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Abstract One of the main challenges for any university administrations is building a timetable for 

course sessions. Such a challenge not only relates to how to build a usable timetable but also how 

to build an optimal timetable at the same time. The university course timetable is classified as an 

NP-Complete problem. In general, it means assigning predefined courses to certain rooms and 

timeslots under specific constraints. Harmony search algorithm is a new metaheuristic population 

based algorithm derived from a natural phenomena of musicians’ behavior when they 

cooperatively play their musical instruments to achieve a fantastic harmony. The major thrust of 

this algorithm lies in its ability to integrate exploitation and exploration in a parallel optimization 

environment. In this paper, a harmony search algorithm is applied to university course timetabling 

against standard benchmarks. The results show that the proposed harmony search is capable of 

providing a viable solution compared to those in previous works. 

Keywords: university course timetabling problem, harmony search algorithm, 

metaheuristic algorithms, exploration, exploitation. 

1 Introduction 
The university course timetabling problem is quite common at universities and 

is considered as an NP-complete problem (Garey and Johnson 1979). In general, it 

means assigning a set of courses to timeslots and rooms under a set of constraints. 

Though each university may have different constraints, two types of constraints 

are commonly considered (Burke et al. 1997): Hard constraints, which must be 

satisfied in a timetable to be usable (feasible) and soft constraints, which is 

desired but not absolutely essential. Being not so essential but rather desirable, 

soft constraints might be violated. Yet, the more they are met, the more the 

solution can gain qualitatively. 

Several algorithms have introduced to solve timetabling problems. The earliest 

of which depended on graph coloring heuristic methods whereby courses are 

assigned to rooms and timeslots one by one in a particular order. Although, those 

algorithms show great efficiency in small timetabling instances, they are mostly 

not efficient in larger instances. 

Later, metaheuristic algorithms came to the fore to solve the timetabling 

problems. Commonly, metaheuristic algorithms are divided into two types. The 

first type is a local based algorithm which starts with one solution and tries to 

satisfy the constraints iteratively based on a fitness function until a global optimal 

                                                
1
a

Corresponding author. 

   Email addresses: mohbetar@cs.usm.my, betar79@gmail.com. 
   (�): School of Computer Sciences, Universiti Sains Malaysia,11800 USM, Pinang, Malaysia. 

   Tel. No :+60172686566. 

 



2 

solution is reached (ex. simulated annealing (Abramson 1991; Thompson 1996; 

Tuga et al. 2007),very large neighborhood search (Abdullah et al. 2005a). and so 

on). The main drawback of those local based algorithms is that they may get stuck 

in the local optimal solution in which the current solution is considered the best 

notwithstanding the fact that there are other solutions in different areas of the 

search space with a better quality. The main cause for the local optimal problem is 

that local based algorithms focus on exploitation rather than exploration which 

means that the local based algorithms move in one direction without performing a 

wider scan of the search space. 

The second type of metaheuristic algorithms is a population based algorithm 

which starts with many different solutions and refines them in a parallel 

optimisation environment until a global optimal solution is reached. The most 

popular population based algorithms that tackle the timetabling problems are 

evolutionary algorithms (Ross et al. 1994; Burke et al. 1994; Colorni et al. 1990; 

Erben 2001), ant colony algorithm (Socha et al. 2002) and artificial immune 

system (Rozi et al. 2006) and their combination between local based and 

population based algorithms (Burke et al. 1995b; Duong and Lam 2004; Ross et 

al. 1998; Thanh 2007). Overviews of previous approaches for university 

timetabling problems are available in the following surveys (Carter and Laporte 

1997, Lewis et al. 2008; Burke et al. 2007). Unfortunately, the quality of the 

solution produced by population based algorithms is inferior to local based 

algorithms mainly due to the fact that the population based algorithms normally 

experience premature convergence, the main reason for this problem in 

population based algorithms are that they are more concerned with exploration 

rather than exploitation. That is, the population based algorithms scan the 

solutions in the whole search space without rigorous concentration on those 

current solutions in addition to other drawbacks such as the need for more time 

(Marco et al. 2006). This is why several timetable researchers have lately focused 

attention on local based rather than population based algorithms (Abdullah et al. 

