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1 Introduction

This work addresses both the Class/Teacher Timetabling Problem (CTTP) and the Graph
Coloring Problem (GCP). In the case of the Class/Teacher Timetabling Problem the spec-
ification with both hard (which must be satisfied) and soft constraints (which should be
satisfied) was chosen. This formulation, proposed in (Santos et al 2007; Souza et al 2003;
Souza 2000), is adapted to instances representative of Brazilian schools. In the next section,
the CTTP description is presented. Section 3 shows the approach proposed in this work and
Section 4 is dedicated to computacional results and conclusions remarks.

2 The Class/Teacher Timetabling Problem (CTTP) Description

The CTTP builds the weekly scheduling of teachers and classes. It is described below,
adapted to the format and nomenclature defined by Neufeld and Tartar in (Neufeld and
Tartar 1974). Given

– A set of teachers T = {ti}, i = 1, . . . ,α;
– A set of classes C = {c j}, j = 1, . . . ,β ;
– A set of weekly hours H = {hk}, k = 1, . . . ,σ , in which λ week days with µ daily

periods, define σ = λ ·µ different hours;
– A α ×β requirements matrix R = [ri j], where ri j ≥ 0 and ri j is equal to the number of

weekly lesson hours of teacher ti for class c j;
– A α×σ teachers unavailability matrix D = [dik], with dik = 1, if teacher ti is unavailable

at hour hk and dik = 0, otherwise.
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– A α ×β daily lessons hours limits matrix U = [ui j], where 0 ≤ ui j ≤ 2 and ui j is equal
to the maximum number of daily lesson hours of teacher ti for class c j;

– A α ×β double lessons matrix S = [si j], where si j ≥ 0 and si j is equal to the minimum
required number of double lessons (lessons scheduled in two consecutive periods on the
same day) required of teacher ti for class c j;

The ρ th meeting of teacher ti and class c j is denoted by mρ

i j, where 1 ≤ ρ ≤ ri j. The

ri j meetings of teacher ti and class c j is represented by Mi j = {m1
i j, . . . ,m

ri j
i j }. The ∑

β

j=1 ri j

meetings of teacher ti with the classes c j ∈C is represented by the set Mi =
⋃β

j=1 Mi j.

A CTTP solution must satisfy the following hard (1 to 5) and soft (6 to 8) constraints:

1. Every teacher can not be allocated to more than one lesson in the same hour;
2. Every class can not be allocated to more than one lesson in the same hour;
3. Every teacher can not be allocated at hours that they are unavailable;
4. All teachers must fulfill their weekly workload;
5. Every class can not have more than two daily lesson hours with the same teacher;
6. The lessons scheduled for each teacher should be concentrated in the least possible

number of days;
7. Double lessons required by teachers should be satisfied whenever possible;
8. In the time schedule of teachers, the occurrence of hours without activity (gaps) between

two lesson hours in the same day should be avoided.

A CTTP solution is evaluated by the objective function (Santos et al 2007; Souza et al
2003)

min f (Q) = ω · f1(Q)+δ · f2(Q)+π · f3(Q) (1)

with

f3(Q) =
α

∑
i=1

θ ·gi +ϕ · vi +ψ · li (2)

where (1) is constituted by f1(Q), f2(Q), f3(Q) and their respective weights ω , δ and π .
The α×σ matrix Q = [qik] corresponds to a CTTP solution. The value qik ∈{−1,0,1, . . . ,β}
where qik = j, if the teacher ti teaches the class c j at hour hk, qik = 0, if the teacher ti is
available for allocation at hour hk and qik = −1, if the teacher ti is unavailable at hour hk
(it corresponds to dik = 1 in the matrix D = [dik]). The value f1(Q) represents the number
of occurrences that a class c j is allocated to more than one lesson at a hour hk, f2(Q) rep-
resents the number of allocations that exceed the daily maximum number of lessons ui j of
the teacher ti to the class c j and f3(Q) measures the requests from teachers which are not
satisfied. Moreover, in (2) the value f3(Q) is composed by gi, vi and li and their respective
weights θ , ϕ and ψ . The term gi represents the number of gaps in the scheduling of lessons
of each teacher ti, vi is the number of weekdays each teacher ti needs to come to school
for teaching and li is the non-negative difference between the minimum number of double
lessons, given by ∑

β

j=1 si j, required by each teacher ti and the effective number of double
lessons scheduled for teacher ti.

