list is for N1 and
N2, and keeps a history of moves at the team level. The second tabu list is for N3, and keeps
a history of moves at the time-slot level. Tabu tenures for both lists are randomly drawn
from a range of values.

The TABUCORE algorithm stops when either a) total of S iterations are executed, or
b) total of Snoimp iterations are executed without improvement in objective function. The
TABUCORE algorithm can be used to generate good solutions relatively fast. We further
improve the heuristic by implementing Probabilistic Diversification and Intensification (PDI)
methodology (Rochat and Taillard (1995)). The idea is to continuously maintain a pool of
good solution components, and use these components to create hopefully better solutions.

In our PDI implementation, TABU-PDI, we run the TABUCORE algorithm R1 times to
generate an initial set of solutions, which we use to populate a set T , the pool of assigned
time-slots. Next, the PDI algorithm is run for a pre-defined number of iterations, R2, and
any time-slot assignments belonging to better solutions found along the way replace inferior
ones in the pool. The best solution found is reported at the end.

4 Computational Experiments

We generated a random data set with I = 40, nmax = 4, nmin = 3, K = 4, L = 3. wt for
each day time–slot was 1, and the weights for half of the evening time–slots was 1.25 and
the other half was 2.

The number of teams available at a day time–slot was generated using a frequency distri-
bution F={(f, p)}, where f is the fraction of teams available at any given day time–slot and p
is the corresponding probability. Two distributions were used, F1 and F2 with E(F1) = 0.345
and E(F2) = 0.533.

Results for different numbers of day time-slots (D) and evening time–slots (E) are given
in Table 1. For each setting, 20 random instances were generated. All the instances were
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solved by CPLEX mixed-integer programming solver with OPL Studio 5.5. Each instance
was solved for possible values of total number of time-slots used, b (10 through 13). CPLEX
was given a time–limit of 3600 seconds for each b. These preliminary results show that as
E(F ) increases CPLEX run-times increase significantly, resulting in more failures in finding
optimum solutions. Tests of the tabu search algorithm are in progress.

F1 F2

Run-time (sec.) Run-time (sec.)
(D,E) Min Ave Max Nbr Opt Min Ave Max Nbr Opt
(15,8) 37.9 2032.2 7062.3 15 15.9 7015.1 11621.6 3
(17,6) 45.3 1125.1 7724.2 19 52.0 6605.7 14402.3 3
(15,6) 45.9 888.7 4367.7 19 15.1 4799.8 11486.2 10
(17,4) 14.3 542.5 3786.6 20 14.2 5698.5 14405.9 9
(13,6) 18.2 296.9 1496.9 20 18.7 2552.5 8527.9 13
(15,4) 9.9 334.4 1071.5 20 14.9 4040.9 10802.7 12

Table 1: Performance of CPLEX
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