2005a; Marco et al. 2006). 

In light of the above, we suggest that the best way to design a timetabling 

algorithm that tackles university course timetabling is to provide a good balance 

among local based algorithms and population based algorithms to reach a suitable 

balance between exploration (global improvement) and exploitation (local 

improvement). 

The harmony search algorithm is a new metaheuristic algorithm proposed by 

Geem et al. (2001). It is derived from the natural phenomena of musicians’ 

behavior when they play their musical instruments together to come up with a 

fantastic harmony. It is considered a population based algorithm with local based 

aspects (Lee and Geem 2004). The aim of this paper is to apply harmony search 

for university course timetabling. Results show that harmony search can tackle 

this problem intelligently and find a near optimal solution. 

 This paper is organized as follows: section two discusses the university 

course timetabling problem based on hard and soft constraints. Section three 

discusses the harmony search algorithm and its adaptability to university course 

timetabling. Section four discusses the experimental results and compares it to 

those in the previous literatures. In the final section, we present a conclusion and 

future directions to our proposed algorithm. 
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2 The university course timetabling problem  
The University Course Timetabling Problem(UCTP) version tackled in this 

paper was produced by Socha et al.(2002) using generator written by Paechter1 

and that can be described as follows: There are n courses(c1, c2,…cn) each of 

which contains certain students and needs particular features, k rooms (r1, r2,…rk) 

each of which has a seat capacity and contains specific features, l students (s1, 

s2,…sl) each of them assigned one or more courses, m features (f1, f2,…fm), and p 

timeslots(t1, t2,…tp) where p=45 (5 days with 9 timeslots on each day). A binary 

matrix Xl,n called  Student-Course matrix where (xi,j =1) shows  student i  took 

course j, The Room-Feature matrix Yk,m is described as a room i  that contains 

feature j if and only if (yi,j =1), and Course-Feature matrix Zl,m  means  that  a 

course i  needs feature j  if and only if  (zi,j =1). 

The following hard constraints must be satisfied: 

H1. Student must not be double booked for courses. 

H2. Room size and features must be suitable for assigned courses. 

H3. Room must not be double booked for courses. 

And the following soft constraints should be minimized: 

S1. A student shall not have a class in the last slot of the day. 

S2. A student shall not have more than two classes in a row. 

S3. A student shall not have a single class on a day. 

The main objective for this context of UCTP is to produce a feasible solution 

as well as to minimize the violations of soft constraints. It is worth mentioning 

that the context of UCTP here reflects a real course timetabling problem at Napier 

University in Edinburgh, UK. 

Originally, the context of UCTP used by Socha et al.  (2002) was determined 

by Metaheuristics Network2(MN) which is a European commercial research 

project shared by five Europe institutions between 2000 to 2004 to investigate the 

efficiency of different metaheuristics on different computational optimisation 

problems. 

The same context of UCTP was used for the first International Timetabling 

Competition3. Twenty data instances and three more hidden ones were constructed 

using the same generator written by Paechter. Those data instances were proposed 

mainly in order to motivate the competitors to focus attention on generating 

brilliant approaches to UCTP. In fact, those data instances observed soft 

constraints minimization rather than hard constraints fulfillment. Some works that 

have lately appeared used the same data instances to measure the efficiency of 

their approaches (Marco et al. 2006; Kostuch 2005; Lewis and Paechter 2004; 

Burke et al. 2003). 

