A Flexible Model for Integrated Production Scheduling and Employee Timetabling in Robotic Assembly Lines

David ALCAIDE LÓPEZ DE PABLO^{1,*}

Vladimir KATS²

Eugene LEVNER³

¹University of La Laguna, La Laguna, Tenerife, Spain ²Institute of Industrial Mathematics, Beer-Sheva, Israel ³Holon Institute of Technology, Holon, Israel ^{*}Corresponding Author:

Avenida Astrofísico Francisco Sánchez, 38204 La Laguna, Tenerife, Spain. E-mail address: dalcaide@ull.es . Phone: +34 922 318182. Fax: +34 922 318170/319202.

Short Summary of the Abstract

Robotic assembly systems have the practical need of integrating automatic scheduling and employee timetabling. Scheduling decisions are usually done first, maximizing productivity; whereas employee timetabling decisions are done next, adapted to the production, minimizing labour costs.

We propose a model to maximize productivity, under bounded labour costs, treating simultaneously production scheduling and employee timetables.

Keywords

Production scheduling, employee timetabling, robotic assembly lines

Acknowledgements

This work has been partially supported by Spanish Government Research Projects MTM2004-07550, SAB2005-0161, MTM2006-10170 and MTM2007-60928, which are also assisted by European Funds of Regional Development, and Foreign Professor Visit Program of the University of La Laguna.

References

Alcaide, D., Chu, C., Kats, V., Levner, E. and Sierksma, G. (2007). Cyclic multiple-robot scheduling with time-window constraints using a critical path approach. *European Journal of Operational Research*, 177 (1), 147-162.

Sedeño-Noda, A., Alcaide, D. and González-Martín, C. (2006). Network flow approaches to pre-emptive open-shop scheduling problems with time-windows. *European Journal of Operational Research*, 174 (3), 1501-1518.