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1 Introduction 
The nature of criteria or constraints is one of the issue that should be considered in 

solving examination timetabling problems. The constraints are often in conflicts 

where an improvement in one of them can only be achieved at the expense of 

worsening another. Students prefer longer breaks between two consecutive exams; 

however this preference is conflict with some pre-allocated timeslot requested by 

faculties. Therefore a single ideal or optimum solution that dominates the others is 

very difficult to find. Hence, a set of compromise solutions must be provided.  

Pareto optimization (Coello 2003) has been well known as an approach to find a 

set of compromise solutions that represent a good approximation to the Pareto 

optimal front. The Pareto optimal front is the set of all non-dominated solutions in 

the multi-objective space. However, Farina and Amato (2004) argue that once the 

number of constraint increases, the Pareto approach is not appropriate anymore. It 

is because the current Pareto definition captures the notion of “optimality” in a 

narrowly prescribed sense. To overcome this drawback, they suggest to take into 

consideration the following factors: (i) the number of improved  objectives, (ii) the 

size of such improvements and (iii) the decision maker’s preferences between 

objectives (if any). To tackle those aspects they proposed fuzzy optimality as a 

combination of fuzzy logic (Zadeh 1965)  and multi-objective optimization or multi-

criteria decision-making. 

Another main issue that has not been addressed adequately is to provide decision 

makers a framework to decide which non-dominated solutions appropriate to them. 

Recent assessment methodologies reviewed by Ruhul and Coello (2003) were only 

focus on descriptions of existences of non dominated solutions in the Pareto front.  

Hence a new assessment framework in understanding how the solutions evolve to 
better quality ones are still open for further studies. 

In this paper, a previous work by Farina and Amato (2004) will be extended. This 

paper works on  assesing the quality of non-dominated solutions of multi-

objective examination timetabling problems. Fuzzy logic is applied here 

extensively. Fuzzy logic has been used to solve examination timetabling 

problems. Petrovic et al.  (2005)  use fuzzy logic to evaluate constraint violations, 

Asmuni et al. (2005) used fuzzy logic to select heuristic ordering methods in 

constructing examination timetabling, then Asmuni et al. (2006) try to asses the 

quality of timetabling using fuzzy logic. In contrast to them,  this paper uses fuzzy 
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logic both to model constraints and to evaluate the quality of examination 

timetabling solutions using fuzzy Pareto dominance or  the size of constraint 

violation’s changes. 

2 A fuzzy model for multi-objective examination 
timetabling problems 
The constraints of timetabling problems are divided into hard and soft categories 

based on a distinction between feasible and (near) optimal timetables. Hard 

constraints are those that must be fulfilled, while soft constraints are those that are 

desirable but not absolutely essential. Burke and Petrovic (2002) have presented 

some common soft constraints for university timetabling. The constraints may be 

conflicting in the sense that an attempt to satisfy one of the constraints can lead to 

the violations of another as explained in Section 1.  

In the following, three constraints are modeled as follows: 

- Spreading events out in time( C1); The number of common students seating on 

both exam x and y which are scheduled within two consecutive time slots will be 

calculated and penalized. Afterwards C1 are calculated by summing up the pinalty 

values and divided by the total number of enrollments.  

- Time assignment (C2);  Exams may be expected to be scheduled at certain 

timeslots. The violations of these constraints will be penalized. C2 is calculated by 

summing up the number of violations then normalized (divided) by number of 

exams.  

- Earlier timeslot for large-sized exams (C3); Large-sized exams are expected to be 

scheduled in earlier time slot. Two variables such as time slot and exam size must be 

considered in evaluating this constraint. The problems, it is very difficult or vague to 

derive a mathematical model precisely for these two variables. This phenomenon 

(vagueness and imprecision) are called fuzziness (Zadeh 1965). 

This constraint (C3) is modeled using fuzzy approach. Two linguistic variables such 

as Slot for time slot and Size for exam size are used. Slot has value as members of 

fuzzy set = {early, middle, late}. Base values for each member are in the scale of 0 to 
1. The earliest or the first time slot is given as 0 where the latest is 1.  