The f1(Q) and f2(Q) components, in the objective function, evaluate the feasibility of
the hard constraints, while f3(Q) evaluates the feasibility of the soft ones. For this reason
the weights ω , δ and π are chosen so that ω � δ � π . Similarly, the weights θ , ϕ and ψ

are chosen to reflect the relative importance of the components gi, vi and li respectively.
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3 The approach proposed

The basic version of CTTP (Neufeld and Tartar 1974) can be transformed into a graph
coloring problem, according to the following correspondences:

– Each vertex of the graph represents a lesson;
– An edge joining two vertices indicates that the respective associated lessons can not be

scheduled at the same hour;
– Each color represents one hour of the corresponding timetable.

The graph G = (V,E) associated with the CTTP is called adjunct graph. The vertex ν ∈
V that corresponds to meeting mρ

i j ∈ Mi j is denoted by ν
ρ

i j . The subset in V that corresponds
to Mi is denoted by Vi.

Each unavailability constraint of CTTP (determined by the unavailabilities matrix D)
corresponds to a condition that some vertices of the adjunct graph G can not be assigned to
a particular color (Neufeld and Tartar 1974).

An adjunct graph G with prevention of color assignment constraints can be converted
to an adjunct graph G′′ without prevention of color assignment constraints, such as G is
σ -colorable if and only if G′′ is σ -colorable (Neufeld and Tartar 1975) .

The adjunct graph G′′ can be colored using a Tabu Search algorithm for graph coloring
called Tabucol (Hertz and de Werra 1987). The objective function to be minimized used
in this algorithm is f̄ (c) = ∑

σ
k=1 |E(Ck)|, where c is a solution such that E(Ck) is the set of

edges with both terminal vertices in the color class Ck, k = 1, . . . ,σ .
A solution c = (C1, . . . ,Cσ ) such that f̄ (c) = 0 (an σ -coloring of G′′), corresponds to

the minimization of the f1(Q) component of the CTTP objective function f (Q).
This work proposes the following adaptations on the Tabucol algorithm and in his exist-

ing implementation in C language, developed by J. Culberson at the University of Alberta,
Edmonton (Culberson 2004), in order to allow the solution of the problem considering the
additional constraints 1 to 8, described above. The Tabucol algorithm adapted is denoted by
Modified Tabucol (MT):

– the σ color classes Ck, k = 1, . . . ,σ , are grouped in a set of λ ordered µ-tuples Lr =
(Ckr(1) , . . . ,Ckr(µ)) called color groups, r = 1, . . . ,λ and σ = λ ·µ .

– a vertex ν
ρ

i j is in the color group Lr, if this vertex is in a color class Ck ∈ Lr.
– a α×β maximum number of vertices per group matrix Ū = [ūi j] is defined, correspond-

ing to the α×β daily lessons hours limits matrix U = [ui j], where ūi j = ui j, 0≤ ūi j ≤ 2
and ūi j is equal to the maximum number of vertices ν

ρ

i j in the same color group.
– a α × β minimum number of consecutive vertices matrix S̄ = [s̄i j] is defined, corre-

sponding to the α ×β double lessons matrix S = [si j], where s̄i j = si j, s̄i j ≥ 0 and s̄i j is
equal to the minimum required number of consecutive vertices ν

ρ

i j . Consecutive vertices
are defined as two vertices in consecutive color classes of the same color group.

– the objective function is defined by f̄ (c) = ω · f̄1(c)+ δ · f̄2(c)+ π · f̄3(c), with f̄1(c),
f̄2(c) and f̄3(c) components, respectively, corresponding to f1(Q), f2(Q) and f3(Q)
components of f (Q), so that:

– f̄1(c) = ∑
σ
k=1 |E(Ck)|, where E(Ck) is the set of edges with both terminal vertices in

the color class Ck, k = 1, . . . ,σ ;
– f̄2(c) = ∑

λ
r=1 |V (Lr)|, where |V (Lr)| is the number of vertices ν

ρ

i j in the color group
Lr that exceeds the vertices per group limit ūi j;

– f̄3(c) = ∑
α
i=1(θ · ḡi +ϕ · ν̄i +ψ · l̄i), where:
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• ḡi = ∑
λ
r=1 |C

(i)
(Lr)

|, where |C(i)
(Lr)

| is the number of color classes of a color group
Lr with no vertex ν ∈ Vi and that are positioned in ordered µ-tuple between
color classes with at least one vertex ν ∈Vi;

• ν̄i is the number of color groups with at least one vertex ν ∈Vi;
• l̄i is equal to the non-negative difference between the required value ∑

β

j=1 s̄i j
and the number of vertices pairs ν ,w ∈ Vi, such that ν and w are consecutive
vertices, that is, vertices in consecutive color classes Ckr ,Ckr+1 of the same color
group.

Thus, the function f̄ (c) = f̄1(c), replaced by f̄ (c) = ω · f̄1(c)+δ · f̄2(c)+π · f̄3(c) is the
objective function of the graph coloring problem related to CTTP and the concepts described
above are incorporated in the Tabucol algorithm. Therefore, a σ -coloring of the adjunct
graph G′′, obtained by the algorithm, corresponds to a CTTP feasible solution, considering
all its hard and soft constraints.