The computational optimisation problems are difficult to solve due to the 

complexity and size of the problem and university community has increased 

rapidly in the last five decade. As such, Lewis and Paechter (2005) used the same 

Paechter’s generator to construct 60 hard data instances to measure the capability 

                                                
1 
Ben Paechter is a Professor in the School of Computing at Napier University, UK and a member of Metaheuristics 

Network. His official home page is “http://www.dcs.napier.ac.uk/~benp/”. (27 June 2008). 
2
 Metaheuristics Network official website “http://www.metaheuristics.net/”. (27 June 2008). 

3 First International Timetabling Competition was organised by Metaheuristics Network members and was sponsored by 

PATAT. The Official website is “http://www.idsia.ch/Files/ttcomp2002/”. (27 June 2008). 



4 

of grouping genetic algorithm to find feasible timetables. Tuga et al. (2007) used 

the same data instances to evaluate the performance of simulated annealing with 

kempe chain to find feasible timetables. 

The post enrollment course timetabling problem (Lewis et al. 2007) was 

tracked on Second International Timetabling Competition1. This is similar to 

UCTP context of MN with slight differences: in the Second International 

Timetabling Competition two more hard constraints were addressed, the twenty 

one problem instances constructed for this track tackle different sizes, and the 

distance to feasibility2 is considered to be another measurement for quality of 

solutions. 

3 A Harmony search algorithm for UCTP 
The harmony search (HS) is a new metaheuristic algorithm considered to be of 

the population based type which was proposed by Geem et al. (2001) and applied 

to several computational optimization problems such as structural design (Lee and 

Geem 2004), water network design (Geem 2006b), dam scheduling (Geem 

2007b), school bus routing (Geem 2005), Sudoku game (Geem 2007a) and music 

composition (Geem 2006a). HS was derived from the natural phenomena of 

musicians’ behavior when they collectively play their musical instruments 

(population members) to come up with a fantastic harmony (global optimal 

solution). This fantastic state is determined by an aesthetic standard (fitness 

function). Figure 2 shows the five steps in HS applied to UCTP. 

UCTP is represented as a matrix Ak,p where ai,j shows that the position of this 

matrix may either contain course c in ith room and jth  timeslot or -1 if it is empty. 

See Figure 1. 
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Figure 1 UCTP representation. 

This representation shown in Figure 1 as is used by Lewis (2006) to satisfy 

hard constraint H3 directly. 

                                                
1
 The Second International Timetabling Competition was organised by five educational institutions and was sponsored by 

PATAT and WATT .The official website is “http://www.cs.qub.ac.uk/itc2007/index.htm”. (27 June 2008). 
2 The term’ distance to feasibility’ indicates the number of courses that are not scheduled in the timetable in which the 

number of students within each unscheduled courses is a factor for evaluation.    
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Figure 2 a harmony search algorithm for UCTP. 

 The following data structures are used to build a university course timetable: 

- Conflict matrix: is a matrix Bn,n where bi,j  contains either 0 if 

there is no one or more students sharing course i and course j or  

1
,

≥
ji

b  if there is one  student or more sharing course i and course  

j. This matrix is used to deal with the hard constraint H1. 

- Course room matrix: is a binary matrix Dn,k  where di,j contains 

either 1 if and only if course i and room  j  is compatible with both 

aspects of size and features or 0 otherwise. This matrix is used to 

deal with hard constraints H2. 

- Course position matrix: is a matrix  Qn,HMS  where qi,j  changes 

iteratively in a HS which contains either (qi,j = 1) if and only if a 

course i has a valid position for new harmony solution in the 

solution j that is stored in harmony memory (HM) or (qi,j =0) 

otherwise. 
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Step1: Initialize harmony search parameters and UCTP parameters  

In step 1, fitness function (1) as used by Marco et al. (2006) is utilized to 

calculate the fitness value for each solution 

( ) ( ) ( ) ( )safsafsafAf
l

s

i ,,, 32
1

1 ++= ∑
=

           (1)   

 Where ( )iAf  is a fitness function of ith solution in HM, and ( )saf ,1 , ( )saf ,2  

and ( )saf ,3 describes the violation in soft constraint S1, S2 and S3 consecutively.  