Size has value as members of fuzzy set = {small, medium, large}. Base values for 

each member are in the scale of 0 to 1. The values are obtained by normalized the 

actual exam size (number of students taken the exams). 0 is given the smallest exam 
size and 1 is for the largest. 

Whether scheduling an exam to a certain timeslot has satisfied constraint C3 or not is 

measured by another linguistic variable called Fitness. This variable has values as 

member of fuzzy set = {slow, medium, high}. Base values for each member are in the 

scale of 0 to 1. 0 is given for the inappropriate timeslot allocation and 1 is for the 

appropriate. The fuzzy rules for C3 constraints will assign the fitness to be higher if 

the constraint can be fulfilled. 

3 Fuzzy Pareto Dominance  and Fitness Calculation 
The number and size  of improvement of each objective is not considered in 

Pareto-optimality (Coello 2003). In Fuzzy Pareto Dominance (Farina and Amato 

2004) the size of improvement ne, nb and nw  (e for equal, b for better, w for worst)is 

obtained by taking differences of objective functions. The differences are given to 
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membership function wbe µµµ ,, . Given two vector v1 and v2,  and M of fitness or 

evaluation fuction, f. nb is calculated using Equation 1.  

∑
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ne and nw are calculated in the same way using their appropriate membership function 

we µµ , .  

The calculation of size of improvement between two given solutions (Equation 1) 

is extended to calculate the fitness of a given solution relative to the rest of 

solutions in a population. This fitness is calculated as follows; (i) averaging all the 

size of improvement (nb,ne,nw)  of a given solution to each of the other solutions. 

(ii) the value of the fitness is calculated based on Fuzzy Rules in such a way if the 

size of improments dominate the size of worsen, the membership value of the 

fitness will be higher. 

4 Computational Experiment and Result  
The concept of fuzzy Pareto dominance and the calculation of fitness evaluation 

proposed are applied to assess  the quality of the fittest non-dominated solutions. 

Data test used in these experiments are taken from a real case of Universiti Sains 

Malaysia. The problem size, the number of students, exams, enrollments and 

periods are 15015, 574, 63880 and 40 respectively. An Evalutionary Algorithm 

was developed incorporating the proposed Fuzzy Pareto Dominance and fitness 

calculation. To asses quality of non-dominated solutions, in each generation these 

parameters such as: (i) Objective values of each constraints; (ii) Fitness values; 

(iii) Size of improvement are recorded. The results are discussed as follows:  

- Constraint Violations: Three constraint models (C1, C2 and C3) were introduced. 

C1 and C2 are expected to be minimized while C3 to be maximized. In Figure 1, 

the averages of C1, C2 and C3 of the fittest of non-dominated solutions are 

presented. C1 and C2 decreased which mean they were improved, and C1 was 

improved more than C2. However the great improvements of C1 compensates to 

the worsening of C3. The spread of the exams (C1) conflicts the alocation of large 

exams in earlier timeslot . 

- Fitness Values:  The fitness values in Figure 2 shows that in overall, the quality 

of the fittest solutions has improved. Along the generations, the differences of 

fitness between the fittest solutions and their associate solutions in the population 

increase. It means that the gap of fittest of the fittest solution with its associates in 

the population is wider. 

- Size of Improvements: The improvements of the fittest solutions were shown  in 

Figure 1 and 2.  How the improvements in each of generation is presented in 

Figure 2. Along the execution, the equality (Ne) of constraint violations decreases. 

Since Ne+Nb+Nw is equal to 1. The decrements of Ne compensate to the changes 
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both Nw and Nb. Both values are getting higher, however, Nb (for changing to better 

one) is higher than Nw (the worst one). 

5 Conclusion  
This paper focused on evaluations of the fittest non-dominated solutions in 

conflict and multi-objective examination timetabling problems. Concepts of fuzzy 

optimality in determining dominance relationships between two given solutions 

have been extended. In contrast to assessment approaches usually found in 

timetabling researches, the proposed approach is able to capture individual 

behavior of the constraints of the solutions during their evolutions. A graph of size 

of improvement illuterates how conflicting constraints are compensated. 

Convergences of quality of multi-objective timetabling solutions are described 

more clearly. 
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