4 Computational Results and Conclusions

The correspondence between the CTTP and GCP is known in the literature (Neufeld and
Tartar 1974, 1975), but normally the CTTP contains only basic constraints. In the work
presented here, an extended version of this correlation and adaptations on Tabucol algorithm
are proposed, as well as modifications on an existing implementation in C language were
carried out in order to contemplate the CTTP with additional constraints. The MT algorithm
presented here is evaluated in the experiment environment described as follows.

Computational results were obtained for five instances related to the problem, extracted
from real timetabling of Brazilians high schools and also two artificial instances with dif-
ferent number of teachers, students, unavailable periods, daily lessons per class with the
same teacher and lessons assigned to two consecutive periods (Santos et al 2007; Souza et al
2003). The MT algorithm was tested on a Pentium II 450 MHz PC with 128 MB RAM run-
ning CentOS 4.3 Linux operating system and GCC 3.4.5 compiler. The following weights
were used in the objective function: ω = 100, δ = 30, π = 1, θ = 3, ϕ = 9 and ψ = 1 (Santos
et al 2007; Souza et al 2003). For the generation of the initial solution of the MT algorithm,
a number of four of the greedy algorithms as described in (Culberson 2004) were used.

The computational results of the MT algorithm for the seven instances were obtained
by combining the greedy algorithms used to generate the initial solution and the following
parameters (Bello 2007): maximum number of neighbours {500, 800, 900, 1000}, minimum
number of neighbours {2, 3, 13, 19, 20} to be generated and tabu list size {7, 10}, which
produced the best results in initial tests. The executions were carried out with a fixed number
of iterations (30,000) for each instance. The initialization was done with a single seed value
for the pseudo-random numbers (seed = 1) for all instances, since this value provided the
best overall results in these initial tests. The effect of this approach is verified by comparing
the results for the GCP (using the MT algorithm) with those available in the literature for
the CTTP (Grasp Tabu Search (GTS) (Souza et al 2003) and Tabu Search (TS) (Santos et al
2007)), but without the corresponding improvement and diversification strategies, since they
were not originally implemented in the Tabucol algorithm. The results for the TS are recal-
culated with the same number of iterations and the same seed for pseudo-random numbers
used in the MT and performed in the same machine. For TS, in this experiment the search
is executed in the entire neighborhood and the tabu list size was set as proposed in (Santos
et al 2007). For the GTS, the results presented in (Souza et al 2003) were reproduced here,
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Table 1 Results for GTS, TS and MT algorithms

instance GTS TS MT TS (ms) MT (ms) ∆ time(%)

1 - 204 202 12.96 5.17 150.8
2 368 344 347 36.46 6.82 434.3
3 491 448 436 39.31 7.65 413.9
4 749 671 683 62.64 8.63 625.7
5 831 795 808 106.45 8.92 1093.6
6 847 783 872 115.69 8.83 1210.2
7 1164 1066 1117 185.53 12.63 1368.8

in which instance 1 was not included. The purpose was to provide an additional source for
comparison of the results, even without the same standardization used in the comparison of
MT with TS. To attenuate this aspect, it was used a machine with similar configuration to
the one used in (Souza et al 2003).

The Table 1 shows the average best solution costs (second column) obtained by GTS and
the best solution costs (third and fourth columns) obtained respectively by TS and MT when
applied to the seven instances (first column) with the parameters described above and the
average execution times in milliseconds of TS and MT algorithms (fifth and sixth columns)
to achieve the respective best solutions. The last column shows the percentage variations
observed in the times spent by both algorithms (TS and MT). The MT algorithm achieved
good solutions for the Class/Teacher Timetabling Problem in a very short CPU time when
compared with TS.

MT is competitive with respect to the quality of the solutions, as it achieved the optimal
solution for the instance 1 (Santos 2007) and the average results are only 3.57% greater
than those obtained by TS. When comparing the CPU time, the proposed algorithm, MT,
obtained an outstanding performance, since the average CPU time are 853.11% less than
the other algorithms. Moreover, it is observed that MT is robust with respect to the size of
the instance. The standard deviation of CPU time required by all instances is 2.31, whereas
the standard deviation of the TS CPU time is 59.8. As additional source of comparison,
the solution costs of GTS algorithm, found in literature for the instances of this problem,
are used. The approach proposed presents interesting contributions to the CTTP, and allows
future research such as: MT algorithm with long-term memories strategies (diversification
and intensification); adaptations to other graph coloring algorithms to consider additional
restrictions to CTTP and generalize the process described to other timetable problems.
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of this document.
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