Following are the HS parameters: 

1. HMCR: Harmony Memory Consideration Rate similar to crossover rate in 

genetic algorithm. 

2. PAR: Pitch Adjusting Rate plays a significant role in determining the 

number of courses which will be moved to another position or swapping them 

with other courses like local search neighborhood structures. 

3. HMS: Harmony Memory Size is similar to population size. 

4. NI: Number of Improvisations is similar to number of iterations in 

optimisation algorithms. 

Step2: Initialize HM with random feasible timetables based on HMS 
parameter 
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Figure 3 harmony memory structures 

In step 2, HS algorithm will generate feasible solutions with size of HMS, HM 

will be filled with those solutions; also the fitness value of all solutions in HM 

will be calculated. (see Figure 3). 

Regarding UCTP, backtracking algorithm (Carter and Laporte 1996) and 

proposed MultiSwap algorithm is applied to generate random harmony solutions 

equal to HMS after assigning the courses by the weighted largest degree first 

heuristic method (Arani and Lofti 1989). This strategy ensures that all harmony 

solutions are feasible. First, all courses that can not be assigned to the timetable 

after largest weighted degree first heuristic method finished its assigning process 

will be entered to a list called unscheduled list. 

This list will be passed to a backtracking algorithm that will select each 

unscheduled course c from the unscheduled list and explore all courses in conflict. 

Those courses that share one or more students with c will be removed from the 

timetable and added to the unscheduled list again. After that, the backtracking 

algorithm attempts to assign timeslots and rooms to all courses in the unscheduled 
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list. This process will iterate several times until no further places can be filled. 

Some courses may not be scheduled at the end of this process. In this case, the 

MultiSwap algorithm will be used. 

 The proposed MultiSwap algorithm shuffles courses in different rooms in the 

same time slot where shuffling such courses is applied to all time slots 

consecutively. It is worth mentioning that there are two reasons why unscheduled 

courses cannot find places. Firstly, the proper room for the unscheduled course is 

reserved by other courses while the second relates to timeslots which contain 

courses sharing a student or more with the unscheduled course. Backtracking 

handles the second reason while MultiSwap tackles the first one. In MultiSwap 

algorithm, courses are taken from the same timeslot and are shuffled to a different 

suitable room in the hope of opening proper rooms to unscheduled courses. 

If this process with predefined iterations can not find a feasible solution, we 

propose to restart the whole process from the beginning. 

Step 3: Improvise new harmony solution 

NEW

jia , =























NEW

pk

NEW

k

NEW

k

NEW

p

NEWNEW

NEW

p

NEWNEW

NEW

p

NEWNEW

aaa

aaa

aaa

aaa

,1,0,

,21,20,2

,11,10,1

,01,00,0

.......

...................

.......

.......

.......

 

Figure 4 new harmony solution 

In step 3, a new feasible harmony solution (Figure 4) is generated based on 

three operators: 

1 Memory considerations 

Memory consideration operator selects the courses positions of new harmony 

solution based on solutions stored in HM with probability HMCR. In other words, 

the new value of NEW

jia ,  is chosen randomly from the historical positions of 

timetables stored in HM such that { }HMS
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HMCR has a probability of selecting historical positions of NEW

jia , from feasible 

timetables stored in HM. For instance, if (HMCR=0.95), this indicates the number 

of courses will be selected randomly from a historical stored positions in the HM 

with a probability rate of 95%. To elaborate, if there are 400 courses scheduled in 

each timetable in HM with different positions, the HS algorithm will choose 

( 400%95 × ) courses in the new harmony solution depending on historical 

positions of timetables in HM. 
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  As far as memory is concerned, it is safe to mention that the HS 

consecutively selects historical values stored in HM from NEWa 1,1  to NEW

pka ,  (Geem et 

al. 2001). Due to the fact that UCTP is NP-hard problem and that feasibility 

should be kept at this stage, it is difficult to consecutively find feasible positions 

for all obtained courses in the new harmony solution. By analogy to the ordering 

priority of largest saturation degree (Br´elaz 1979) where the courses must be 

ordered iteratively one by one based on assigning difficulties. The smallest 

position algorithm has been proposed to be responsible for choosing the courses 

which have the minimum historical available positions iteratively found in the 

Course Position matrix. If there is more than one course at each iteration with the 

same minimum available positions, the proposed algorithm will select one course 

depending on the weighted largest degree first (Arani and Lofti 1989). 

2 Random considerations 

(1-HMCR) courses that are not scheduled depending on memory consideration 

will be assigned to the new harmony solution randomly from the available course 

range. In fact, this process is very important to diversify the new harmony 

solution being similar to mutation operator in genetic algorithm (Geem 2005).  

3 Pitch adjustments 

After the new harmony solution is generated, the pitch adjusting operator will 

be applied to the new harmony solution with a probability Pitch Adjusting Rate 

(PAR). This operator will examine all courses that are scheduled out of harmony 

considerations. In other words, pitch adjusting selects the courses depending on 

memory consideration rather than random consideration. The obtained courses 

move to neighboring courses with a probability ( )HMCRPAR ×  value where 

10 ≤≤ PAR . The other courses with a probability rate ( )( )HMCRPAR ×−1  are not 

changed.  The HMCR parameter helps HS to focus on global improved solutions 

while PAR parameter helps HS to focus on local improved solutions (Geem 2005; 

Lee and Geem 2004). 

Courses will be selected according to (3): 

       

( )

( )( )







−×

×
=

PARHMCRpwNo

PARHMCRpwYes

aNEW

ji

1..

..

,
                                  (3) 

In case of UCTP, the selected course will move to a valid position or swap 

with another course with the probability of ( )HMCRPAR × . Here, pitch adjusting 

operator works similar to neighborhood structures of local based algorithms that is 

concerned with the exploitation of the new harmony solution while memory 

consideration operator is concerned with exploration. 

Step 4: Update harmony memory 

In step 4, the HS algorithm evaluates the new harmony solution. If the fitness 

value of the new harmony solution is better than the worst fitness value in HM, 

include new harmony solution in HM and exclude the worst solution from HM. 
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Step 5: Stop Criteria 

In step 5, the HS algorithm will repeat step 3 and step 4 until the maximum 

number of iterations determined by NI parameter is met. 

4 Experimental results and discussion 

In this section, we present the performance of HS algorithm using the standard 

benchmarks for university course timetabling. The proposed method is coded in 

Microsoft Visual C++ 6 under windows XP on an Intel machine with 2 GHz 

processor and 256 RAM. We chose to test the proposed method using the data 

instances
1
 prepared by Socha et al. (2002). Such data instances can measure the 

performance of approaches related to UCTP and were prepared carefully to mimic 

a real word UCTP at Napier University with different size and supersets of 

constraints. Socha et al. (2002) classified those instances into three classes: small, 

medium, and large and discussed the parameter value for each class. (see Table 1). 

We experimented five small data instances, five medium data instances and one 

large data instance; they were tested using 100000 iterations. The overall penalty 

of each dataset was assessed by the penalty function that adds up all violations of 

the soft constraints S1, S2 and S3. HMS= 50, HMCR =0.98 and PAR=0.02. Time 

consumed for each instance is approximately 20 minutes for each small instance 

and less than two hours for each medium instance. This time is considered 

reasonable for generating a timetable. 

The results are compared with others (see Table 2): a tabu-search hyper-

heuristic (Burke et al. 2003), a graph-based hyper-heuristic (Burke et al. 2007), 

max-min ant system, random restart local search (Socha et al. 2002), hybrid 

evolutionary approach (Abdullah et al. 2007),  fuzzy multiple heuristic ordering 

(Asmuni et al. 2005), a variable neighborhood search (Abdullah et al. 2005b) and 

randomised iterative improvement (Abdullah et al. 2005a). 

Table 1 parameter value for UCTP classes (Socha et al. 2002). 

Class Small Medium Large 

Number of events  100 400 400 

Number of rooms 5 10 10 

Number of features  5 5 10 

Approximate feature per room   3 3 5 

Percent feature use  70 80 90 

Number of students 80 200 400 

Max events per student 20 20 20 

Maximum student per event  20 50 100 

 

 

 

 

 

 

 

 

                                                
1 Socha data instances were generated by a generator written by Ben Paechter available on this website: 

“http://iridia.ulb.ac.be/~msampels/tt.data/”. (27 June 2008). 

 



10 

Table 2 comparison of results on the small / medium/large data instances 

In Table 2, the following abbreviations have been used to mean:  

HS– our Harmony Search algorithm. 

RII– Randomised Iterative Improvement (Abdullah et al. 2005a). 

RRLS– Random Restart Local search (Socha et al. 2002). 

MMAS– MAX-MIN Ant System (Socha et al. 2002). 

VNS– Variable Neighborhood Search (Abdullah et al. 2005b). 

GHH– Graph-based Hyper-Heuristic (Burke et al. 2007). 

FMHO– Fuzzy Multiple Heuristic Ordering (Asmuni et al. 2005). 

HEA– Hybrid Evolutionary Approach (Abdullah et al. 2007). 

THH– Tabu-search Hyper-Heuristic (Burke et al. 2003). 

       x%inf – as used by Abdullah et al. (2007) indicate that the percentage of such 

algorithm could not find a feasible timetable. 

       As shown in Table 2, the result seems competitive with those in other 

previous works. The HS algorithm is capable of refining the quality of the course 

timetable and producing a near optimal solution. The result also seems to fall 

within the range of previous works that used the same data instances. 

It can be observed that the experimental results of HS algorithm show that HS 

is able to find feasible solutions for small and medium data instances. The 

proposed approach obtained better results than GHH and FMHO for almost all 

small data instances. Moreover, it obtained better results than VNS in medium 

data instances and some others in FMHO. 

5 Conclusion and future work 

This paper has presented HS algorithm for tackling UCTP. As it has been 

shown, the proposed algorithm can find near optimal solutions for UCTP and 

produces better results than several others in the previous literature. 

HS stands out for being able to strike a balance between exploration through 

HMCR in memory consideration and exploitation through PAR in the pitch 

adjusting procedure. 

Datasets 
  HS 

(best) 

RII  

(best) 

RRLS 

(Avg) 

MMAS 

(Avg) 

VNS 

(best) 

GHH 

(best) 

FMHO 

(best) 

HEA 

(best) 

THH 

(best) 

small1 5 0 8 1 1 6 10 0 1 

Small2 3 0 11 3 2 7 9 0 2 

Small3 2 0 8 1 0 3 7 0 0 

Small4 3 0 7 1 1 3 17 0 1 

Small5 1 0 5 0 0 4 7 0 0 

Meduim1 316 242 199 195 317 372 243 221 146 

Meduim2 243 161 202.5 184 313 419 225 147 173 

Meduim3 255 265 
77.5% 

inf. 
248 357 359 249 246 267 

Meduim4 235 181 177.5 164.5 247 348 285 165 169 

Meduim5 215 151 
100% 

inf. 
219.5 292 171 132 130 303 

Large  
100% 

inf 

100%       

inf. 

100%  

inf. 
851.5 

100%

inf. 
1068 1138 529 

80% 

inf. 

1166 
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For future research, we aim to improve HS for UCTP by introducing different 

neighborhood structures to pitch adjusting procedure and by trying to integrate HS 

with other metaheuristic algorithms. The tuning of HS parameters for UCTP is to 

be addressed as well. 
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